
CAUCHY – Jurnal Matematika Murni dan Aplikasi
Volume 10 (2) (2025), Pages 507-518
p-ISSN: 2086-0382; e-ISSN: 2477-3344

Identification and Modelling Tuberculosis Incidence Risk Factors
in West Java with Negative Binomial Mixed Model Random

Forest

Restu Arisanti1* , Resa Septiani Pontoh1, Sri Winarni1, Nisa Akbarilah Putri2, and Stefany Maurin2

1Department of Statistics, Universitas Padjadjaran
2Bachelor Program of Statistics’ Department, Universitas Padjadjaran

Abstract

Tuberculosis (TB) is a major health problem in many parts of the world, including in West Java
Province, Indonesia. Accurate assessment of TB risk factors can improve overall TB control ef-
forts. This study introduces modelling by integrating Negative Binomial Mixed Models (NBMM)
and Random Forest (RF) called the Negative Binomial Mixed Model Random Forest (NBMMRF)
model. This model is used to identify and assess risk factors associated with the incidence of tubercu-
losis. Firstly, using NBMM to add fixed effects and random effects in the model and compensate for
overdispersion. Afterwards, we included a Random Forest component in the model, which helped
us detect relevant predictive features and change model weights accordingly. The resulting Negative
Binomial Mixed Model Random Forest has a high accuracy value of up to 0.915. After obtaining
the appropriate model, forecasting of tuberculosis cases in 2024 was carried out and the forecasting
result was 1904 cases, which increased from the number of cases in the previous year. The results
of this study show the importance of various related parties to continue to be vigilant, pay attention
to various related risk factors, and continue to make various efforts to study, prevent, and control
Tuberculosis disease effectively.
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1 Introduction

Infectious diseases arise as a result of the interaction of various factors from the agent, host and envi-
ronment. Disease transmission can be transmitted in many ways including through viruses and bacteria
[1]. Tuberculosis is one example of a disease transmitted through the Mycobacterium tuberculosis bac-
teria. These bacteria can spread through the air, for example if a tuberculosis patient sneezes or coughs,
the Mycobacterium bacteria can be spread and infected to other individuals [2]. There is a 5% to 10%
risk of not recovering for tuberculosis patients. A person has a higher risk of developing tuberculosis if
they have HIV disease, malnutrition, or diabetes [1], [2].

Tuberculosis is the 13th leading cause of death in the world, according to the WHO Indonesia is
responsible for 8.4% of tuberculosis cases worldwide after China and India and is the third largest country
with the highest number of tuberculosis cases [3]. West Java is the province with the most tuberculosis
cases in Indonesia in 2021, with a total of 85,681 cases reported [4]. In West Java, there were nearly
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60,000 TB cases in 2019, with a prevalence rate of 280 cases per 100,000 population, according to data
from the West Java Provincial Health Office.

Modelling of tuberculosis cases in West Java province was carried out through the integration of
the generalised linear mixed model (GLMM) model with extreme neural networks [1]. Following that,
in this research use negative binomial mixed model and Random Forest method were combination of
the generalised linear mixed model (GLMM) and Random Forest approaches. Values such as R-Square
are used to measure the accuracy of the prediction results from the Random Forest method. In this
study, modelling of tuberculosis case data in West Java is done with a negative binomial mixed model.
Furthermore, Random Forest will be applied for forecasting tuberculosis cases in the following year
based on the risk factors identified in the study. Thus, the information obtained from this study can be
used as a basis for the government and the community to improve the quality of tuberculosis prevention
and control. This is especially true in West Java Province.

This study presents a novel approach by developing a hybrid model named Negative Binomial Mixed
Model Random Forest (NBMMRF), which integrates the Negative Binomial Mixed Model (NBMM)
with Random Forest techniques. The novelty of this research lies in combining a statistical model capa-
ble of handling overdispersed count data with random effects (NBMM) and a machine learning algorithm
(Random Forest) that enhances predictive performance and identifies important predictors. This integra-
tion has not been previously applied in the context of tuberculosis incidence modeling in Indonesia. The
main contribution of this study is the formulation and implementation of the NBMMRF framework for
longitudinal and region-based epidemiological data, supported by empirical evidence showing a high
predictive accuracy with an R2 value of 0.915. The model provides a practical and data-driven basis for
forecasting TB cases and informing targeted public health interventions in West Java.

The remainder of this paper is structured as follows. Section 2 describes the data sources, model-
ing framework, and methodology including the Negative Binomial Mixed Model and Random Forest
integration. Section 3 presents the results and discussion, including model selection, evaluation, and
forecasting outcomes. Section 4 concludes the study by summarizing the findings and outlining poten-
tial implications for public health policy and future research.

2 Methods

This section describes the methodological framework adopted in this study. It begins by outlining the
modeling approach used for longitudinal tuberculosis data, followed by the specification of the Negative
Binomial Mixed Model, parameter estimation techniques, and the integration of Random Forest for
prediction and forecasting. Evaluation metrics used to assess model performance are also presented.

2.1 Modelling Longitudinal Data

Longitudinal effects of several risk variables on TB progression were modelled in this study using
GLMM. Both fixed effects and random effects, as well as correlations between repeated observations
over time, can be accounted for through GLMM [1]. In addition, GLMM is also able to handle non
normal distribution of response variables and missing data [5]. Then, investigate the data distribution
using Cullen and Frey [6].

2.2 Generalized Linear Mixed Models (GLMM)

A method for handling non normal distributions of response variables, generalized linear mixed mod-
els (GLMM) combine generalized linear models with linear mixed models to produce precise variance
estimates for complex data. Fixed effects and random effects on linear predictors are included in GLMM,
an extension of Generalized Linear Models (GLM) [1]. Regression models that offer various distribu-
tions and linking functions are GLMMs. The purpose of the linking function is to adjust the value of the
dependent variable to fit the scale of the linear predictor. The relationship with the predictor variables
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will then be linearized as a result. The general form of the GLMM is as follows (in matrix notation):

y = Xβ +Zb+ ε (1)

with:
• y: vector of response variables (N ×1),
• X: matrix obtained according to the fixed effects (N × p),
• β : column vector for fixed effect parameters (p×1),
• Z: design random effects matrix (N ×1),
• b: random effects vector,
• ε: column vector of residuals (N ×1) [7].

2.3 Negative Binomial Mixed Model

The selection of a suitable distribution and link function for the supplied data is the first stage in the
modeling procedure. For count data, the natural distributions are Poisson or, in the case of overdispersion,
the negative binomial distribution [8]. The negative binomial distribution was used in this research to
account for overdispersion. We presumptively observe the negative binomial distribution for the counting
response yi:

yi ∼ NB(yi | µi,θ) =
Γ(yi +θ)

Γ(θ)yi!

(
θ

µi +θ

)θ (
µi

µi +θ

)yi

(2)

where:
• µi: mean,
• θ : parameter shape,
• Γ: function gamma [9].
The predictor variable X is as many as units, the random variable Z is as many as random factors, and

the total sequence T, as read by the logarithm of the link function, are all related to the mean parameter
(µ) in the negative binomial mixed model.

log(µ) = log(T )+Xβ +Zb (3)

where:
• log(µ): the offset, which accounts for differences in the total number of sequence reads across

samples,
• β : the host factor factors’ fixed effects vector X ,
• b: the vector of random effects for Z.
The correlation between the samples and the various sources of variation are modeled using random

effects, helping to prevent biased inference on the impact of the predictor variable X . Typically, it is
believed that the random effects vector will be assumed to be the multivariate normal distribution [10].

2.4 Parameter Estimation for GLMM

GLMM can be used to study longitudinal data because it can model both within-subject correla-
tion and between-subject variation. Correlation between measurements occurs because in longitudinal
studies, the same subjects are measured repeatedly over time. Such correlations must be considered
in statistical analyses [1]. GLMM analysis will be conducted using R software and with the help of
glmmADMB package.

Finding parameters that optimize the total likelihood of a data set is the basic objective of MLE.
This is accomplished in the setting of the exponential family by maximizing the log-likelihood function
ℓ(θ ;y,φ), over the canonical parameter θ depending on the observation y and the scale parameter φ [11],
[12].
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The parameter vector determines the link function based on the distribution of dependent variables;
the link function then determines the mean, i.e. µ , where the inverse link function. The canonical
parameter is a function of the mean (θ(µ)). So, the following is a general formulation of the exponential
family’s log-likelihood.

ℓ(β ;y,φ) =
y{θ [g−1(Xβ )]}−u

(
θ [g−1(Xβ )]

)
a(φ)

+ c(y,φ) (4)

2.5 Forecasting

Forecasting plays a significant role in decision making for all companies that are concerned with
the future. A conventional time series forecasting model’s standard operating method is to find the
pattern that most closely matches the previous data. In other words, a functional form is chosen that best
captures the relationship between the input (past observations) and output (prediction) of the system [13].
Large and complicated data sets, like demographic, clinical, and laboratory data sets, can be analyzed
using machine learning techniques. Machine learning algorithms can be trained to forecast a variety
of outcomes, including the likelihood that a patient will contract TB, the efficacy of their treatment, and
other outcomes. The Feedforward Neural Network approach is used in this study to make this prediction.
These algorithms can also spot data patterns and linkages that conventional statistical methods might miss
out on.

2.6 Random Forest

Random forest is a supervised learning that is an extension of the decision tree method where each
tree in this method depends on the random vector values that are sampled freely and evenly [14]. Random
Forest was introduced by Breiman in 2001 as an ensemble method that combines bagging and random
feature selection to construct multiple diverse decision trees. Each tree is built using bootstrap samples
from the original dataset, and at each split, only a random subset of features is considered, with final
predictions obtained by aggregating the outputs of all trees [15]. In a more formal setting, for a p dimen-
sional random vector X = (X1, . . . ,XP)

T representing real valued input variables or predictor variables
and a random variable Y representing real valued responses, an unknown joint distribution PXY = (X ,Y )
is assumed. The objective is to find a prediction function f (X) to predict Y . The prediction function is
the determinant of the loss function L(Y, f (X)) and is defined to minimize the loss value [16].

EXY (L(Y, f (X))) (5)

where the subscript denotes the expectation with respect to the joint distribution of X and Y .
In a classification situation, if the set of possible values of Y is denoted by γ , minimising EXY (L(Y, f (X)))

for zero one loss gives
f (x) = argmaxP(Y = y | X = x) (6)

The ensemble constructs f in terms of a collection of so called ‘base learners’ h1(x), . . . ,hJ(x) and
these base learners are combined to produce an ‘ensemble predictor’ f (x). In regression, the base learners
are averaged

f (x) =
1
J

J

∑
j=1

I(y = h j(x)) (7)

while in classification, f (x) is the most frequently predicted class (“voting”)

f (x) = argmax
1
J

J

∑
j=1

I(y = h j(x)) (8)

The infinite forest estimator is obtained by taking the limit as M → ∞ and equals

h(x,L) = EΘ [h(x,Θ,L)] (9)
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In Random Forests, the jth base learner is a tree denoted by h j(X ,Θ j), where Θ j is a set of random
variables and Θ j is independent for j = 1, . . . ,J. Although the definition of Random Forest is very
general, random forests are implemented in specific ways. To understand the Random Forest algorithm,
it is important to have a basic knowledge of the type of tree used as a base learner.

The lag of the significant predictor variables and the lag of the number of tuberculosis cases were
included in Random Forest modelling. Forecasting the number of future tuberculosis cases was predicted
using Random Forest. Random Forest analysis will be conducted using R software and with the help of
randomForest package.

2.7 Model Evaluation

We assess the effectiveness of each forecasting model using R-squared (R2) is utilized to confirm the
accuracy of prediction curve fitting. The result is that each metric is run m− p−q+1 times [1].

R2 = 1− ∑
m
i=1(Yi − Ŷi)

2

∑
m
i=1(Yi − Ȳ )2 (10)

where:
• m : number of observations,
• Yi : the actual values,
• Ŷi : the predicted values,
• Ȳ : the average of actual value.

3 Results and Discussion

3.1 Data

The data used in this study is secondary data obtained from the website of the Indonesian Public
Health Agency. The unit of observation for this data is 27 cities/districts in West Java from 2016 to 2021
with 6 variable factors affecting tuberculosis cases in West Java 1. The following are the variable factors
affecting tuberculosis cases in West Java presented in the Table 1.

Table 1: Variables and Data Sources

Variables Source

Dependent Variables
Number of Tuberculosis Case (y) West Java Provincial Health Office

Independent Variables
Population by Age Group (X1) Statistics Indonesia and Open Data Jabar

0-14 (X11)
15-44 (X12)
45-64 (X13)
65+ (X14)

Infant BCG Immunization Coverage (X2) West Java Provincial Health Office and Open Data
Jabar

Population Density (X3) Statistics Indonesia and West Java Provincial
Health Office

Healthcare Facility (X4) West Java Provincial Health Office
The Number of Public Hospitals (X41)
The Number of Health Center (X42)

The Implementation of Community-based Sanitation (X5) West Java Provincial Health Office

1https://app-diskes.jabarprov.go.id/drive/s/TyZTzEqnm5TfrM4
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3.2 Data exploration

Exploring the Distribution of Dependent Variables with the Cullen and Frey Method Exploration of
the distribution of the dependent variable was carried out with the help of the fitdistrplus[x] package and
the R programme was used to explore the distribution of the variable [6].

Figure 1: Histogram and CDF of the Number of Tuberculosis Cases

Figure 1 shows the histogram and Cumulative Distribution Function (CDF) of the dependent variable
in this study (number of Tuberculosis cases).

In addition to exploration by looking at the histogram and CDF of the number of tuberculosis cases,
a review of the Cullen-Frey plot and comparison of Akaike Information Criteria (AIC) values between
distributions can be used to identify the distribution that best fits the data.

Figure 2: Cullen and Frey Graph of the Number of Tuberculosis Cases used in the Study

In Figure 2, the Cullen and Frey plot is shown, which shows that the variable number of Tuberculosis
cases in this study with a bootstrap of 500 best fits the negative binomial distribution.

Table 2: Comparison of AIC Values of Various Distributions to Fit the Distribution of Number of Tuberculosis
Cases

Distribution AIC

Normal 3582.424
Poisson 200729.5
Negative Binomial 3523.444
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In Table 2, the AIC values of various distributions are listed. Based on the AIC values in Table 2, it
can be concluded that the negative binomial distribution with the smallest AIC value is the distribution
that best fits the data on the number of Tuberculosis cases in West Java Province from 2016 to 2023. Both
analyses (Cullen & Frey plot and AIC value) show that the negative binomial distribution assumption is
the best to be used for this variable in further analysis procedures.

3.3 Correlation between Variables

Each of the predictor variables and the response variable have correlations that can give an indication
of significance. Factors were included in the model to give an indication of significance. The closeness
of the relationship between predictor variables or what is referred to as multicollinearity in this study can
be seen from the value of.

Figure 3: Correlation between the variables of this study

In Figure 3 above, it can be seen that all predictor factors are correlated with the response variable.
In addition, it is also found that. The various categories in the population variable by age group are
correlated with each other.

3.4 Negative Binomial Mixed Model

Various tuberculosis factors that affect the number of tuberculosis cases in various districts/cities
in West Java in 2016-2023 can be seen through GLMM modelling. Based on the results of previous
analyses related to the distribution of the dependent variable, it is assumed that the dependent variable
has a negative binomial distribution and the application of this assumption is used in the construction of
the GLMM model in the research conducted.

Table 3: Comparison of AIC Values for Poisson GLMM and Negative Binomial GLMM Models
GLMM Distribution Assumptions GLMM Models AIC Chi Square df p-value
Poisson g(µ) = β0 + β1D1X1 +

β2D2X1 + β3D3X1 + β4X2 +
β5X3 +β6D1X4 +β7X5 +bZ

7482.4 1834943999 151 0

Negative Binomial g(µ) = β0 + β1D1X1 +
β2D2X1 + β3D3X1 + β4X2 +
β5X3 +β6D1X4 +β7X5 +bZ

2642 127.2684986 151 0.920

By including all variables, Table 3 compares the AIC values of the Poisson and Negative Binomial
GLMM models and the overdispersion test results for both models. By comparing the two tables, it
can be seen that the negative binomial assumption is more suitable for use in the data on the number
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of tuberculosis cases in this study because it tends to have a smaller AIC value and is also better able
to overcome the overdispersion problem found in the Poisson GLMM model when applied to the case
of this study. This is in accordance with the findings of the distribution exploration stage conducted
previously, as well as the findings of [17], [18]. which state that although discrete data, such as the
number of disease cases, can usually be assumed to have a Poisson distribution, overdispersion (having
a variance greater than the mean) can occur in some cases. One of these cases can be overcome by using
the negative binomial distribution assumption. Therefore, from now on, GLMM with negative binomial
assumption will be used.

A model can be said to be good if it has the smallest AIC and all predictor variables are significant.
Therefore, insignificant predictor variables will not be included in the model. After obtaining significant
variables, a model will be formed from these significant variables and it will be seen which model has
the smallest AIC value. The model that has the smallest AIC value is the best negative binomial GLMM
model so that this model will be used for different predictor variables on the number of tuberculosis
cases in various districts and cities in West Java. The estimation results of the negative binomial GLMM
model with all significant components are shown in Table 4.

Table 4: Best Negative Binomial GLMM Model Selection Included Random Effects of Districts/Cities for Each
Model

Model Covariates Included Significant Covariates (α = 0.05) AIC
1 X12,X13,X3 X12,X13,X3 3372.4
2 X2,X3,X5 X2,X3,X5 3393.6
3 X11,X3 X11,X3 3356.4
4 X12,X13 X12,X13 3375.9
5 X11,X3,X5 X11,X3,X5 3358.3
6 X13,X14,X3 X13,X14,X3 3372

Based on Table 4 above, model 3 has the smallest AIC. While model 5 has an AIC that is not
much different from the AIC of model 3, with a difference of 2.1 and is still included in the small AIC.
Therefore, in the next analysis, model 3 is selected as the best model to use in random forest analysis.
The selected negative binomial GLMM model did not show any symptoms of overdispersion, as seen in
Table 5. In addition, the predictor variables included in the best model did not show any symptoms of
multicollinearity as indicated by VIF values that did not exceed 10 in Table 6.

Table 5: Overdispersion Test on Selected Negative Binomial GLMM Models 3
Chi Square Ratio (Chi Square/df) df p-value Description

153.0464813 0.7614253 201 0.9950568 Insignificant, no symptoms of overdispersion

Table 6: VIF of various Predictor Variables in Model 3
Variables VIF
Population by Age Group 0-14 (X11) 1.000697
Population Density (X3) 1.000697

Table 7: Regression Coefficient and Significance for the Negative Binomial GLMM Model
Variables Coefficient

Estimate
Standard
Error

z-score p-value Description

Intercept 6.58×100 1.26×10−1 5202 < 2×10−16 Significant
(α < 0.001)

Population by Age Group
(0-14)

1.88×10−6 2.17×10−7 8.68 < 2×10−16 Significant
(α < 0.05)

Population Density (X3) 4.05×10−5 1.28×10−5 3.17 0.0057 Significant
(α < 0.05)

Variance 0.07398
Standard Deviation 0.272
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The selected negative binomial GLMM model did not show any symptoms of overdispersion, as seen
in Table 5. In addition, the predictor variables included in the best model did not show any symptoms
of multicollinearity as indicated by VIF values that did not exceed 10 in Table 6. The following is the
best general linear mixed-model (GLMM) model to model multiple factors on the number of TB cases
in West Java:

Ŷ = g(µ) = β0 +β1XAge 0-14 +β3XPopulation Density +bZDistricts/Cities (11)

The natural logarithm function corresponding to the negative binomial assumption is the link function
for the mean of the response variable with g(.) the link function for the mean of the response variable
is the natural logarithm function that conforms to the negative binomial assumption as described in
Equation 3 in the introduction above and b is the random effect intercept coefficient for each district/city
in West Java. The regression coefficient estimation results for these variables can be seen in Table 7.

In this study, it was found that categories of population variables based on age group for the age range
of 0-14 years and population density variable that significantly influenced the number of Tuberculosis
cases in each district/city in West Java Province. The population for the age range of 0-14 years has
a coefficient of 0.00000188. This indicates that the variable has a positive influence on the number of
Tuberculosis cases, meaning that every additional 1 person of age range of 0-14 years in a district/city
will increase the log of the expected number of Tuberculosis cases in the district/city by 0.00000188
units (if other variables are constant).

This study also found that, with a coefficient of 0.0000405, population density in each district or
city has a positive and significant influence on the number of tuberculosis cases. Thus, assuming other
variables remain constant, an increase in population density in a district or city by 1 person/km2 can lead
to an increase of 0.0000405 in the predicted log number of tuberculosis cases. This result is in line with
literature studies that found that population density can contribute to an increased risk of tuberculosis
infection [19].

Then, using the Random Forest method, the two significant variables will be included in the next step
of the analysis.

3.5 Negative Binomial Mixed Model Random Forest

In the previous section, we have obtained significant predictor variables that can be used to produce
forecasting of the number of tuberculosis cases. The input data underwent a normalization step initially
before being fed into the model. The dataset is divided into two parts, with 87.5% of the data used for
training the model as training data and 12.5% for testing the model as testing data. The training data
and testing data are used to test the model by making predictions using the pre-trained model, restoring
the standardization process, and comparing the predicted results with the actual data. Table 8 shows the
model assessment results for the testing data.

Table 8: model assessment for testing data
No Model ntree R Square No Model ntree R Square

1 350 0.907 7 600 0.97
2 100 0.915 8 700 0.91
3 200 0.905 9 800 0.909
4 300 0.913 10 900 0.908
5 400 0.908 11 1000 0.908
6 500 0.913 12 1050 0.909

Based on Table 8, it can be seen that the R Square value is in the range of 0.9–0.92 and the R-Square
value has started to approach the number 1. For determining the best model, it is seen from the model
that has the highest R Square and is closest to number 1. Because model 2 of the testing data has the
highest R Square compared to other models, which is 0.915, the model chosen for forecasting is model
2 with ntree of 100.
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Figure 4: Line plot of Average Tuberculosis Cases in West Java Province, Indonesia

Figure 4 shows the forecasting results indicated by the red dashed line. Forecasting is done for a
period of one year, i.e. projecting the number of TB cases for the year 2024. As illustrated in Figure 4,
the forecasting results show a slight increase in the number of TB cases compared to the previous year.
However, the projected increase is still relatively low, with an average number of TB cases in 2023 of
1889 cases and a projected number of TB cases in 2024 of 1904 cases.

4 Conclusion

In this study, longitudinal data on tuberculosis cases and other risk variables were examined over
the 2016–2023 period in 27 districts and cities in West Java Province. This study demonstrates that
overdispersion in Poisson GLMM can be overcome by GLMM under the assumption of a negative bi-
nomial distribution. According to this study, Population by Age Group 0-14, and Population Density all
significantly affect the number of tuberculosis cases in each district and city.

Based on the analysis performed in this study, it can be concluded that the GLMM model may be
used to explain the number of tuberculosis cases in the West Java Province in 2016–2023 under the
assumption of a negative binomial distribution, as shown in the Equation 12:

Ŷ = g(µ) = β0 +β1X(Age 0-14) +β3X(Population Density) +bZ(Districts/Cities) (12)

Then in the random forest model assessment for testing data, the model evaluation results were
obtained with R2 = 0.915. This model was then used to forecast the number of Tuberculosis cases in
2024 with the forecasting results show a slight increase in the number of TB cases compared to the
previous year. The results of this study show the importance of various related parties to continue to
be vigilant, pay attention to various related risk factors, and continue to make various efforts to study,
prevent, and control Tuberculosis disease effectively.

CRediT Authorship Contribution Statement

Restu Arisanti: Conceptualization, Methodology, Supervision, Project Administration, Funding Acqui-
sition, Writing–Original Draft. Resa Septiani Pontoh: Supervision, Project Administration, Funding
Acquisition. Sri Winarni: Supervision, Project Administration, Funding Acquisition. Nisa Akbari-
lah Putri: Software, Data Curation, Formal Analysis, Writing–Original Draft, Visualization. Stefany
Maurin: Data Curation, Writing–Review, & Editing.

Declaration of Generative AI and AI-assisted technologies

No generative AI or AI-assisted technologies were used during the preparation of this manuscript.

Restu Arisanti 516



Identification and Modelling Tuberculosis Incidence Risk Factors in West Java. . .

Declaration of Competing Interest

The authors declare no competing interests.

Funding and Acknowledgments

This research received no external funding.

Data Availability

The dataset analyzed during the current study is publicly available in the open data Jabar and West Java
Provincial Health Office: Health Profile of West Java Province.

References

[1] R. Arisanti, R. S. Pontoh, S. Winarni, Y. Nurhasanah, A. P. Pertiwi, and S. D. N. Aini, “Integrating
generalized linear mixed models with extreme neural network: Enhancing pulmonary tuberculosis
risk modeling in west java, indonesia,” Commun. Math. Biol. Neurosci., vol. 2024, Article–ID,
2024. DOI: 10.28919/cmbn/8748.

[2] World Health Organization, Global tuberculosis report 2023, en. Genève, Switzerland: World
Health Organization, Nov. 2023. Available online.

[3] S. Sulistyawati and A. W. Ramadhan, “Risk Factors for Tuberculosis in an Urban Setting in In-
donesia: A Case-control Study in Umbulharjo I, Yogyakarta,” Journal of UOEH, vol. 43, no. 2,
pp. 165–171, Jun. 2021. DOI: 10.7888/juoeh.43.165.

[4] Dinas Kesehatan Provinsi Jawa Barat, Profil kesehatan provinsi jawa barat tahun 2022, Dinas
Kesehatan Provinsi Jawa Barat, Accessed: june 3, 2025, 2023. Available online.

[5] N. Tang, M. Yuan, Z. Chen, et al., “Machine Learning Prediction Model of Tuberculosis Incidence
Based on Meteorological Factors and Air Pollutants,” International Journal of Environmental Re-
search and Public Health, vol. 20, no. 5, p. 3910, Feb. 2023. DOI: 10.3390/ijerph20053910.

[6] A. C. C. dan H. C. Frey, Probabilistic Techniques in Exposure Assessment: A Handbook for Deal-
ing with Variability and Uncertainty in Models and Inputs. Springer, New York, 1999. Available
online.

[7] J. Bruin, Newtest: Command to compute new test @Online, Feb. 2011. Available online.

[8] C. E. McCulloch, “Maximum Likelihood Algorithms for Generalized Linear Mixed Models,”
Journal of the American Statistical Association, vol. 92, no. 437, p. 162, Mar. 1997. DOI: 10.
2307/2291460.

[9] J. M. Hilbe, Negative Binomial Regression. Cambridge University Press, 2011. DOI: 10.1017/
CBO9780511973420.

[10] X. Zhang, H. Mallick, Z. Tang, et al., “Negative binomial mixed models for analyzing microbiome
count data,” BMC Bioinformatics, vol. 18, no. 1, pp. 1–10, 2017. DOI: 10.1186/s12859-016-
1441-7.

[11] S. D. Kachman, “An introduction to generalized linear mixed models,” Statistics, vol. 24, pp. 59–
73, 2008. DOI: 10.4148/2475-7772.1352.

[12] E. P. Liski, “Generalized linear mixed models: Modern concepts, methods and applications,” In-
ternational Statistical Review, no. 3, pp. 482–483, Dec. 2013. DOI: 10.1111/insr.12042_24.

Restu Arisanti 517

https://doi.org/10.28919/cmbn/8748
https://www.who.int/teams/global-programme-on-tuberculosis-and-lung-health/tb-reports/global-tuberculosis-report-2023
https://doi.org/10.7888/juoeh.43.165
Dinas%20Kesehatan%20Provinsi%20Jawa%20Barat%20(2023).%20%22Profil%20Kesehatan%20Provinsi%20Jawa%20Barat%20Tahun%202022%22
https://doi.org/10.3390/ijerph20053910
https://books.google.co.id/books/about/Probabilistic_Techniques_in_Exposure_Ass.html?id=y43436jSPocC&redir_esc=y
https://books.google.co.id/books/about/Probabilistic_Techniques_in_Exposure_Ass.html?id=y43436jSPocC&redir_esc=y
https://stats.oarc.ucla.edu/stata/ado/analysis/
https://doi.org/10.2307/2291460
https://doi.org/10.2307/2291460
https://doi.org/10.1017/CBO9780511973420
https://doi.org/10.1017/CBO9780511973420
https://doi.org/10.1186/s12859-016-1441-7
https://doi.org/10.1186/s12859-016-1441-7
https://doi.org/10.4148/2475-7772.1352
https://doi.org/10.1111/insr.12042_24


Identification and Modelling Tuberculosis Incidence Risk Factors in West Java. . .

[13] B. Charbuty and A. Abdulazeez, “Classification Based on Decision Tree Algorithm for Machine
Learning,” Journal of Applied Science and Technology Trends, vol. 2, no. 01, pp. 20–28, 2021.
DOI: 10.38094/jastt20165.

[14] Lakshmi Prasanna and S. Mehrotra, “Comparative Analysis of Machine Learning Algorithms on
Mental Health Dataset,” Lecture Notes in Networks and Systems, vol. 719 LNNS, no. 2, pp. 599–
606, 2023. DOI: 10.1007/978-981-99-3758-5_54.

[15] R. H. P. Y. Damayanti, S. Astutik, and A. B. Astuti, “Geographically Weighted Random For-
est Model for Addressing Spatial Heterogeneity of Monthly Rainfall with Small Sample Size,”
CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 10, no. 1, pp. 442–456, May 2025. DOI:
10.18860/cauchy.v10i1.32161.

[16] A. Cutler, D. R. Cutler, and J. R. Stevens, “Ensemble Machine Learning,” Ensemble Machine
Learning, no. January, 2012. DOI: 10.1007/978-1-4419-9326-7.

[17] T. W. Utami, “Analisis Regresi Binomial Negatif Untuk Mengatasi Overdispersion Regresi Pois-
son Pada Kasus Demam Berdarah Dengue,” Jurnal Statistika, vol. 1, no. 2, pp. 59–65, 2013.
Available online.

[18] A. A. Yirga, S. F. Melesse, H. G. Mwambi, and D. G. Ayele, “Negative binomial mixed models
for analyzing longitudinal CD4 count data,” Scientific Reports, vol. 10, no. 1, p. 16 742, Oct. 2020.
DOI: 10.1038/s41598-020-73883-7.

[19] P. R. Donald, B. J. Marais, and C. E. Barry, “Age and the epidemiology and pathogenesis of
tuberculosis,” The Lancet, vol. 375, no. 9729, pp. 1852–1854, May 2010. DOI: 10.1016/S0140-
6736(10)60580-6.

Restu Arisanti 518

https://doi.org/10.38094/jastt20165
https://doi.org/10.1007/978-981-99-3758-5_54
https://doi.org/10.18860/cauchy.v10i1.32161
https://doi.org/10.1007/978-1-4419-9326-7
https://jurnal.unimus.ac.id/index.php/statistik/article/view/961
https://doi.org/10.1038/s41598-020-73883-7
https://doi.org/10.1016/S0140-6736(10)60580-6
https://doi.org/10.1016/S0140-6736(10)60580-6

	Introduction
	Methods
	Modelling Longitudinal Data
	Generalized Linear Mixed Models (GLMM)
	Negative Binomial Mixed Model
	Parameter Estimation for GLMM
	Forecasting
	Random Forest
	Model Evaluation

	Results and Discussion
	Data
	Data exploration
	Correlation between Variables
	Negative Binomial Mixed Model
	Negative Binomial Mixed Model Random Forest

	Conclusion

