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ABSTRACT  

Lumpy skin disease (LSD) is a cattle disease that can spread rapidly and is caused by the lumpy 
skin disease virus (LSDV). LSDV can spread through direct contact, insect vectors, and 
contaminated environments. In this study, we aim to analyze the dynamics of a lumpy skin disease 
model that contains seven compartments: susceptible cattle, vaccinated cattle, infected cattle, 
recovered cattle, susceptible vector, infected vector, and LSDV in the environment. The model’s 
mathematical properties, including non-negativity and boundedness of the solution, are 
examined. Equilibrium points of the system are determined, along with their local and global 
stability under specific conditions. The results of research are the identification of two equilibrium 
points and the most influential parameter of the system. The disease-free equilibrium point is 
locally and globally asymptotically stable when the basic reproduction number is less than one, 
and the endemic equilibrium point is locally asymptotically stable under the Lienard-Chipart 
criteria. Sensitivity analysis reveals that the vaccination rate and the contact rate between 
susceptible cattle with LSDV are the most influential parameter. The proposed LSD model provides 
valuable insights into the dynamics of LSD and highlights the importance of considering 
vaccination and environmental transmission. 
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INTRODUCTION 

Lumpy skin disease (LSD) is a cattle disease that can spread in various transmissions 
and cause economic losses. LSD is caused by the Capripoxvirus from the Poxviridae family 
[1],[2],[3]. LSD is not classified as a zoonotic disease, a disease that can naturally be 
transmitted from animals to humans or conversely [3],[4],[5]. LSD can result in significant 
economic losses for cattle farmers such as weight loss, reduction in milk production, 
abortion, infertility and death in cattle [6],[7]. The first case of LSD was found in 1957 at 
East Africa. Although LSD can be found throughout Middle East and Africa [3], but it can 
easily spread to Indonesia. The first case of LSD in Indonesia was found in 2022 at Riau 
and increased every year [8]. According to the report from the Ministry of Agriculture of 
the Republic of Indonesia in 2023, the number of LSD are recorded 64.000 cases across 
16 provinces, the highest number of cases is 23.000 cases in Central Java. The increasing 
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number of LSD cases become a serious issue that needs to be addressed immediately. 
The primary transmission of LSDV is mechanically through arthropod vectors such as 

mosquitoes (Aedes aegypti), flies (Stomoxys calcitrans), small insects (Culicoides 
nubeculosus), and ticks (Rhipicephalus appendiculatus). LSDV can spread rapidly during 
the rainy season because of the abundance of arthropods during this time. Additionally, 
LSD can spread through contact between cattle and contaminated environments by LSDV 
[9],[10],[11]. The healthy cattle can develop antibodies if they get vaccination and the 
recovered cattle from LSD infection have natural antibodies. The control policy for LSD in 

Indonesia includes emergency vaccination and facility disinfection. Emergency vaccination 
and facility disinfection is important strategy to reduce the impact of a new infection, 
protect healthy cattle, and prevent widespread of the LSD outbreaks [12],[13],[14]. 

In disease epidemiology, mathematical modelling has a great role to study and give the 
recommendations for disease control. Several researchers have proposed their LSD 
model with various transmission and intervention strategies. The authors in [15] propose 
an SEIR model for the LSD and provide vaccination as a control strategy, but they only 
focus on transmission between cattle population. The other transmission of LSD model is 
constructed by author in [16], they consider the transmission between cattle and vectors 
population, they also prove that vaccination for cattle is effectively to reduce the spread 
of LSD. The most complex transmission of LSD model show in [17], they propose their 
model by considering transmission through between cattle, vectors, and pathogen (LSDV) 
population. This model shows reliable transmission, but it does not include an 
intervention strategy.  

In this study, we develop an LSD model which includes disease transmission due to 
contact between cattle, vector and LSDV population. We take into account the cattle 
vaccination to prevent the LSD spread and to complete the previous research. As we see 
in the following section, the proposed model is basically a combination of model in [16], 
[17]. 
 

METHODS  

In this study, we develop the LSD model with vaccination for susceptible cattle and 
consider the environmental transmission. In order to analyze our model, we perform the 
following steps. First, we construct the proposed LSD model. This step involves 
formulating a mathematical model to describe the transmission of LSD using various 
assumption. Second, we prove the non-negativity and boundedness solution. In this stage, 
the solution of model is analyzed by contrary assumption for non-negativity and 
comparison lemma for boundedness. Third, we determine the equilibrium point and basic 
reproduction number. In this part, the equilibrium points of the model are calculated. The 
basic reproduction number is also determined using the next generation matrix. Fourth, 
we analyze the local and global stability of the equilibrium point. In this step, we examine 
the stability of equilibrium points both locally and globally to understand the long-term 
behavior of the proposed model. Fifth, we analyze the sensitivity of parameters. 
Sensitivity analysis is conducted to identify the most influential parameters in the basic 
reproduction number. The last, we conduct numerical simulations to confirm the 
analytical result. Numerical simulations are performed to verify the analytical result 
obtained from the proposed model. 
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RESULTS AND DISCUSSION  

Model Formulation 

In this section, we formulate an LSD model and assume that the total population of 
cattle is denoted by (𝑁𝑐) which consists of susceptible cattle (𝑆𝑐), vaccinated cattle (𝑉𝑐), 
infected cattle (𝐼), and recovered cattle (𝑅𝑐). Meanwhile, the total population of vector is 
denoted by (𝑁𝑣) which consists of susceptible vector (𝑆𝑣) and infected vector (𝐼𝑣). The 
population of pathogen or LSDV in environment is denoted by (𝑃).  

 
Figure 1. Compartment diagram for lumpy skin disease transmission 

The susceptible cattle population grows at a constant birth rate 𝐴𝑐. The susceptible cattle 
become infected whenever they have contacted with infected cattle at an infection rate 
𝛽1, infected vector at an infection rate 𝛽2 and pathogen in the environment at an infection 
rate 𝛽4. To prevent LSD virus infection, we assume that susceptible cattle are vaccinated at a 

specific vaccination rate 𝜅. The vaccination is assumed to be perfect such that the 
vaccinated cattle cannot be infected by the LSD virus [18]. The number of infected cattle 
may be reduced due to they recover at rate 𝑟, or death caused by the LSD at rate 𝛿. The 
natural death rate of catlle is denoted by 𝜇𝑐. The birth rate of vector is assumed to 
be 𝐴𝑣 and the death rate of vector is 𝜇𝑣. After having contact (bite) with the infected cattle, 
the susceptible vector becomes infected with infection rate 𝛽3. It is assumed that infected 
cattle can release LSD virus into the environment at a release rate Φ. To reduce pathogens 
in the environment, we apply disinfectants at a rate of 𝜃. The LSD transmission schematic 
diagram can be seen in Figure 1, while the constructed mathematical model for LSD 
transmission is as follows 
 

𝑑𝑆𝑐

𝑑𝑡
= 𝐴𝑐 − 𝜉𝑆𝑐 − (𝜅 + 𝜇𝑐)𝑆𝑐,

𝑑𝑉𝑐

𝑑𝑡
= 𝜅𝑆𝑐 − 𝜇𝑐𝑉𝑐,

𝑑𝐼𝑐
𝑑𝑡

= 𝜉𝑆𝑐 − (𝑟 + 𝛿 + 𝜇𝑐)𝐼𝑐,

𝑑𝑅𝑐

𝑑𝑡
= 𝑟𝐼𝑐 − 𝜇𝑐𝑅𝑐, (1)

𝑑𝑆𝑣

𝑑𝑡
= 𝐴𝑣 − 𝛽3𝑆𝑣𝐼𝑐 − 𝜇𝑣𝑆𝑣,

𝑑𝐼𝑣
𝑑𝑡

= 𝛽3𝑆𝑣𝐼𝑐 − 𝜇𝑣𝐼𝑣,

𝑑𝑃

𝑑𝑡
= Φ𝐼𝑐 − 𝜃𝑃
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where 

𝜉 = 𝛽1𝐼𝑐 + 𝛽2𝐼𝑣 + 𝛽4𝑃  

Non-Negativity and Boundedness of Solution 

System (1) describes the interaction of cattle, vector, and pathogen population. The 
solution of this model must be non-negative and bounded. The non-negativity of solution 
is stated in the following theorem. 

 
Theorem 1. All solutions of system (1) with positive initial values 𝑆𝑐(0) ≥ 0, 𝑉𝑐(0) ≥
0, 𝐼𝑐(0) ≥ 0, 𝑅𝑐(0) ≥ 0, 𝑆𝑣(0) ≥  0, 𝐼𝑣(0) ≥  0 and 𝑃(0) ≥  0 are always non-negative. 
 
Proof:  

We first prove that 𝑆𝑐(0) are non-negative. Assume on the contrary; suppose that 𝑆𝑐(𝑡) 
is negative for some 𝑡 > 0. If 𝑡1 be the first time such that 𝑆𝑐(𝑡1) = 0. From the first 
equation of system (1), we get 

𝑑𝑆𝑐

𝑑𝑡
|
𝑡=𝑡1

= 𝐴𝑐 > 0  

This means that 𝑆𝑐(𝑡) > 0 on 𝑡 ∈ (𝑡1, 𝑡1 + 𝜖) for arbitrary small positive constant 𝜖. 
This leads to a contradiction, thus 𝑆𝑐(𝑡) ≥  0 for all 𝑡 ≥ 0. The non-negativity of 
𝑉𝑐(𝑡), 𝐼𝑐(𝑡), 𝑅𝑐(𝑡), 𝑆𝑣(𝑡), 𝐼𝑣(𝑡), 𝑃(𝑡) can be shown using the similar way. Therefore, all 
solutions of system (1) are non-negative. 

To show the boundedness solutions of system (1), we apply the comparison lemma 
[19]. Let 𝑁𝑐  =  𝑆𝑐  + 𝑉𝑐  +  𝐼𝑐  +  𝑅𝑐 and 𝑁𝑣  =  𝑆𝑣  +  𝐼𝑣. Based on system (1), we have 

𝑑𝑁𝑐

𝑑𝑡
= 𝐴𝑐 − 𝜇𝑐(𝑆𝑐 + 𝑉𝑐 + 𝐼𝑐 + 𝑅𝑐) − 𝛿𝐼𝑐 ≤ 𝐴𝑐 − 𝜇𝑐𝑁𝑐,

𝑁𝑐 ≤
𝐴𝑐

𝜇𝑐
+ (𝑁𝑐(0) −

𝐴𝑐

𝜇𝑐
) 𝑒−𝜇𝑐𝑡 ⟹ lim

𝑡⟶∞
𝑁𝑐 ≤

𝐴𝑐

𝜇𝑐
,

 

𝑑𝑁𝑣

𝑑𝑡
= 𝐴𝑣 − 𝜇𝑣𝑁𝑣,

𝑁𝑣 =
𝐴𝑣

𝜇𝑣
+ (𝑁𝑣(0) −

𝐴𝑣

𝜇𝑣
) 𝑒−𝜇𝑣𝑡 ⟹ lim

𝑡⟶∞
𝑁𝑣 ≤

𝐴𝑣

𝜇𝑣
.

 

and  

𝑑𝑃

𝑑𝑡
= Φ𝐼𝑐 − 𝜃𝑃 < Φ𝑁𝑐 − 𝜃𝑃 ≤

Φ𝐴𝑐

𝜇𝑐
− 𝜃𝑃,

𝑃 ≤
𝐴𝑐Φ

𝜇𝑐𝜃
+ (𝑃(0) −

𝐴𝑐Φ

𝜇𝑐𝜃
) 𝑒−𝜃𝑡 ⟹ lim

𝑡⟶∞
𝑃 ≤

𝐴𝑐Φ

𝜇𝑐𝜃
.

 

Thus, all the solution of the system (1) are bounded to the region 

Ω = {Γ1 ∈ ℝ+
4 : 𝑁𝑐(𝑡) ≤

𝐴𝑐

𝜇𝑐
, Γ2 ∈ ℝ+

2 : 𝑁𝑣(𝑡) =
𝐴𝑣

𝜇𝑣
, 𝑃(𝑡) ∈ ℝ: 𝑃(𝑡) ≤

𝐴𝑐Φ

𝜇𝑐𝜃
  }  

where Γ1 = (𝑆𝑐, 𝑉𝑐 , 𝐼𝑐, 𝑅𝑐) and Γ2 = (𝑆𝑣, 𝐼𝑣). A summary of the above analysis can be stated 
in the following theorem.  

Theorem 2. All solutions of system (1) with initial values 𝑆𝑐(0) ≥ 0, 𝑉𝑐(0) ≥ 0, 𝐼𝑐(0) ≥
0, 𝑅𝑐(0) ≥ 0, 𝑆𝑣(0) ≥ 0, 𝐼𝑣(0) ≥ 0, 𝑃(0) ≥ 0 are bounded. 
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Equilibrium Point and Basic Reproduction Number 

The equilibrium point is obtained when the right-hand side of the equation in system 
(1) are zero. In this way, we get two types of equilibrium points: the disease-free 
equilibrium point (DFE) 

𝐸0 = (𝑆𝐶
0, 𝑉𝑐

0, 𝐼𝑐
0, 𝑅𝑐

0, 𝑆𝑣
0, 𝐼𝑣

0, 𝑃0) = (
𝐴𝑐

𝜅 + 𝜇𝑐
,

𝜅𝐴𝑐

𝜇𝑐(𝜅 + 𝜇𝑐)
, 0,0,

𝐴𝑣

𝜇𝑣
, 0,0) ,  

and the endemic equilibrium (EE) 
𝐸∗ = (𝑆𝐶

∗ , 𝑉𝑐
∗, 𝐼𝑐

∗, 𝑅𝑐
∗, 𝑆𝑣

∗, 𝐼𝑣
∗, 𝑃∗),  

where 

𝑆𝑐
∗ =

𝐴𝑐

𝜉 + 𝜅 + 𝜇𝑐
, 𝑉𝑐

∗ =
𝜅𝑆𝑐

∗

𝜇𝑐
, 𝑅𝑐

∗ =
𝑟𝐼𝑐

∗

𝜇𝑣
, 𝑆𝑣

∗ =
𝐴𝑣

𝛽3𝐼𝑐∗ + 𝜇𝑣
, 𝐼𝑣

∗ =
𝛽3𝑆𝑣

∗𝐼𝑐
∗

𝜇𝑣
, 𝑃∗ =

Φ𝐼𝑐
∗

𝜃
. 

 
Notice that 𝐼𝑐

∗ are the real positive roots of the following quadratic equation  
Π0𝐼𝑐

∗2 + Π𝐼𝑐
∗ + Π2 = 0, (2) 

where 

Π0 = (𝑟 + 𝛿 + 𝜇
𝑐
)(𝜇

𝑣
𝜃𝛽

3
+ 𝛽

3
𝛽

4
𝜇

𝑣
Φ),

Π1 = ((𝑟 + 𝛿 + 𝜇
𝑐
)(𝛽

1
𝜇

𝑣
2𝜃 + 𝛽

2
𝛽

3
𝐴𝑐𝜃 + 𝛽

4
Φ𝜇

𝑣
2) + (𝜇

𝑣
𝜃𝛽

3
)(𝜅 + 𝜇

𝑐
))

−(𝐴𝑐𝛽1
𝜇

𝑣
𝜃𝛽

3
+ 𝐴𝑐𝛽3

𝛽
4
𝜇

𝑣
Φ)

Π2 = 𝜇
𝑣
2𝜃(𝜅 + 𝜇

𝑐
)(𝑟 + 𝛿 + 𝜇

𝑐
) (1 − 2

𝛽
1
𝐴𝑐𝜃 + 𝛽

4
𝐴𝑐Φ 

2𝜃(𝜅 + 𝜇
𝑐
)(𝑟 + 𝛿 + 𝜇

𝑐
)

−
𝛽

3
𝐴𝑣𝛽2

𝐴𝑐

𝜇
𝑣
2(𝜅 + 𝜇

𝑐
)(𝑟 + 𝛿 + 𝜇

𝑐
)
)

 

The detail discussion about the existence of EE will be given later. Instead, we first 
derive the basic reproduction number as follows. By only considering the subpopulation 
with infection in LSD model (1), we consider the following vector of individual 
displacement between compartments 

ℱ = (
(𝛽1𝐼𝑐 + 𝛽2𝐼𝑣 + 𝛽4𝑃)𝑆𝑐

𝛽3𝑆𝑣𝐼𝑐
0

) , 𝒱 = (
𝑟 + 𝛿 + 𝜇𝑐

𝜇𝑣𝐼𝑣
−Φ𝐼𝑐 + 𝜃𝑃

).  

Suppose that 𝐹 and 𝑉 are respectively the Jacobian matrices of ℱ and 𝒱 at the DFE, then 
we get the next generation matrix 

𝐹𝑉−1 =

(

 
 

𝛽1𝐴𝑐

𝛽1𝐴𝑐𝜃 + 𝛽4𝐴𝑐Φ 
+

𝛽4𝐴𝑐Φ  

(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)𝜃

𝛽2𝐴𝑐

(𝜅 + 𝜇𝑐)

𝛽4𝐴𝑐

(𝜅 + 𝜇𝑐)𝜃
𝛽3𝐴𝑣

(𝑟 + 𝛿 + 𝜇𝑐)𝜇𝑣
0 0

0 0 0 )

 
 

. 

The basic reproduction number is defined as the spectral radius of the matrix 𝐹𝑉−1, 
namely  

𝑅0 = 𝜌(𝐹𝑉−1),

=
𝛽1𝐴𝑐𝜃 + 𝛽4𝐴𝑐Φ 

2𝜃(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)
+ √

(𝛽1𝐴𝑐𝜃 + 𝛽4𝐴𝑐Φ)2

4𝜃2(𝜅 + 𝜇𝑐)
2(𝑟 + 𝛿 + 𝜇𝑐)

2
+

𝛽3𝐴𝑣𝛽2𝐴𝑐

𝜇𝑣
2(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)

,

= 𝑅1
∗ + √𝑅1

∗2 + 𝑅2
∗,

 

where 

𝑅1
∗ =

𝛽1𝐴𝑐𝜃 + 𝛽4𝐴𝑐Φ 

2𝜃(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)
 and 𝑅2

∗ =
𝛽3𝐴𝑣𝛽2𝐴𝑐

𝜇𝑣
2(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)

. 
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By noticing that 𝑅0
2 = 2𝑅1

∗𝑅0 + 𝑅2
∗, we can show that condition (𝑅0 ≤ 1 or 𝑅0 > 1) is 

equivalent to condition (𝑅0
∗ ≤ 1 or 𝑅0

∗ > 1) where 𝑅0
∗ = 2𝑅1

∗ + 𝑅2
∗. We can imply that 𝑅1

∗ is the 

basic reproduction number that caused by the infection rate of infected cattle and virus in 

environment. Similarly, 𝑅2
∗ is the basic reproduction number that caused by the infection rate 

of infected vector. 

Next, we can write the coefficient Π2 of the quadratic equation (2) as 
Π2 = 𝜇𝑣

2𝜃(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)(1 − 𝑅0
∗).  

By evaluating all possible roots of equation (2), we have the following existence of endemic 

equilibrium point: 

1) If 𝑅0
∗ < 1, Π1 < 0 and Π1

2 − 4Π0Π2 > 0 then there exist two endemic equilibrium points 

𝐼𝑐1
∗  and 𝐼𝑐2

∗ ; 

2) If 𝑅0
∗ < 1,  Π1 < 0 and Π1

2 − 4Π0Π2 = 0 then there exists a unique endemic equilibrium 

point 𝐼𝑐3
∗ ; 

3) If 𝑅0
∗ = 1 and  Π1 < 0 then there exists a unique endemic equilibrium point 𝐼𝑐4

∗ ; 

4) If 𝑅0
∗ > 1 then there exists a unique endemic equilibrium point 𝐼𝑐1

∗ ; 

5) No equilibria otherwise; 
where  

𝐼𝑐1
∗ =

−Π1 + √Π1
2 − 4Π0Π2

2Π0
,   𝐼𝑐2

∗ =
−Π1 − √Π1

2 − 4Π0Π2

2Π0
,   𝐼𝑐3

∗ = −
Π1

2Π0
,   𝐼𝑐4

∗ = −
Π1

Π0
. 

 

Local Stability 

In this section, we investigate the local stability of equilibrium point in model (1). The 
Jacobian matrix from the sytem (1) at a point 𝐸𝑘 = (𝑆𝑐

𝑘, 𝑉𝑐
𝑘, 𝐼𝑐

𝑘 , 𝑅𝑐
𝑘, 𝑆𝑣

𝑘, 𝐼𝑣
𝑘, 𝑃𝑘) is given by 

 

𝐽(𝐸𝑘) =

[
 
 
 
 
 
 
 
−𝑠1

𝑘 0 −𝛽1𝑆𝑐
𝑘 0 0 −𝛽2𝑆𝑐

𝑘 −𝛽4𝑆𝑐
𝑘

𝜅 −𝜇𝑐 0 0 0 0 0

𝑠1
𝑘 0 𝑠2

𝑘 0 0 𝛽2𝑆𝑐
𝑘 𝛽4𝑆𝑐

𝑘

0 0 𝑟 − 𝜇𝑐 0 0 0

0 0 −𝛽3𝑆𝑣
𝑘 0 −(𝛽3𝐼𝑐

𝑘 + 𝜇𝑣) 0 0

0 0 𝛽3𝑆𝑣
𝑘 0 𝛽3𝐼𝑐

𝑘 −𝜇𝑣 0
0 0 Φ 0 0 0 −𝜃 ]

 
 
 
 
 
 
 

, (3) 

 
where 

𝑠1
𝑘 = 𝛽1𝐼𝑐

𝑘 + 𝛽2𝐼𝑣
𝑘 + 𝛽4𝑃

𝑘 + 𝜅 + 𝜇𝑐, 
𝑠2

𝑘 = 𝛽1𝑆𝑐
𝑘 − 𝛿 − 𝑟 − 𝜇𝑐. 

We substitute the equilibrium point 𝐸𝑘 into the Jacobian matrix to find out the 
eigenvalues thus we get the stability condition for the DFE and EE. 

If we substitute the DFE point 𝐸0 into the Jacobian matrix (3) then we get 𝐽(𝐸0). By 
using |𝐽(𝐸0) − 𝜆𝐼| = 0 to find out the eigenvalues of 𝐽(𝐸0), we get the characteristic 
equation as follow 
 

(−𝜅 − 𝜇𝑐 − 𝜆)(−𝜇𝑐 − 𝜆)(−𝜇𝑐 − 𝜆)(−𝜇𝑣 − 𝜆)(𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3) = 0, (4) 

where 

𝑎1 = (𝑟 + 𝛿 + 𝜇𝑐) (1 −
𝛽1𝐴𝑐

(𝜅 + 𝜇𝑐)(𝑟 + 𝛿 + 𝜇𝑐)
) + 𝜃 + 𝜇𝑣, 
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𝑎2 = 𝜃(𝑟 + 𝛿 + 𝜇𝑐)(1 − 2𝑅1
∗) + 𝜇𝑣(𝑟 + 𝛿 + 𝜇𝑐)(1 − 𝑅2

∗) + 𝜇𝑣 (𝜃 −
𝛽1𝐴𝑐

𝜅 + 𝜇𝑐
), 

𝑎3 = 𝜃(𝑟 + 𝛿 + 𝜇𝑐)𝜇𝑣
2(1 − 𝑅0

∗). 
It is clear that the real part of the fourth eigenvalues are 

𝜆1 = −𝜅 − 𝜇𝑐 < 0, 𝜆2,3 = −𝜇𝑐 < 0, 𝜆4 = −𝜇𝑣 < 0. 
 
Next we find the other eigenvalues in (4) by using the characteristic equation below 

𝜆3 + 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3 = 0 (5) 

Based on the Routh-Hurwitz criteria, the characteristic equation (5) has the negative real 
part in each of their eigenvalues if  𝑎1 > 0 and 𝑎1𝑎2 − 𝑎3 > 0. We see that if 𝑅0

∗ < 1 
then 𝑎3 > 0 and other criteria will be proven by numerical simulations. The DFE point is 
locally asymptotically stable if the LSD model satisfies all of the criteria then the following 
theorem holds. 
Theorem 3. The DFE point 𝐸0of the LSD model is locally asymptotically stable if 𝑅0

∗ <
1, 𝑎1 > 0, and 𝑎1𝑎2 − 𝑎3 > 0. 

To prove the local stability of the EE point 𝐸∗, we substitute 𝐸∗ into the Jacobian matrix 
(3) then we get 𝐽(𝐸∗). By using |𝐽(𝐸∗) − 𝜆𝐼| = 0 then we get the eigenvalues of 𝐽(𝐸∗), from 
the characteristic equation below 

(−𝜇𝑐 − 𝜆)(−𝜇𝑐 − 𝜆)(𝜆5 + 𝑏1𝜆
4 + 𝑏2𝜆

3 + 𝑏3𝜆
2 + 𝑏4𝜆 + 𝑏5) = 0. (6) 

It is clear that the real part of the first and second eigenvalues are negative 𝜆1,2 = −𝜇𝑐.  
We can find out the other eigenvalues by evaluating 

𝜆5 + 𝑏1𝜆
4 + 𝑏2𝜆

3 + 𝑏3𝜆
2 + 𝑏4𝜆 + 𝑏5 = 0, (7) 

where 

𝑏1 = 𝛽3𝐼𝑐
∗ + 𝜃 + 2𝜇𝑣 + 𝑠1

∗ − 𝑠2
∗, 

𝑏2 = −𝑆𝑐
∗ 𝑆𝑣

∗ 𝛽2𝛽3 − Φ 𝑆𝑐
∗ 𝛽4 + 𝜃 𝐼𝑐

∗𝛽3 + 𝐼𝑐
∗ 𝛽3𝜇𝑣 + 𝐼𝑐

∗𝛽3𝑠1
∗ − 𝐼𝑐

∗𝛽3𝑠2
∗ + 𝑆𝑐

∗  
          +𝛽1𝑠1

∗ + 2𝜃𝜇𝑣𝜃𝑠1
∗ − 𝜃𝑠2

∗ + 𝜇𝑣
2 + 2𝜇𝑣 𝑠1

∗ − 2𝜇𝑣𝑠2
∗ − 𝑠1

∗𝑠2
∗, 

𝑏3 = −Φ𝐼𝑐
∗𝑆𝑐

∗𝛽3𝛽4 − 𝜃𝑆𝑐
∗𝑆𝑣

∗𝛽2𝛽3 − 𝑆𝑐
∗𝑆𝑣

∗ 𝛽2𝛽3𝜇𝑣 − 2Φ𝑆𝑐
∗𝛽4𝜇𝑣 + 𝜃𝐼𝑐

∗𝛽3 (𝜇𝑣 + 𝑠1
∗ − 𝑠2

∗) 
          +𝑆𝑐

∗𝛽1𝑠1
∗(𝐼𝑐

∗ + 2𝜇𝑣) + 𝐼𝑐
∗𝛽3𝜇𝑣 (𝑠1

∗ − 𝑠2
∗) − 𝐼𝑐

∗ 𝛽3𝑠1
∗ 𝑠2

∗ + 𝜃𝜇𝑣
2 + 2𝜃 𝜇𝑣𝑠1

∗  − 2𝜃 𝜇𝑣𝑠2
∗  

          −𝜃𝑠1
∗𝑠2

∗ + 𝜇𝑣
2 (𝑠1

∗ − 𝑠2
∗) − 2𝜇𝑣𝑠1

∗𝑠2
∗, 

𝑏4 = −Φ𝐼𝑐
∗𝑆𝑐

∗𝛽3𝛽4𝜇𝑣 + 𝜃𝐼𝑐
∗𝑆𝑐

∗𝛽1𝛽3𝑠1
∗ − 𝜃𝑆𝑐

∗𝑆𝑣
∗𝛽2𝛽3𝜇𝑣 

          +𝐼𝑐
∗𝑆𝑐

∗ 𝛽1𝛽3𝜇𝑣𝑠1
∗ − Φ𝑆𝑐

∗𝛽4𝜇𝑣
2𝜃𝐼𝑐

∗𝛽3𝜇𝑣𝑠1
∗ − 𝜃𝐼𝑐

∗𝛽3𝜇𝑣𝑠2
∗ − 𝜃𝐼𝑐

∗𝛽3𝑠1
∗𝑠2

∗  
          + 2𝜃𝑆𝑐

∗𝛽1
∗𝜇𝑣𝑠1

∗ − 𝐼𝑐
∗𝛽3𝜇𝑣𝑠1

∗𝑠2
∗ + 𝑆𝑐

∗𝛽1𝜇𝑣
2𝑠1

∗ + 𝜃𝜇𝑣
2 𝑠1

∗ − 𝜃𝜇𝑣
2𝑠2

∗ 
          − 2𝜃𝜇𝑣𝑠1

∗𝑠2
∗ − 𝜇𝑣𝑠1

∗𝑠2
∗, 

𝑏5 = 𝜃𝐼𝑐
∗𝑆𝑐

∗𝛽1𝛽3𝜇𝑣𝑠1
∗ − 𝜃𝐼𝑐

∗𝛽3𝜇𝑣𝑠1
∗𝑠2

∗ + 𝜃𝑆𝑐
∗𝛽1𝜇𝑣

2 𝑠1
∗ − 𝜃𝜇𝑣

2𝑠1
∗𝑠2

∗, 

Based on the Lienard-Chipart criteria[20], the characteristic equation (7) has the negative 

real part in each of their eigenvalues if and only if 𝑏1 > 0, 𝑏3 > 0, 𝑏5 > 0, 𝐻2
∗ > 0 and 𝐻4

∗ >

0, where 

𝐻2
∗ = 𝑏1𝑏2 − 𝑏3 

And 

𝐻4
∗ = 𝑏1(2𝑏4𝑏5 − 𝑏1𝑏4 − 𝑏2

2𝑏5 + 𝑏2𝑏3𝑏4) + 𝑏3(𝑏2𝑏5 − 𝑏3𝑏4) − 𝑏5
2 

Since the forms of 𝑏𝑖, 𝑖 = 1,… ,5 are too complicated, the Lienard-Chipart criteria will be 
calculated numerically. The EE point is locally asymptotically stable if the LSD model 
satisfies all of the criteria then the following theorem holds. 
Theorem 4. Let the EE point 𝐸∗ of LSD model (1) exists. The EE point 𝐸∗ is locally 
asymptotically stable if 𝑏1  >  0, 𝑏3 >  0, 𝑏5 0, 𝐻2

∗  >  0, 𝐻4
∗  >  0. 
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Global Stability 

The method to examine the global stability of  DFE is Castillo-Chavez method in [21]. 
The LSD model (1) can be transformed as follows: 

𝑑𝑌⃗ 1
𝑑𝑡

= 𝑃(𝑌⃗ 1, 𝑌⃗ 2),

𝑑𝑌⃗ 2
𝑑𝑡

= 𝑄(𝑌⃗ 1, 𝑌⃗ 2), 𝑄(𝑌⃗ 1, 0) = 0, (8)

 

Where 

𝑌⃗ 1 = (𝑆𝑐, 𝑉𝑐, 𝑅𝑐, 𝑆𝑣)
𝑇 , 𝑌⃗ 2 = (𝐼𝑐, 𝐼𝑣, 𝑃)𝑇 , 

𝑌⃗ 1
0 = (𝑆𝑐

0, 𝑉𝑐
0, 𝑅𝑐

0, 𝑆𝑣
0)𝑇 = (

𝐴𝑐

𝜅 + 𝜇𝑐
,

𝜅𝐴𝑐

𝜇𝑐(𝜅 + 𝜇𝑐)
, 0,

𝐴𝑣

𝜇𝑣
)
𝑇

, 

𝑌⃗ 2
0 = (𝐼𝑐

0, 𝐼𝑣
0, 𝑃0)𝑇 = (0,0,0)𝑇 = 0⃗ , and 𝐸0 is the DFE point.  

To ensure the global asymptotic stability of the DFE point, the criteria below must be 
satisfied. 

1) For 
𝑑𝑌⃗ 1

𝑑𝑡
= 𝑃(𝑌⃗ 1, 0), 𝑌⃗ 1

0 is globally asymptotically stable. 

2) 𝑄(𝑌⃗ 1, 𝑌⃗ 2) = 𝑀𝑌⃗ 2 − 𝑄̂(𝑌⃗ 1, 𝑌⃗ 2), 𝑄̂(𝑌⃗ 1, 𝑌⃗ 2) ≥ 0 for all 𝑌⃗ 1, 𝑌⃗ 2 ∈ Ω and 𝑀 = 𝐹 − 𝑉 

where M is the matrix which the other elements than the main diagonal are non-negative 
and Ω is the region where the model makes biological sense. Consequently, if the LSD 
model satisfies the conditions then the following theorem holds. 

Theorem 5. The DFE point 𝐸0 = (𝑌⃗ 1
0, 0) of the LSD model (1) is globally asymptotically 

stable in Ω if 𝑅0
∗ < 1. 

Proof: 

From the system (1), we have 
𝑑𝑌⃗ 1

𝑑𝑡
 and 

𝑑𝑌⃗ 2

𝑑𝑡
 below 

𝑃(𝑌⃗ 1, 𝑌⃗ 2) = [

𝐴𝑐 − 𝜉𝑆𝑐 − (𝜅 + 𝜇𝑐)
𝜅𝑆𝑐 − 𝜇𝑐𝑉𝑐

𝑟𝐼𝑐 − 𝜇𝑐𝑅𝑐

𝐴𝑣 − 𝛽3𝑆𝑣𝐼𝑐 − 𝜇𝑣𝑆𝑣

] , 𝑄(𝑌⃗ 1, 𝑌⃗ 2) = [
𝜉𝑆𝑐 − (𝑟 + 𝛿 + 𝜇𝑐)𝐼𝑐

𝛽3𝑆𝑣𝐼𝑐 − 𝜇𝑣𝐼𝑣
Φ𝐼𝑐 − 𝜃𝑃

], 

where 𝜉 = 𝛽1𝐼𝑐 + 𝛽2𝐼𝑣 + 𝛽4𝑃. If 𝑌⃗ 2 = 0⃗ , we get 
𝑑𝑌⃗ 1

𝑑𝑡
 as follows: 

𝑑𝑌⃗ 1
𝑑𝑡

= 𝑃(𝑌⃗ 1, 0⃗ ) = [

𝐴𝑐 − (𝜅 + 𝜇𝑐)
𝜅𝑆𝑐 − 𝜇𝑐𝑉𝑐

𝑟𝐼𝑐 − 𝜇𝑐𝑅𝑐

𝐴𝑣 − 𝜇𝑣𝑆𝑣

] . (9) 

Next, we solve the equation (9) to get the solution as follows 

𝑆𝑐 =
𝐴𝑐

𝜅+𝜇𝑐
+ 𝐶𝑒−(𝜅+𝜇𝑐)𝑡, 𝑉𝑐 =

𝜅𝐴𝑐

𝜇𝑐(𝜅+𝜇𝑐)
+ 𝐶𝑒−𝜇𝑐𝑡, 𝑅𝑐 = 𝑒−𝜇𝑐𝑡, 𝑆𝑣 =

𝐴𝑣

𝜇𝑣
+ 𝐶𝑒−𝜇𝑣𝑡.  

Note that the limiting sytem of 
𝑑𝑌⃗ 1

𝑑𝑡
= 𝑃(𝑌⃗ 1, 0⃗ ) as follows: 

lim
𝑡→∞

𝑆𝑐 =
𝐴𝑐

𝜅 + 𝜇𝑐
+ 𝐶𝑒−(𝜅+𝜇𝑐)∞ =

𝐴𝑐

𝜅 + 𝜇𝑐
, 

lim
𝑡→∞

𝑉𝑐 =
𝜅𝐴𝑐

𝜇𝑐(𝜅 + 𝜇𝑐)
+ 𝐶𝑒−𝜇𝑐∞ =

𝜅𝐴𝑐

𝜇𝑐 + (𝜅 + 𝜇𝑐)
, 

lim
𝑡→∞

𝑅𝑐 = 𝑒−𝜇𝑐∞ = 0, 

lim
𝑡→∞

𝑆𝑣 =
𝐴𝑣

𝜇𝑣
+ 𝐶𝑒−𝜇𝑐∞ =

𝐴𝑣

𝑆𝑣
. 

Based on the limiting system, the solution converge to 𝑌⃗ 1
0 = (

𝐴𝑐

𝜅+𝜇𝑐
,

𝜅𝐴𝑐

𝜇𝑐(𝜅+𝜇𝑐)
, 0,

𝐴𝑣

𝜇𝑣
) thus 
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𝑌⃗ 1
0globally asymptotically stable in 𝑃(𝑌⃗ 1

0, 0⃗ ).  

Next, we determine the matrix 𝑀 by calculating 𝐹 − 𝑉. We get the matrices of 𝐹 and 𝑉 
from the section of basic reproduction number then 𝑀 is stated by 

𝑀 = [
𝛽1𝑆𝑐

0 − (𝑟 + 𝛿 + 𝜇𝑐) 𝛽2𝑆𝑐
0 𝛽4𝑆𝑐

0 

𝛽3𝑆𝑣
0 −𝜇𝑣 0

Φ 0 −𝜃

]. 

Next, based on the equation 𝑄(𝑌⃗ 1, 𝑌⃗ 2) = 𝑀𝑌⃗ 2 − 𝑄̂(𝑌⃗ 1, 𝑌⃗ 2), we get 𝑄̂(𝑌⃗ 1, 𝑌⃗ 2) below 

𝑄̂(𝑌⃗ 1, 𝑌⃗ 2) = [

(𝛽1𝐼𝑐 + 𝛽2𝐼𝑣 + 𝛽4𝑃)𝑆𝑐
0 − (𝑟 + 𝛿 + 𝜇𝑐)𝐼𝑐

𝛽3𝑆𝑣
0𝐼𝑐 − 𝜇𝑣𝐼𝑣

Φ𝐼𝑐 − 𝜃𝑃

] = [
(𝛽1𝐼𝑐 + 𝛽2𝐼𝑣 + 𝛽4𝑃)(𝑆𝑐

0 − 𝑆𝑐)

𝛽3𝐼𝑐(𝑆𝑣
0 − 𝑆𝑣)
0

]. 

The value of 𝑄̂(𝑌⃗ 1, 𝑌⃗ 2) ≥ 0 if 𝑆𝑐
0 ≥ 𝑆𝑐, 𝑆𝑣

0 ≥ 𝑆𝑣 and 𝑀 have the other element than the main 

diagonal are non-negative. Based on the theorem 5, the DFE is globally asymptotically 

stable when 𝑅0
∗ < 1 for all (𝑆𝑐

0 ≥ 𝑆𝑐, 𝑆𝑣
0 ≥ 𝑆𝑣) ∈ Ω. The first and the second criteria are 

satisfied then the theorem 5 is proven.  

Sensitivity Analysis 

In this section, we find out the most influential parameters in the basic reproduction 
number 𝑅0

∗. We must calculate the normalized sensitivity index that defined in [22] as 
follows 

ΥΨ
R0

∗

=
𝜕𝑅0

∗

𝜕Ψ
×

Ψ

𝑅0
∗ (10) 

where Ψ = 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝜃, Φ, 𝜅. We apply the equation (8) to get the normalized 
sensitivity index below 

Υ𝛽1

R0
∗

=
𝛽1𝜇𝑣

2𝜃

𝛽1𝜇𝑣
2𝜃 + 𝜇𝑣

2𝛽4Φ + 𝛽3𝐴𝑣𝛽2𝜃

Υ𝛽2

R0
∗

=
𝜃𝛽3𝐴𝑣𝛽2

𝛽1𝜇𝑣
2𝜃 + 𝜇𝑣

2𝛽4Φ + 𝛽3𝐴𝑣𝛽2𝜃

Υ𝛽3

R0
∗

=
𝜃𝛽3𝐴𝑣𝛽2

𝛽1𝜇𝑣
2𝜃 + 𝜇𝑣

2𝛽4Φ + 𝛽3𝐴𝑣𝛽2𝜃

Υ𝛽4 

R0
∗

=
Φ𝜇𝑣

2𝛽4

𝛽1𝜇𝑣
2𝜃 + 𝜇𝑣

2𝛽4Φ + 𝛽3𝐴𝑣𝛽2𝜃
(11)

Υ𝜃
R0

∗

= −
Φ𝜇𝑣

2𝛽4

𝛽1𝜇𝑣
2𝜃 + 𝜇𝑣

2𝛽4Φ + 𝛽3𝐴𝑣𝛽2𝜃

ΥΦ
R0

∗

=
Φ𝜇𝑣

2𝛽4

𝛽1𝜇𝑣
2𝜃 + 𝜇𝑣

2𝛽4Φ + 𝛽3𝐴𝑣𝛽2𝜃

Υ𝜃
R0

∗

= −
κ

𝜅 + 𝜇𝑐

 

Based on equation (11), the value of sensitivity index of 𝜃 and 𝜅 have negative impact 
on 𝑅0

∗. It means, if 𝜃 and 𝜅 increase then 𝑅0
∗ will decrease. The parameters 𝛽1, 𝛽2, 𝛽3, 𝛽4 and 

𝛷 have positive impact on 𝑅0
∗. It means, if they are increase then 𝑅0

∗ also increase. Next, we 
substitute the parameters in Table 1 into (11) to find out the value of sensitivity index in 
Table 2.  By substituting the parameters in Table 1 into basic reproduction number, we 
get the value of 𝑅0

∗ = 0.9919.  
Now, let see in the Table 2 and Table 3, we get the information about the value of 

sensitivity index and the effect of changes in parameter value on 𝑅0
∗. The increasing of the 
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parameters values 𝛽4 and 𝜅 cause the significant changes in 𝑅0
∗. This indicates that an 

effective strategy to reduce LSD outbreaks is to perform environmental disinfection and 

administer vaccination to susceptible cattle. 
 
 

Table 1. The parameters of the model and their description 
Parameters Descriptions Value Source 

𝐴𝑐  The growth rate of healthy cattle 0.8 [11] 

𝐴𝑣 The growth rate of vectors 0.1 [11] 

𝛽1 
The contact rate due to vectors and healthy cattle 

0.01120 [11] 

𝛽2 
The contact rate due to vectors and healthy cattle 

0.030013 [11] 

𝛽3 The contact rate due to infected cattle and vector 0.03 [11] 

𝛽4 The contact rate due to contaminated environment 0.1010 [11] 

𝜇𝑐 The natural death rate of cattle 0.00045662 [11] 

𝜇𝑣 The natural death rate of vector 0.07 Assumed 

𝑟 The recovery rate of the infected cattle 0.095 Assumed 

𝛿 The death of infected cattle are caused by disease 0.027 [7] 

𝜅 The vaccination rate of healthy cattle 0.851 Assumed 

Φ The rate of LSDV in the environment 0.001 [11] 

𝜃 The virus disinfection rate 0.001013 [11] 

 

Table 2. The sensitivity index value of parameters 

Parameters Sensitivity Index Parameters Sensitivity Index 
𝛽1 0.0866 𝜃 -0.7712 

𝛽2 0.1421 Φ 0.7712 

𝛽3 0.1421 𝜅 -0.9994 

𝛽4 0.7712   

 

Table 3. The impact of changes in parameters value on R0
∗   

Parameters Parameters+𝟏𝟎% Parameters−𝟏𝟎% 

𝛽1 1.0005 0.9833 
𝛽2 1.0006 0.9778 

𝛽3 1.0006 0.9778 

𝛽4 1.0684 0.9154 

𝜃 0.9223 1.0769 
Φ 1.0684 0.9154 

𝜅 0.8527 1.1024 

 

Numerical Simulation 

In this section, we present the results of numerical simulations using MATLAB R2021a 
software to illustrate the dynamics of LSD. In the first numerical simulation, we want to 
observe the effect of 𝛽4 and 𝜅 on 𝑅0

∗. We use the parameters from Table 1 and the 
simulations show in Figure 2. First, if the value of 𝛽4  increase, the value of 𝑅0

∗  also 
increase. The blue graph indicates that 𝑅0

∗ < 1 when 𝛽4 <0.06 . Conversely, the red graph 
shows that 𝑅0

∗ > 1 when 𝛽4 > 0.06. Second, if the value of  𝜅 increase, the value of 
𝑅0

∗ decrease. The blue graph indicates that 𝑅0
∗ < 1 when 𝜅 > 0.84 . Conversely, the red 
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graph shows that 𝑅0
∗ > 1 when 𝜅 < 0.84. 

  
Figure 2. The effect of 𝛽4 and 𝜅 on 𝑅0

∗ 

 
In the second numerical simulation, we observe the dynamics of the LSD model (1) 

using the fourth-order Runge-Kutta method and the parameters in Table 1, except 𝛽4. 
Here we choose four different values of 𝛽4 to study the effect of the parameter changes in 
the dynamical population. The values of 𝛽4 are 0.5, 0.1, 0.05, 0.01 and the step size is ℎ =
0.1. By selecting these values of 𝛽4, the corresponding values of 𝑅0

∗ are 
4.0140, 0.9843, 0.605, 0.3027. The initial values are used to be 𝑁(0)  =
(500,25,15,20,10,10,5). This simulation is shown in Figure 3.  

  

 
Figure 3. The numerical simulation with several values of 𝛽4 in 𝐼𝑐 , 𝐼𝑣 , 𝑃 

 
From Figure 3 we know that the more interactions between susceptible cattle and the LSD 
virus in the environment, it can increase the number of infected cattle, infected vectors 
and virus population. However, the fewer interactions between susceptible cattle and the 
LSD virus in the environment, it can effectively decrease the number of infected cattle 
subpopulation, infected vectors subpopulation, and virus population. 

Next, we take the values of parameters as in Table 1 but with four different values of 
𝜅, namely 𝜅 = 1.2, 0.8, 0.5, 0.15. By selecting these values of 𝜅, the corresponding values 
of 𝑅0

∗ are 0.8526,1.0551,1.6876, 5.6133. The initial values are used to be 𝑁(0) =
 (500,25,15,20,10,10,5). This simulation is shown in Figure 4.  
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Figure 4. The numerical simulation with several values of 𝜅 in 𝐼𝑐 , 𝐼𝑣 , 𝑃 

 
Based on the Figure 4 we get information, by increasing vaccination to susceptible cattle, 
it is effectively to reduce the number of infected cattle subpopulation, infected vectors 
subpopulation, and virus population. However, by decreasing vaccinations to susceptible 
cattle, it can increase the number of infected cattle subpopulation, infected vectors 
subpopulation, and virus population. 
 
Discussion 

In this section, we discuss the comparison of our research and previous research. Based 
on the results in our study, the proposed LSD model that we introduce similar to the 
model in [17], the LSD transmission through cattle, vector, and pathogen (virus) 
population. The key difference of our and their research is that our model consider 
vaccination for susceptible cattle, we define as vaccinated cattle subpopulation (𝑉𝑐) and it 
is not present in their model. Highlighting the novelty of our model that vaccination can 
control the disease. In addition, the effect of vaccination in our study also give impact for 
infected cattle and infected vectors, as we see in [16]. By using our proposed model, we 
know that vaccination not only influences the number of infected individuals but also 
affects the amount of virus in the environment. The broader perspective about 
vaccination adds new layer to understand the dynamics of LSD. This comparative analysis 
illustrates how our study builds on previous research by introducing novel elements. 

CONCLUSIONS 

In this article, we develop the LSD model that contains seven compartments: susceptible 
cattle, vaccinated cattle, infected cattle, recovered cattle, susceptible vector, infected 
vector, and LSDV in the environment. The non-negativity and boundedness of the solutions 

for the proposed LSD spread model are proven. The LSD model has two equilibrium points, 
there are the DFE point (𝐸0) and the EE point (𝐸∗). The DFE point exists and the stability 
is asymptotically stable for local and global if 𝑅0

∗ < 1. The EE exists if it satisfies the criteria 
and the stability is locally asymptotically stable if it satisfies the Lienard-Chipart criteria. 
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From the sensitivity analysis, the parameters 𝛽4 and 𝜅 has significant change in the value 
of 𝑅0

∗ . It shows the appropriate strategy to address the LSD outbreak is to increase 
vaccination for healthy cattle and to reduce the LSD virus in the environment by 
performing environmental disinfection.  
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