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ABSTRACT 

We had constructed mathematical model of HIV/AIDS with seven compartments. There were 
two different stages of infection and susceptible subpopulations. Two stages in infection 
subpopulation were an HIV-positive with consuming ARV such that this subpopulation can 
survive longer and an HIV-positive not consuming ARV.  The susceptible subpopulation was 
divided into two, uneducated and educated susceptible subpopulations. In this paper, we 
consider the transmission only from uneducated to infection subpopulations. In other hand, 
educated subpopulation did not have contact with the infected subpopulations. We investigated 
local stability of the equilibrium points according to the basic reproduction number (R0) as a 
threshold of disease transmission. The disease-free and endemic equilibrium points were 
locally asymptotically stable when R0 < 1 and R0 > 1 respectively. To support the analytical 
results, numerical simulation was conducted. 

Keywords: dynamical system; HIV/AIDS; educated subpopulations; local stability 

INTRODUCTION 

AIDS (Acquired Immune Deficiency Syndrome) is a disease of the immune system 
caused by HIV (human immunodeficiency virus) (HIV). AIDS is a threat in the world 
because people infected with HIV can cause death. WHO seeks to campaign for the 
dangers of this disease and provide various controls including the use of condoms or 
consume ARV (Antiretroviral Treatment). 

Mathematical models have made a significant contribution to understanding the 
spread of HIV infection. Mathematical model HIV/AIDS have been studied by [1]-[4] where 
they formulated the mathematical model of HIV/AIDS with the treatment stated in the 
SIATR.  In [4] and [5], they constructed and conducted a dynamic analysis of the HIV / 
AIDS epidemic model with different stages of infection and different stages of susceptible 
subpopulations respectively. [6] studied dynamical analysis the model 𝑆𝐼𝐼𝐼2𝐴𝑇𝑅 locally 
and globally. The results, the disease-free and endemic equilibrium points were locally 
and globally asymptotically stable.  

In this research, we propose mathematical model of HIV/AIDS with educated 
subpopulation. The proposed model is more realistic. We determined the disease-free and 
endemic equilibrium points as the solution of the model, the basic reproduction number 
(R0), and analyzed the stability of equilibrium points locally following [7]-[14]. The 
disease-free equilibrium point is locally asymptotically stable when R0 < 1 and the 

http://dx.doi.org/10.18860/ca.v6i4.10275
mailto:ummu_habibah@ub.ac.id


Stability Analysis of HIV/AIDS Model with Educated Subpopulation 

Ummu Habibah 189 

endemic equilibrium point is locally asymptotically stable when R0 > 1. Numerical 
simulations were performed using values of selected parameters to support the results of 
the analysis.  

 

METHODS  

To this end the research, we started by literature review. We modify the mathematical 
model of HIV/AIDS from [6] by adding educated subpopulation. Next, we analyzed the 
constructed model dynamically. Firstly, we should find the equilibrium points (disease-
free and endemic equilibrium points). Then, we find the basic reproduction number used 
as a threshold endemic-occurred. Furthermore, we analyze local stability using the Routh-
Hurwitz criteria. Numerical simulation is performed to see behavior of the model solution 
using the Runge-Kutta 4th order method. 

RESULTS AND DISCUSSION  

The model of HIV/AIDS with educated subpopulation consist of seven compartments 
(Figure 1) are S(t), E(t), I1(t), I2(t), A(t), T(t), and R(t). S(t) is susceptible/uneducated 
individuals; E(t) is educated individuals, I1(t) is HIV-positive individuals consuming ARV; 
and I2(t) is HIV-positive individuals not consuming ARV; A(t) is full-blown AIDS not 
receiving treatment; T(t) is individuals receiving ARV treatment; R(t) is recovered 
individuals who change and maintain their sexual habits for the rest of their lives. 

 
Figure 1. The compartment diagram of an HIV/AIDS model with educated subpopulation. 
 
We establish an HIV/AIDS model with educated subpopulation in the form of a system of 
non-linear differential equations as follows. 

𝑑𝑆

𝑑𝑡
= 𝜆 − 𝛽1𝑆𝐼1 − 𝛽2𝑆𝐼2 − 𝑎𝑆,  

𝑑𝐸

𝑑𝑡
= 𝜂𝑆 − 𝑝𝐸,  

𝑑𝐼1

𝑑𝑡
= 𝛽1𝑆𝐼1 + 𝛼1𝑇 − 𝑏𝐼1,  

𝑑𝐼2

𝑑𝑡
= 𝛽2𝑆𝐼2 − 𝑐𝐼2,     

𝑑𝑇

𝑑𝑡
= 𝐾1𝐼1 +𝐾3𝐼2 − 𝑒𝑇,  

 
 
 
 
 

(1) 
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𝑑𝐴

𝑑𝑡
= 𝐾2𝐼2 + 𝛼2𝑇 − 𝑓𝐴,  

𝑑𝑅

𝑑𝑡
= 𝜇𝑆 − 𝑝𝑅,  

 
where 𝑎 = 𝜂 + 𝜇 + 𝑝, 𝑏 = 𝐾1 + 𝑝, 𝑐 = 𝐾2 + 𝐾3 + 𝑝, 𝑒 = 𝛼1 + 𝛼2 + 𝛿2 + 𝑑, dan 𝑓 = 𝛿1 + 𝑝.  
Parameter 𝜆 is recruitment rate of the population, β1 and β2 are transmission coefficient 
from uneducated subpopulation to infection stage I1 and I2 respectively, β3 and β4 are 
transmission coefficient from educated subpopulation to infection stage I1 and I2  

respectively, p is natural mortality rate, α1 is the proportion of successful treatment, α2 is 
the proportion of treatment failure, K1 is progression rate from I1 to T, K2 is progression 
rate from I2 to A, K3 is progression rate from I2 to T, δ1 is the disease-related death rate of 
the AIDS, δ2 is the disease-related death rate of being treated,  µ is the rate of susceptible 
individuals who changed their habits, and 𝜂 is the rate of educated individuals who 
received information of HIV/AIDS. The transmission coefficients from educated and 
uneducated subpopulations to infection stages were βi where i = 1,2,3,4 ((β1 and β2) > 
(β3 and β4)) where in this research we consider the case of β3 and β4 were zero. It 
means that E(t) subpopulation is free of infection.  

Positivity of solutions 

We proof positivity of solutions of the model follows [6]. 

Theorem. If point 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼1(0) ≥ 0, 𝐼2(0) ≥ 0, 𝑇(0) ≥ 0, 𝐴(0) ≥ 0, 𝑅(0) ≥ 0, 
then the solutions of system (1), 𝑆, 𝐸, 𝐼1, 𝐼2, 𝑇, 𝐴, 𝑅 are positive for all 𝑡 > 0. 

Proof. From the first equation of system (1), we have 

𝑑𝑆

𝑑𝑡
= 𝜆 − 𝛽1𝑆𝐼1 − 𝛽2𝑆𝐼2 − 𝑎𝑆 = 𝜆 − 𝑍1(𝑡)𝑆, (2) 

where 𝑍1(𝑡) = 𝛽1𝐼1 + 𝛽2𝐼2 + 𝑎.  We multiply equation (2) with 𝑒∫ 𝑍1(𝑟)𝑑𝑟
𝑡
0  to give 

 
𝑑𝑆

𝑑𝑡
𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0  = {𝜆 − 𝑍1(𝑡)𝑆}𝑒

∫ 𝑍1(𝑟)𝑑𝑟
𝑡
0 , (3) 

 
which implies 

𝑑𝑆

𝑑𝑡
𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0  + 𝑆𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0 = 𝜆𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0 . (4) 

Next, we write the left hand side of equation (4) as derivative of 𝑆𝑒∫ 𝑍1(𝑟)𝑑𝑟
𝑡
0  wtith respect 

to t, to yield 
𝑑

𝑑𝑡
{𝑆𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0 } = 𝜆𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0 , (5) 

then we integrate with respect to v from 0 to t, we get 

𝑆𝑒∫ 𝑍1(𝑟)𝑑𝑟
𝑡
0 − 𝑆(0) = 𝜆{∫ 𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑣
0

𝑡

0
𝑑𝑣}. 

(6) 

We multiply equation (6) by 𝑒−∫ 𝑍1(𝑟)𝑑𝑟
𝑣
0  to give 
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𝑆(𝑡) = 𝑆(0)𝑒−∫ 𝑍1(𝑟)𝑑𝑟
𝑡
0 + 𝜆𝑒−∫ 𝑍1(𝑟)𝑑𝑟

𝑡
0 {∫ 𝑒∫ 𝑍1(𝑟)𝑑𝑟

𝑣
0

𝑡

0

𝑑𝑣} ≥ 0, (7a) 

which is said that the solution of the first equation of system (1) is positive.  

Furthermore, the solutions of system (1) can be written as 

𝐸(𝑡) = 𝐸(0)𝑒−𝑝𝑡 + 𝑒−𝑝𝑡{∫𝑒𝑝𝑡𝑍2(𝑡)𝑑𝑣

𝑡

0

} ≥ 0, (7b) 

𝐼1(𝑡) = 𝐼1(0)𝑒
∫ 𝑍3(𝑟)𝑑𝑟
𝑡
0 + 𝑒∫ 𝑍3(𝑟)𝑑𝑟

𝑡
0 {∫ 𝛼1𝑇(𝑡)𝑒

−∫ 𝑍3(𝑟)𝑑𝑟
𝑣
0

𝑡

0

𝑑𝑣} ≥ 0, (7c) 

 
𝐼2(𝑡) = 𝐼2(0)𝑒

𝑍4𝑡 ≥ 0, (7d) 

𝐴(𝑡) = 𝐴(0)𝑒−𝑒𝑡 + 𝑒−𝑒𝑡{∫𝑒𝑒𝑡𝑍5(𝑡)𝑑𝑣

𝑡

0

} ≥ 0, (7e) 

𝑇(𝑡) = 𝑇(0)𝑒−𝑓𝑡 + 𝑒−𝑓𝑡{∫𝑒𝑓𝑡𝑍6(𝑡)𝑑𝑣

𝑡

0

} ≥ 0, (7f) 

𝑅(𝑡) = 𝑅(0)𝑒−𝑝𝑡 + 𝑒−𝑝𝑡{∫𝑒𝑝𝑡𝑍7(𝑡)𝑑𝑣

𝑡

0

} ≥ 0, (7g) 

where 𝑍2(𝑡) = 𝜂𝑆(𝑡), 𝑍3(𝑡) = 𝛽1𝑆(𝑡) − 𝑏, 𝑍4(𝑡) = 𝛽2𝑆(𝑡) − 𝑐, 𝑍5(𝑡) = 𝐾1𝐼1(𝑡) + 𝐾3𝐼2(𝑡), 
𝑍5(𝑡) = 𝐾2𝐼2(𝑡) + 𝛼2𝑇(𝑡), and 𝑍7(𝑡) = 𝜇𝑆(𝑡).  Hence, we can say that the solutions of 
system (1), 𝑆(𝑡), 𝐸(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑇(𝑡), 𝐴(𝑡), 𝑎𝑛𝑑 𝑅(𝑡) are positive for all 𝑡 > 0. 

Equilibrium points  

We will find two equilibrium points, disease-free and endemic equilibrium points. The 

equilibrium points are obtained by solving the equations system (1) when  
𝑑𝑆

𝑑𝑡
= 0, 

𝑑𝐸

𝑑𝑡
= 0,  

𝑑𝐼1

𝑑𝑡
= 0, 

𝑑𝐼2

𝑑𝑡
= 0, 

𝑑𝑇

𝑑𝑡
= 0, 

𝑑𝐴

𝑑𝑡
= 0, dan 

𝑑𝑅

𝑑𝑡
= 0. The disease-free equilibrium point 𝐾0 =

(𝑆0, 𝐸0, 𝐼1
0, 𝐼2

0, 𝑇0, 𝐴0, 𝑅0) is 

𝐾0 = (
𝜆

𝑎
,
𝜂𝜆

𝑝𝑎
, 0,0,0,0,

𝜇𝜆

𝑝𝑎
). (8) 

 
The basic reproduction number (𝑅0) is obtained by using the next generation matrix 
method [15]. The constituent components of the next generation matrix method only 
consist of infected population groups, namely 

𝑑𝐼1
𝑑𝑡
= 𝛽1𝑆𝐼1 + 𝛼1𝑇 − 𝑏 

𝑑𝐼2
𝑑𝑡
= 𝛽2𝑆𝐼2𝐼1, −𝑐𝐼2. 

(9) 

 
Before we find the endemic equilibrium point, we will find the basic reproduction number. 
First, define 𝑥𝑖

′ = (𝐼1
′, 𝐼2

′)𝑇, the system of equations (9) can be stated as 
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(
𝑥1
′

𝑥2
′) = (

𝐹1
𝐹2
) − (

𝑉1
𝑉2
), 

where 

𝐹 = (
𝐹1
𝐹2
) = (

𝛽1𝑆𝐼1
𝛽2𝑆𝐼2

), 

and  

𝑉 = (
𝑉1
𝑉2
) = (

𝑏𝐼1 − 𝛼1𝑇
𝑐𝐼2

). 

The partial derivative of V is  

𝐷𝐹 = (

𝜕𝐹1

𝜕𝐼1

𝜕𝐹1

𝜕𝐼2
𝜕𝐹2

𝜕𝐼1

𝜕𝐹2

𝜕𝐼2

) = (
𝛽1𝑆 0
0 𝛽2𝑆

). 

We substitute the point 𝐾0 to DF matrix to get 

𝐷𝐹(𝐾0) = (
𝛽1𝑆

0 0

0 𝛽2𝑆
0). 

Furthermore, the partial derivatives of matrix V are 

𝐷𝑉 = (

𝜕𝑉1

𝜕𝐼1

𝜕𝑉1

𝜕𝐼2
𝜕𝑉2

𝜕𝐼1

𝜕𝑉2

𝜕𝐼2

) = (
𝑏 0
0 𝑐

). 

We substitute point 𝐾0 into DV to yield 

𝐷𝑉(𝐾0) = (
𝑏 0
0 𝑐

). 

The inverse of the matrix 𝐷𝑉(𝐾0) is  

(𝐷𝑉(𝐾0) )−1 =
1

𝑏𝑐
(
𝑐 0
0 𝑏

) = (

1

𝑏
0

0
1

𝑐

). 

The next generation matrix is obtained as follows 

𝑅 = ( 𝐷𝐹(𝐾0))(𝐷𝑉(𝐾0) )−1, 

= (

𝛽1𝑆
0

𝑏
0

0
𝛽1𝑆

0

𝑏

). 

Then, the eigenvalues of R matrix are obtained 

as follows. 

𝑟1 =
𝛽1𝑆

0

𝑏
 dan 𝑟2 =

𝛽2𝑆
0

𝑐
. 
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The basic reproduction number (𝑅0) is obtained from the spectral radius of the R or the 
largest modulus of the eigenvalues of the matrix R and the value of 𝛽1 < 𝛽2, then we get 

𝑅0 =
𝛽2𝑆

0

𝑐
=
𝛽2𝜆

𝑎𝑐
. 

(10) 

Furthermore, the endemic equilibrium point 𝐾∗ = (𝑆∗, 𝐸∗, 𝐼1
∗, 𝐼2

∗, 𝑇∗, 𝐴∗, 𝑅∗) can be 
written as follows 

𝑆∗ =
𝑐

𝛽2
 

𝐸∗ =
𝜂𝑐

𝛽2𝑝
 

𝐼1
∗ =

𝑎𝑐𝛼1𝐾3(𝑅0 − 1)

𝑐𝛽1𝛼1𝐾3𝐼1 + 𝑐(𝛽2𝑏𝑒 − 𝛼1𝛽2𝐾1 − 𝑒𝛽1𝑐)
 

𝐼2
∗ =

(𝛽2𝑏𝑒 − 𝛼1𝛽2𝐾1 − 𝑒𝛽1𝑐)𝐼1
∗

𝛼1𝛽2𝐾3
 

𝑇∗ =
(𝛽2𝑏 − 𝛽1𝑐)𝐼1

∗

𝛼1𝛽2
 

𝐴∗ =
(𝐾2(𝛽2𝑏𝑒 − 𝛼1𝛽2𝐾1 − 𝑒𝛽1𝑐) + 𝛼2𝐾3(𝛽2𝑏𝑒 − 𝑒𝛽1𝑐))𝐼1

∗

𝑓𝛼1𝛽2𝐾3
 

𝑅∗ =
𝜇𝑐

𝛽2𝑝
 

 

 

 

 

 

 

(11) 

  
Local stability analysis  

The local stability of the equilibrium point is obtained by linearizing the system 
around the equilibrium point. We linearize the system (1) to get the Jacobi matrix  

𝐽(𝐾) =

(

 
 
 
 

−𝛽1𝐼1 − 𝛽2𝐼2 − 𝑎 0 −𝛽1𝑆 −𝛽2𝑆 0 0 0
𝜂 −𝑝 0 0 0 0 0
𝛽1𝐼1 0 𝛽1𝑆 − 𝑏 0 𝛼1 0 0
𝛽2𝐼2 0 0 𝛽2𝑆 − 𝑐 0 0 0
0 0 𝐾1 𝐾3 −𝑒 0 0
0 0 0 𝐾2 𝛼2 −𝑓 0
𝜇 0 0 0 0 0 −𝑝)

 
 
 
 

, 

 
Theorem 1. The free-disease equilibrium point 𝐾0  is locally asymptotically stable when R0 

< 1 and unstable otherwise. 

Proof. The Jacobi matrix at the equilibrium point 𝐾0 is  
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𝐽(𝐾0) =

(

 
 
 
 
 
 
 
 
−𝑎 0 −𝛽1

𝜆

𝑎
−𝛽2

𝜆

𝑎
0 0 0

𝜂 −𝑝 0 0 0 0 0

0 0 𝛽1
𝜆

𝑎
− 𝑏 0 𝛼1 0 0

0 0 0 𝛽2
𝜆

𝑎
− 𝑐 0 0 0

0 0 𝐾1 𝐾3 −𝑒 0 0
0 0 0 𝐾2 𝛼2 −𝑓 0
𝜇 0 0 0 0 0 −𝑝)

 
 
 
 
 
 
 
 

. 

The equation characteristic matrix 𝐽(𝐾0) can be obtained by solving equation 
|𝐽(𝐾0) − 𝑟𝐼| = 0, i.e  
|𝐽(𝐾0) − 𝑟𝐼|

=

|

|

|
−𝑎 − 𝑟 0 −𝛽1

𝜆

𝑎
−𝛽2

𝜆

𝑎
0 0 0

𝜂 −𝑝 − 𝑟 0 0 0 0 0

0 0 𝛽1
𝜆

𝑎
− 𝑏 − 𝑟 0 𝛼1 0 0

0 0 0 𝛽2
𝜆

𝑎
− 𝑐 − 𝑟 0 0 0

0 0 𝐾1 𝐾3 −𝑒 − 𝑟 0 0
0 0 0 𝐾2 𝛼2 −𝑓 − 𝑟 0
𝜇 0 0 0 0 0 −𝑝 − 𝑟

|

|

|

= 0 

 
 
 
 
(12) 

 
Determinant of equation (12) is 

𝜑 |𝛽1
𝜆

𝑎
− 𝑏 − 𝑟 𝛼1

𝐾1 −𝑒 − 𝑟
| = 0, 

where 𝜑 = (−𝑝 − 𝑟)(−𝑓 − 𝑟)(−𝑝 − 𝑟)(−𝑎 − 𝑟) (𝛽2
𝜆

𝑎
− 𝑐 − 𝑟). The we get 𝑟1 = −𝑝, 𝑟2 =

−𝑓,  𝑟3 = −𝑝, 𝑟4 = −𝑎,  𝑟5 = 𝛽2
𝜆

𝑎
− 𝑐, and 𝑟6,7. 

We can write 𝑟5 =
𝛽2𝜆−𝑐𝑎

𝑎
 such that we get 𝑟5 = 𝑐(𝑅0 − 1), where  𝑟5 < 0 when 𝑅0 < 1. 𝑟6,7 

is obtained when satisfies |
𝛽1

𝜆

𝑎
− 𝑏 − 𝑟 𝛼1

𝐾1 −𝑒 − 𝑟
| = 0. 

 

For example, 𝑔 = 𝛽1
𝜆

𝑎
− 𝑏, we get quadratic polynomial 

𝑟2 + (𝑒 − 𝑔)𝑟 − 𝑔𝑒 − 𝛼1𝐾1 = 0. 
 

(13) 

The roots of equation (13) are negative when satisfies the properties: 𝐷 > 0, 𝑟6+𝑟7 <
0, and 𝑟6𝑟7 > 0. The discriminant of equation (13) is 

𝐷 = (𝑒 + 𝑔)2 + 4𝛼1𝐾1 > 0, 
where 𝑟6 + 𝑟7 = −(𝑒 − 𝑔) < 0 and 𝑟6𝑟7 = −𝑔𝑒 − 𝛼1𝐾1 > 0. Finally, the equilibrium point 
for the disease-free is asymptotically stable because we have all negative eigen values, 
when  𝑅0 < 1, and unstable otherwise. 
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Theorem 2. The endemic equilibrium 𝐾∗ is locally asymptotically stable when R0 > 1 and 
unstable otherwise. 

Proof. The Jacobian matrix at the  𝐾∗ equilibrium point is 

𝐽(𝐾∗) =

(

 
 
 
 
 

−𝐻1 0 −𝛽1𝑆
∗ −𝛽2𝑆

∗ 0 0 0
𝜂 −𝑝 0 0 0 0 0

𝛽1𝐼1
∗ 0 𝛽1𝑆

∗ − 𝑏 0 𝛼1 0 0

𝛽2𝐼2
∗ 0 0 −𝛽2𝑆

∗ − 𝑐 0 0 0
0 0 𝐾1 𝐾3 −𝑒 0 0
0 0 0 𝐾2 𝛼2 −𝑓 0
𝜇 0 0 0 0 0 −𝑝)

 
 
 
 
 

, 

where 𝐻1 = 𝛽1𝐼1
∗ + 𝛽2𝐼2

∗ + 𝑎. The matrix’s characteristic equation 𝐽(𝐾∗) is obtained by 
solving equation |𝐽(𝐾∗) − 𝑟𝐼| = 0, that is 

|𝐽(𝐾∗) − 𝑟𝐼| =

|

|

𝜔1 0 −𝛽1𝑆
∗ −𝛽2𝑆

∗ 0 0 0
𝜂 𝜔2 0 0 0 0 0

𝛽1𝐼1
∗ 0 𝜔3 0 𝛼1 0 0

𝛽2𝐼2
∗ 0 0 𝜔4 0 0 0

0 0 𝐾1 𝐾3 𝜔5 0 0
0 0 0 𝐾2 𝛼2 𝜔6 0
𝜇 0 0 0 0 0 𝜔7

|

|

= 0, 

 
 
 

(14) 
 

 
dimana 𝜔1 = −𝐻1 − 𝑟, 𝜔2 = −𝑝 − 𝑟, 𝜔3 = 𝛽1𝑆

∗ − 𝑏 − 𝑟, 𝜔4 = 𝛽2𝑆
∗ − 𝑐 − 𝑟, 𝜔5 = −𝑒 − 𝑟, 

𝜔6 = −𝑓 − 𝑟, 𝜔7 = −𝑝 − 𝑟. Determinant of equation (14) is  

(−𝑝 − 𝑟)(−𝑓 − 𝑟)(−𝑝 − 𝑟) |
|

−𝐻1 − 𝑟 −𝛽1
𝑐

𝛽2
−𝛽2

𝑐

𝛽2
0

𝛽1𝐼1
∗ 𝛽1𝑆

∗ − 𝑏 − 𝑟 0 𝛼1
𝛽2𝐼2

∗ 0 𝛽2𝑆
∗ − 𝑐 − 𝑟 0

0 𝐾1 𝐾3 −𝑒 − 𝑟

|
| = 0, 

or we can write as follows  
(−𝑝 − 𝑟)(−𝑓 − 𝑟)(−𝑝 − 𝑟)(𝛼1𝐽1 + (−𝑒 − 𝑟)𝐽2) = 0,     (15) 

with 

𝐽1 = |

𝐻1 − 𝑟 −𝛽1
𝑐

𝛽2
−𝛽2

𝑐

𝛽2

𝛽2𝐼2
∗ 0 𝛽2𝑆

∗ − 𝑐 − 𝑟
0 𝐾1 𝐾3

|, 

and 

𝐽2 = |

−𝐻1 − 𝑟 −𝛽1
𝑐

𝛽2
−𝛽2

𝑐

𝛽2

𝛽1𝐼1
∗ 𝛽1𝑆

∗ − 𝑏 − 𝑟 0

𝛽2𝐼2
∗ 0 𝛽2𝑆

∗ − 𝑐 − 𝑟

|. 

From equation (15), we obtained 𝑟1 = −𝑝, 𝑟2 = −𝑓,  𝑟3 = −𝑝 and 𝑟4,5,6,7  

 

𝑟4 + (𝐻1 + 𝑏 + 𝑒 −
𝛽1𝑐

𝛽2
) 𝑟3 + (

𝑐𝛽1𝛽1𝐼1
∗

𝛽2
+ 𝑐𝛽2𝐼2

∗ + 𝐻1𝑏 + 𝐻1𝑒 + 𝐻1𝑏 + 𝑒𝑏 −
𝐻1𝛽1𝑐

𝛽2
−

𝛼1𝐾1 −
𝛽1𝑐𝑒

𝛽2
) 𝑟2 + (

𝑐𝑒𝛽1𝛽1𝐼1
∗

𝛽2
+ 𝑐𝑏𝛽2𝐼2

∗ + 𝑐𝑒𝛽2𝐼2
∗ + 𝐻1𝑏𝑒 − 𝛽1𝑐𝑒𝐼1

∗ − 𝐻1𝛼1𝐾1 −

𝐻1𝑐𝑒𝛽1

𝛽2
) 𝑟 + (𝑐𝛼1𝐾3𝛽1𝐼2

∗ + 𝑏𝑐𝑒𝛽2𝐼2
∗ − 𝛼1𝛽2𝑐𝐾1𝐼2

∗ − 𝑐𝑐𝑒𝛽1𝐼2
∗) = 0, 

or we can write as follows 
𝑟4 + 𝑏1𝑟

3 + 𝑏2𝑟
2 + 𝑏3𝑟 + 𝑏4 = 0, (16) 

with 
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𝑏1 = 𝐻1 + 𝑏 + 𝑒 −
𝛽1𝑐

𝛽2
, 

𝑏2 =
𝑐𝛽1𝛽1𝐼1

∗

𝛽2
+ 𝑐𝛽2𝐼2

∗ +𝐻1𝑏 + 𝐻1𝑒 + 𝐻1𝑏 + 𝑒𝑏 −
𝐻1𝛽1𝑐

𝛽2
− 𝛼1𝐾1 −

𝛽1𝑐𝑒

𝛽2
,  

𝑏3 =
𝑐𝑒𝛽1𝛽1𝐼1

∗

𝛽2
+ 𝑐𝑏𝛽2𝐼2

∗ + 𝑐𝑒𝛽2𝐼2
∗ + 𝐻1𝑏𝑒 − 𝛽1𝑐𝑒𝐼1

∗ − 𝐻1𝛼1𝐾1 −
𝐻1𝑐𝑒𝛽1

𝛽2
,  

𝑏4 = 𝑐𝛼1𝐾3𝛽1𝐼2
∗ + 𝑏𝑐𝑒𝛽2𝐼2

∗ − 𝛼1𝛽2𝑐𝐾1𝐼2
∗ − 𝑐𝑐𝑒𝛽1𝐼2

∗,  
Sometime, it is difficult to find roots of the characteristic polynomial, therefore the Routh-
Hurwitz criteria can be used to find stability characteristic of 𝐾∗ equilibrium. 𝐾∗ 
equilbrium point is asyptotically stable if and only if it meets the following conditions.  

i. 𝑏1 > 0, 
ii. 𝑏1𝑏2 − 𝑏3 > 0, 

iii. 𝑏1𝑏2𝑏3 − 𝑏3
2 − 𝑏1

2𝑏4 > 0, 

iv. 𝑏1𝑏2𝑏3𝑏4 − 𝑏1
2𝑏4

2 − 𝑏3
2𝑏4 > 0, 

NUMERICAL SIMULATION 

We give numerical simulation to illustrate the main result. Numerical simulations are 
solved by using the 4th order Runge-Kutta method. Numerical simulation is conducted in 
order to understand the behavior of the proposed HIV/AIDS model and to confirm the 
stability analysis of the equilibrium points (disease-free and endemic equilibrium points) 
in the previous section. We will show that the disease-free equilibrium point is 
asymptotically stable when 𝑅0 < 1 and the endemic equilibrium point is asymptotically 
stable when 𝑅0 > 1. We use the parameter values for numerical simulation in Table 1. 

Table 1. Parameter values for numerical simulation. 
Symbol Value Symbol Value 
𝜆 0.55 year-1 𝐾3 0.05 year-1 
𝛽1 0.23 year-1 𝜇 0.03 year-1 
𝛽2 0.33 year-1 𝛼1 0.02 
𝑝 0.0196 year-1 𝛼2 0.05 
𝜂 0.1 year-1 𝛿1 0.0909 year-1 
𝐾1 0.0498 year-1 𝛿2 0.0667 year-1 
𝐾2 0.008 year-1   

 
We choose the parameter values in order to satisfies reproduction number 𝑅0 > 1 for the 
endemic equilibrium point. According to Table 1, we get the basic reproduction number 
𝑅0 = 15.6345 > 1. The dynamics of subpopulations are shown in Figure 2. Figure 2 shows 
the solutions of HIV/AIDS model with initial values 𝑁𝐴 = (30, 10, 25, 35, 20, 16, 50) lead 
to endemic equilibrium point 𝐾∗ =(0.02353, 1.2018, 3.1928, 4.4043, 1.4166, 2.4263, 
0.3631). Using the parameters in Table 1, the condition of the Routh-Hurwitz criterias are 
satisfied 

𝑏1𝑏2 − 𝑏3 = 1.77347 > 0 

𝑏1𝑏2𝑏3 − 𝑏3
2 − 𝑏1

2𝑏4 = 0.00309 > 0 

𝑏1𝑏2𝑏3𝑏4 − 𝑏1
2𝑏4

2 − 𝑏3
2𝑏4 = 0.00002 > 0 

and 
𝑏1 = 2.33736 > 0 
𝑏2 = 0.71722 > 0 
𝑏3 = 0.02602 > 0 
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𝑏4 = 0.00684 > 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Numerical simulation of the endemic equilibrium point (𝑅0 > 1) 

 
The simulation shows the endemic equilibrium point is asymtotically stable when 

𝑅0 > 1, and the numerical results support the analysis results. Based on the numerical 
simulation results above, it can be seen that over time the number of individuals infected 
with HIV with symptoms will go to 3.1928 and individuals infected with HIV without 
symptoms will go to 4.4043. Thus, it can be interpreted that individuals infected with HIV 
/ AIDS will always exist, so that there will be the spread of HIV / AIDS infection in that 
environment.  

Next, we simulate the stability of model solutions for the disease-free equilibrium 
point numerically. We choose the parameter values in order to satisfy the basic 
reproduction number 𝑅0 > 1 as shown in Table 1 except the values 𝛽1 = 0.0023, 𝛽2 =
0.0033,  and 𝜂 = 0.3. We obtain 𝑅0 = 0.0069 < 1. Figure 3 shows the solutions of 
HIV/AIDS model with initial values 𝑁𝐴 = (30, 10, 25, 35, 20, 16, 50) lead to desease-free 
equilibrium point 𝐾0 = (1.5732 , 24.0799 , 0 , 0 , 0 , 0 , 2.4107) as in Figure 3. 

 
Figure 3. Numerical simulation for the disease-free equilibrium point, (𝑅0 < 1)  
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The numerical simulation results obtained support the results of the analysis in the 
previous section that if ℛ0 < 1, then the HIV / AIDS  disease-free equilibrium point 𝐾0, is 
asymptotically stable, which means that after quite a long time, the infected individual 
will vanish. 
 

CONCLUSIONS 

The mathematical model of HIV/AIDS with educated subpopulation have been 
established. The model consists of seven compartments (susceptible, educated, infected 
with and without treatment, AIDS, treatment, and recovered subpopulations). The 
infected subpopulation are in HIV-positive with consuming ARV I1 such that this 
subpopulation can survive longer and an HIV-positive without consuming ARV I2. The 
susceptible subpopulation was divided into two, uneducated and educated susceptible 
subpopulations. 

The stability analysis of HIV/AIDS model is determined according the basic 
reproduction number. The disease-free equilibrium is locally asymptotically stable when 
R0<1 and unstable when R0>1. The endemic equilibrium is locally asymtotically stable 
when R0<1 and unstable otherwise. The endemic equilibrium is globally asyptotically 
stable when R0>1 and unstable otherwise. Numerical simulation are performed using 
values of selected parameters to support the analytical results. 
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