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ABSTRACT

Lumpy skin disease (LSD) is a cattle disease that can spread rapidly and is caused by the lumpy
skin disease virus (LSDV). LSDV can spread through direct contact, insect vectors, and
contaminated environments. In this study, we aim to analyze the dynamics of a lumpy skin disease
model that contains seven compartments: susceptible cattle, vaccinated cattle, infected cattle,
recovered cattle, susceptible vector, infected vector, and LSDV in the environment. The model’s
mathematical properties, including non-negativity and boundedness of the solution, are
examined. Equilibrium points of the system are determined, along with their local and global
stability under specific conditions. The results of research are the identification of two equilibrium
points and the most influential parameter of the system. The disease-free equilibrium point is
locally and globally asymptotically stable when the basic reproduction number is less than one,
and the endemic equilibrium point is locally asymptotically stable under the Lienard-Chipart
criteria. Sensitivity analysis reveals that the vaccination rate and the contact rate between
susceptible cattle with LSDV are the most influential parameter. The proposed LSD model provides
valuable insights into the dynamics of LSD and highlights the importance of considering
vaccination and environmental transmission.
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INTRODUCTION

Lumpy skin disease (LSD) is a cattle disease that can spread in various transmissions
and cause economic losses. LSD is caused by the Capripoxvirus from the Poxviridae family
[1],[2],[3]- LSD is not classified as a zoonotic disease, a disease that can naturally be
transmitted from animals to humans or conversely [3],[4],[5]. LSD can result in significant
economic losses for cattle farmers such as weight loss, reduction in milk production,
abortion, infertility and death in cattle [6],[7]. The first case of LSD was found in 1957 at
East Africa. Although LSD can be found throughout Middle East and Africa [3], but it can
easily spread to Indonesia. The first case of LSD in Indonesia was found in 2022 at Riau
and increased every year [8]. According to the report from the Ministry of Agriculture of
the Republic of Indonesia in 2023, the number of LSD are recorded 64.000 cases across
16 provinces, the highest number of cases is 23.000 cases in Central Java. The increasing
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number of LSD cases become a serious issue that needs to be addressed immediately.

The primary transmission of LSDV is mechanically through arthropod vectors such as
mosquitoes (Aedes aegypti), flies (Stomoxys calcitrans), small insects (Culicoides
nubeculosus), and ticks (Rhipicephalus appendiculatus). LSDV can spread rapidly during
the rainy season because of the abundance of arthropods during this time. Additionally,
LSD can spread through contact between cattle and contaminated environments by LSDV
[9],[10],[11]. The healthy cattle can develop antibodies if they get vaccination and the
recovered cattle from LSD infection have natural antibodies. The control policy for LSD in
Indonesia includes emergency vaccination and facility disinfection. Emergency vaccination
and facility disinfection is important strategy to reduce the impact of a new infection,
protect healthy cattle, and prevent widespread of the LSD outbreaks [12],[13],[14].

In disease epidemiology, mathematical modelling has a great role to study and give the
recommendations for disease control. Several researchers have proposed their LSD
model with various transmission and intervention strategies. The authors in [15] propose
an SEIR model for the LSD and provide vaccination as a control strategy, but they only
focus on transmission between cattle population. The other transmission of LSD model is
constructed by author in [16], they consider the transmission between cattle and vectors
population, they also prove that vaccination for cattle is effectively to reduce the spread
of LSD. The most complex transmission of LSD model show in [17], they propose their
model by considering transmission through between cattle, vectors, and pathogen (LSDV)
population. This model shows reliable transmission, but it does not include an
intervention strategy.

In this study, we develop an LSD model which includes disease transmission due to
contact between cattle, vector and LSDV population. We take into account the cattle
vaccination to prevent the LSD spread and to complete the previous research. As we see
in the following section, the proposed model is basically a combination of model in [16],
[17].

METHODS

In this study, we develop the LSD model with vaccination for susceptible cattle and
consider the environmental transmission. In order to analyze our model, we perform the
following steps. First, we construct the proposed LSD model. This step involves
formulating a mathematical model to describe the transmission of LSD using various
assumption. Second, we prove the non-negativity and boundedness solution. In this stage,
the solution of model is analyzed by contrary assumption for non-negativity and
comparison lemma for boundedness. Third, we determine the equilibrium point and basic
reproduction number. In this part, the equilibrium points of the model are calculated. The
basic reproduction number is also determined using the next generation matrix. Fourth,
we analyze the local and global stability of the equilibrium point. In this step, we examine
the stability of equilibrium points both locally and globally to understand the long-term
behavior of the proposed model. Fifth, we analyze the sensitivity of parameters.
Sensitivity analysis is conducted to identify the most influential parameters in the basic
reproduction number. The last, we conduct numerical simulations to confirm the
analytical result. Numerical simulations are performed to verify the analytical result
obtained from the proposed model.
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RESULTS AND DISCUSSION
Model Formulation

In this section, we formulate an LSD model and assume that the total population of
cattle is denoted by (N.) which consists of susceptible cattle (S,), vaccinated cattle (1),
infected cattle (I), and recovered cattle (R.). Meanwhile, the total population of vector is
denoted by (N,,) which consists of susceptible vector (S,) and infected vector (I,,). The
population of pathogen or LSDV in environment is denoted by (P).
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Figure 1. Compartment diagram for lumpy skin disease transmission

The susceptible cattle population grows at a constant birth rate A.. The susceptible cattle
become infected whenever they have contacted with infected cattle at an infection rate
B4, infected vector at an infection rate 8, and pathogen in the environment at an infection
rate 4. To prevent LSD virus infection, we assume that susceptible cattle are vaccinated at a
specific vaccination rate k. The vaccination is assumed to be perfect such that the
vaccinated cattle cannot be infected by the LSD virus [18]. The number of infected cattle
may be reduced due to they recover at rate r, or death caused by the LSD at rate §. The
natural death rate of catlle is denoted by u.. The birth rate of vector is assumed to
be A, and the death rate of vector is p,,. After having contact (bite) with the infected cattle,
the susceptible vector becomes infected with infection rate 5. It is assumed that infected
cattle can release LSD virus into the environment at a release rate ®. To reduce pathogens
in the environment, we apply disinfectants at a rate of 8. The LSD transmission schematic
diagram can be seen in Figure 1, while the constructed mathematical model for LSD
transmission is as follows

ds,
dt =A.—¢S.— (K + MC)SC'
av;
dt = KS¢ — UcVe)
dl,
E =¢&S. — (T‘ +46+ .uc)lc'
dR
dtc =71l — ucR, (D
ds,
dt = Ay — B3Spl. — 1Sy,
di,
E = B3Sule — uyly,
ap = o] opP
a ¢
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where
§ = Pilc + B2ly + BuP
Non-Negativity and Boundedness of Solution

System (1) describes the interaction of cattle, vector, and pathogen population. The
solution of this model must be non-negative and bounded. The non-negativity of solution
is stated in the following theorem.

Theorem 1. All solutions of system (1) with positive initial values S.(0) = 0,V.(0) >
0,1.(0) > 0,R.(0) > 0,5,(0) = 0,1,(0) = 0and P(0) = 0 are always non-negative.

Proof:

We first prove that S.(0) are non-negative. Assume on the contrary; suppose that S.(t)
is negative for some t > 0. If t; be the first time such that S.(t;) = 0. From the first
equation of system (1), we get

ds,

— =A4.>0
dt t=t1 ¢

This means that S.(t) > 0 on t € (t;,t; + €) for arbitrary small positive constant €.
This leads to a contradiction, thus S.(t) = 0 for all t > 0. The non-negativity of
V.(t),1.(t), R (t),S,(t),I,(t), P(t) can be shown using the similar way. Therefore, all
solutions of system (1) are non-negative.

To show the boundedness solutions of system (1), we apply the comparison lemma
[19].LetN, = S, +V. + I. + R.and N, = S, + [,. Based on system (1), we have

dN,
dtc =Ac—pc(Sc+Ve+ e +R) — 6l < Ac — pcN,,
Ac Ac . Ac
NC S I + (NC(O) - _) e_uct ﬁ hm Nc S -
Hc c t— Hc
dN,
dt = Ay — uyNy,
A A A
N, =—Z+ (NU(O) - —”) e~Wt = lim N, < —2.
Hy Hy t— Hy
and
dP DA,
—=®[,—0P < ON, - 6P < — 6P,
dt e
AP A D A D
P<— +(P(0)——C )e—f’f = lim P < —
[T pco t—o uco

Thus, all the solution of the system (1) are bounded to the region

A, , A, AP
0= {rl € RY:N.() < 25,1, € RE: N, (0) = -2, P(0) € R:P(0) < =5 }
(4 v Cc
where I} = (5., V,, 1, R;) and I, = (S, [,,). A summary of the above analysis can be stated
in the following theorem.

Theorem 2. All solutions of system (1) with initial values S.(0) = 0,V.(0) > 0,1.(0) =
0,R.(0)>0,5,(0)=0,I,(0) = 0,P(0) = 0 are bounded.
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Equilibrium Point and Basic Reproduction Number

The equilibrium point is obtained when the right-hand side of the equation in system
(1) are zero. In this way, we get two types of equilibrium points: the disease-free
equilibrium point (DFE)

A KA
E® = (59,2, 19, RY, 59, I, PO) = ( c c

Ay
, ,0,0,—,0,0),
K+ pe pe (e + pe) oy
and the endemic equilibrium (EE)

E* = (S¢, V&' 1¢, R, Sy, 1, PY),
where

s A . _BSil . _ L

B A, *_KS: *_rI;k g = pr =
E+r+p C weC w T Blitw, Y ty 6

Notice that I are the real positive roots of the following quadratic equation
Mol + I; + 11, = 0, (2)
where

Mo = (r+68+u.) (1,085 + B30, P),
= (30 m)(3,020 4 2,5,00 4 ,008) + (1,08,) ¥ 1)
—(ABy 1,08, + AcB B 1, D)
B. A0+ [,ADP B.A,B. A,
= 1,9 8 - L 4 _ 37vP 2
M, = w6(c+u)(r+68+u,) (1 2 20(k+u)(r+6+u) w2(c+p)(r+6+ uc)>

The detail discussion about the existence of EE will be given later. Instead, we first
derive the basic reproduction number as follows. By only considering the subpopulation
with infection in LSD model (1), we consider the following vector of individual
displacement between compartments

<(ﬁllc + ﬁzlv + B4P)Sc> (T +46+ ﬂc)
V=

F= .3351716 'uUIU
0 —®I, + 6P
Suppose that F and V are respectively the Jacobian matrices of F and V at the DFE, then

we get the next generation matrix

ﬁlAc + .84ACCD .BZAC .B4Ac
BlAcg + ﬁél»Ac(b (K + .uc) (T +46+ .uc)e (K + .uc) (K + .uc)g
FV_l = B3Av 0 0
(r+6+ pu)uy
0 0 0

The basic reproduction number is defined as the spectral radius of the matrix FV ™1,
namely

RO = p(FV—l))
_ P1Ac0 + ByA D (B1Ac6 + BrA D)2 B3AyP2Ac
200 + pu)(r +68 +pe) 402+ p ) (r+ 8+ pu)?  pi(e+p)r+ 6+ )’

=R} + /R;Z +R;,

R* = ,BlAce + .84ACCD a
Y200k + )+ 8+ )

where
— .B3AV.BZAC
pa(c+u)(r + 8 +pe)

nd R;
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By noticing that R = 2R;R, + R;, we can show that condition (Ry < 1orR, > 1) is
equivalent to condition (R; < 1 or Ry > 1) where Ry = 2R} + R;. We can imply that R; is the
basic reproduction number that caused by the infection rate of infected cattle and virus in
environment. Similarly, R} is the basic reproduction number that caused by the infection rate
of infected vector.
Next, we can write the coefficient I1, of the quadratic equation (2) as
My = pg6(k + pu)(r + 6 + pu)(1 — Ry).
By evaluating all possible roots of equation (2), we have the following existence of endemic
equilibrium point:
1) IfR; <1, II; <0 and M1? — 411,11, > 0 then there exist two endemic equilibrium points
I, and I, ;
2) If R; <1, II; < 0 and I1? — 411,11, = 0 then there exists a unique endemic equilibrium
point I¢;

* .

3) If Ry = 1 and II; < O then there exists a unique endemic equilibrium point I¢, ;

4) If Ry > 1 then there exists a unique endemic equilibrium point I¢ ;
5) No equilibria otherwise;

where
I* _ _Hl + H% - 4‘1_[01_[2 I* _ _H1 - '\/ H% - 4‘HOH2 I* _ H1 1* _ Hl
€ 211, P 211, ) | P R | P
Local Stability

In this section, we investigate the local stability of equilibrium point in model (1). The
Jacobian matrix from the sytem (1) at a point EX = (Sk, VX, ¥, R¥, Sk, I¥, P¥) is given by

k

[—s71 0 ~B1SE 0 0 —B2SE —BuSE]
K —U 0 0 0 0 0
st 0 53 0 0 B2SE  BuSE
JEH =] 0 0 T — U 0 0 o |, (3)
0 0 =B85 0  —(Bslf+uw) 0 0
0 0 BsSS 0 Bslé —Hy 0
L0 0 d 0 0 0 -0 -

where
st = Bul¢ + Boly + BuP* + 1+ pi,
sk =BiSk—6—1— .
We substitute the equilibrium point E* into the Jacobian matrix to find out the
eigenvalues thus we get the stability condition for the DFE and EE.
If we substitute the DFE point E° into the Jacobian matrix (3) then we get J(E®). By

using [J(E®) — AI| = 0 to find out the eigenvalues of J(E®), we get the characteristic
equation as follow

(=x = pie = D (—pe = D (= = D (=pty = D(A® + ;4% + a1+ a3) = 0, (4)
where
B1Ac

@ =G+ 8 41 (U= G 5 T

>+9+,uv,
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a, =9(r+6+,uc)(1—2R1)+uv(r+6+,uc)(1—R2)+,u,,<9—Kj_lj ),
C

az = 0(r+ 6+ pdus(1 — Rp).

It is clear that the real part of the fourth eigenvalues are

/11=—K—,uc<0, /12’3=_‘Llc<0, /’14=_ﬂv<0

Next we find the other eigenvalues in (4) by using the characteristic equation below
/13 + allz + azl + a3 = 0 (5)

Based on the Routh-Hurwitz criteria, the characteristic equation (5) has the negative real
part in each of their eigenvalues if a; > 0and a;a, —a; > 0. We see that if Ry < 1
then a; > 0 and other criteria will be proven by numerical simulations. The DFE point is
locally asymptotically stable if the LSD model satisfies all of the criteria then the following
theorem holds.
Theorem 3. The DFE point E°of the LSD model is locally asymptotically stable if Ry <
1,a; > 0,and a;a, — a3z > 0.

To prove the local stability of the EE point E*, we substitute E* into the Jacobian matrix
(3) then we get J(E™). By using |J(E*) — AI| = 0 then we get the eigenvalues of J(E*), from
the characteristic equation below

(—pe — D (=pe — (A% + b A* + by A3 + b3A%2 + byA + bs) = 0. (6)
It is clear that the real part of the first and second eigenvalues are negative 4, , = —p.
We can find out the other eigenvalues by evaluating
A5+ by A* + by A3 + b3A% + by A + bs = 0, (7)

where

by = B3I; + 0 + 2u, + 57 — 53,
by = =S¢ S; BaBs — PS¢ By + 0 1Bz + I Baply + IcP3sy — IcPss; + S

+B151 + 20u,0s; — 0s5 + uZ + 2w, s; — 24,55 — 155,
by = =®I;S:B3Pa — 0S:SyBaPs — SeSy BaPatty — 29S¢ Patty + 013 (y + 51 — 53)

+S2Bys1UE + 2py) + 12 Bspty (7 — 53) — 1¢ Basi 53+ Opf + 26 wys; — 26 pys3

—0s1s; + uj (51— 53) — 24,5153,
by = =®I:ScBaPatty + 01:ScB1B3s1 — 0SSy B2B31y

+ISe PrPatiyST — PSePabs 017 Bapys] — 017 Bapys3 — 0173513

+ 20821 1ysT — IePaptyS1Ss + SePapist + Ou st — Ougs;

- 29:“175;5; - .quIS;;
bs = 017S:B1B3tyS1 — 017 B3pySis3 + 0S; Piui s1 — Ougsiss,
Based on the Lienard-Chipart criteria[20], the characteristic equation (7) has the negative
real part in each of their eigenvalues if and only if b, > 0,b3 > 0,bs > 0,H; > 0 and H; >
0, where

H, = byb, — b3
And
Hj = by(2bybs — byby — b3bs + byb3bs) + by(bybs — bsby) — bE

Since the forms of b;,i = 1, ...,5 are too complicated, the Lienard-Chipart criteria will be
calculated numerically. The EE point is locally asymptotically stable if the LSD model
satisfies all of the criteria then the following theorem holds.
Theorem 4. Let the EE point E* of LSD model (1) exists. The EE point E* is locally
asymptotically stable if by > 0,b3 > 0,b50,H; > 0,H; > 0.
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Global Stability

The method to examine the global stability of DFE is Castillo-Chavez method in [21].
The LSD model (1) can be transformed as follows:

dy. N
1 =p(Y, 1),
dt
dy. Lo .
— =0(%.%).0(¥,0) =0, ®)
Where
Yl = (Scr VC,RC, SU)T’ YZ = (ICIIU’P)T: r
S A KA A
Y0 = (59,12, R?, SO)T =( -—, . ,0,—"> ,
! ©rier ety K+ ue (e +pe)’ Wy

Y0 = (19,12, PO)T = (0,0,0)7 = 0, and E° is the DFE point.
To ensure the global asymptotic stability of the DFE point, the criteria below must be
satisfied.

av;

1) For;
2) Q(V,,Y,) = MY, — Q(Y,,Y;),Q(Y,,YV,) = 0forall¥;,Y, € Qand M = F —V
where M is the matrix which the other elements than the main diagonal are non-negative
and (1 is the region where the model makes biological sense. Consequently, if the LSD
model satisfies the conditions then the following theorem holds.
Theorem 5. The DFE point £° = (Y, 0) of the LSD model (1) is globally asymptotically
stable in Qif Ry < 1.

= P(?l, O), 1710 is globally asymptotically stable.

Proof:
av; v,
From the system (1), we have - and - below
e _,ffc__,fkf he) §Se = (r + 8 + ol
P(Yli YZ) = I C_ CRC ’ Q(Yl, YZ) = :8351716 - :u'vlv ’
r c luC c

d]. — 0P
Av - ﬁ3SvIc - .quv ¢

where & = 11, + B,1, + B,P. If Y, = 0, we get% as follows:

d_) Ac— (x + .uc)
Y, > = kS, — 1V,
—=P(Y,,0)=| "Jc Fe 9
dt ( 1 ) TIC _.ucRc ( )
Av - .quv
Next, we solve the equation (9) to get the solution as follows
Sp =2+ Cem Ut Y = B | Comhet R = THel, 5, =22 4 CoTHL,
K+ o Helretpe) by
Note that the limiting sytem of% = P(?l,ﬁ) as follows:
A A
lim S, = ——— 4 Ce~(ctpade = €
=00 K+ U K+ Uc
_ KA, _ KA,
limV,=—+(Ce ™" = ——+«—,
t—o0 e (e + pie) pe + (ke + ue)
tlim R, =e Hc* =9,
A
lim S, = — + Ce™He® = —,
t—o0 Hy v
Based on the limiting system, the solution converge to Y1° = (Kfz " (’:icu ),0, %) thus
C (o C v
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Yglobally asymptotically stable in P(YY, 0).
Next, we determine the matrix M by calculating F — V. We get the matrices of F and V
from the section of basic reproduction number then M is stated by

BiSe—(r+8+ue) BaSe BaSe
M = BSSI(J) —Hy 0 ]
d 0 -0
Next, based on the equation Q(Yy,Y;) = MY, — Q(Y,, Y,), we get §(Y,, ¥,) below
oo (Bile + Bol, + B4P)SQ — (r + 8 + u)l, (Bale + Baly + BaP)(S2 — Sc)
Q(Yl' YZ) = ﬁ351910 — Uyl = [ .B3Ic(519 - Sv)
®J. — 6P 0

The value of Q(¥,,Y;) = 0if S? > S, S > S, and M have the other element than the main
diagonal are non-negative. Based on the theorem 5, the DFE is globally asymptotically
stable when Rj < 1 for all (82 > S,,S2 = S,) € Q. The first and the second criteria are
satisfied then the theorem 5 is proven.

Sensitivity Analysis

In this section, we find out the most influential parameters in the basic reproduction
number Rj. We must calculate the normalized sensitivity index that defined in [22] as
follows

Yy’ = T X R (10)
where ¥ = B4, 05, B3, 04,0, P,k. We apply the equation (8) to get the normalized
sensitivity index below

Ry _ B1130

Bi Bz + pzBy® + B3A,B,0
TR = 0B3A,p-

Bo Byuz0 + p2Pa® + B3A, B0
YR’{) — 0834,

Bs  BiugO + uipa® + B34, B0
YR}; _ Dz By (11)

Be " BruZ6 + u2Ba® + P3A, B0
YR’{) —_ DPug Py

0 P1uz6 + uzfa® + f34,5,0
YR}; _ Ddug By

® Biui0 + uZPsd + B3A,B20
A

o K+ e

Based on equation (11), the value of sensitivity index of 6 and k have negative impact
on R;. It means, if 8 and k increase then R; will decrease. The parameters f3;, 52, B3, B4 and
@ have positive impact on R;. [t means, if they are increase then R also increase. Next, we
substitute the parameters in Table 1 into (11) to find out the value of sensitivity index in
Table 2. By substituting the parameters in Table 1 into basic reproduction number, we
get the value of Ry = 0.99109.

Now, let see in the Table 2 and Table 3, we get the information about the value of
sensitivity index and the effect of changes in parameter value on R;. The increasing of the
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parameters values [, and k cause the significant changes in R;. This indicates that an
effective strategy to reduce LSD outbreaks is to perform environmental disinfection and
administer vaccination to susceptible cattle.

Table 1. The parameters of the model and their description

Parameters Descriptions Value Source
A, The growth rate of healthy cattle 0.8 [11]
A, The growth rate of vectors 0.1 [11]

The contact rate due to vectors and healthy cattle
B 0.01120 [11]
The contact rate due to vectors and healthy cattle
B 0.030013 [11]
B3 The contact rate due to infected cattle and vector 0.03 [11]
B The contact rate due to contaminated environment 0.1010 [11]
Ue The natural death rate of cattle 0.00045662 [11]
Uy The natural death rate of vector 0.07 Assumed
r The recovery rate of the infected cattle 0.095 Assumed
) The death of infected cattle are caused by disease 0.027 [7]
K The vaccination rate of healthy cattle 0.851 Assumed
() The rate of LSDV in the environment 0.001 [11]
0 The virus disinfection rate 0.001013 [11]

Table 2. The sensitivity index value of parameters

Parameters Sensitivity Index Parameters Sensitivity Index
B 0.0866 0 -0.7712
B, 0.1421 P 0.7712
B 0.1421 K -0.9994
Ba 0.7712

Table 3. The impact of changes in parameters value on Rj

Parameters Parameters+10% Parameters—10%
By 1.0005 0.9833
B 1.0006 0.9778
Bs 1.0006 0.9778
Ba 1.0684 0.9154
6 0.9223 1.0769
() 1.0684 0.9154
K 0.8527 1.1024

Numerical Simulation

In this section, we present the results of numerical simulations using MATLAB R2021a
software to illustrate the dynamics of LSD. In the first numerical simulation, we want to
observe the effect of f, and k¥ on R;. We use the parameters from Table 1 and the
simulations show in Figure 2. First, if the value of B, increase, the value of R also
increase. The blue graph indicates that R; < 1 when S, <0.06. Conversely, the red graph
shows that R; > 1 when S, > 0.06. Second, if the value of k increase, the value of
R; decrease. The blue graph indicates that R; < 1 when k > 0.84 . Conversely, the red
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graph shows that Ry > 1 when k < 0.84.

10f 40
5 s 20
0 el | | | 0 "::”’7?:1::52112';J::::r:?:r:z:r:ﬂ*~~-;;;;;;c;;~««- oo
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
34 K

Figure 2. The effect of 8, and x on R;

In the second numerical simulation, we observe the dynamics of the LSD model (1)
using the fourth-order Runge-Kutta method and the parameters in Table 1, except f,.
Here we choose four different values of B, to study the effect of the parameter changes in
the dynamical population. The values of g, are 0.5, 0.1,0.05,0.01 and the step size is h =

0.1. By selecting these values of pf,, the corresponding values of R; are
4.0140,0.9843,0.605, 0.3027. The initial values are wused to be N(0) =
(500,25,15,20,10,10,5). This simulation is shown in Figure 3.
4 —,’14=O.5
i 2| — 8,201
. =
| =1 L)
\\ 0.5 k\
0 2000 4000 6000 8000 10000 % 2000 4000 6000 8000 10000

t t

6000 8000

0
0 2000 4000 10000

t

Figure 3. The numerical simulation with several values of 5, in I, I,,, P

From Figure 3 we know that the more interactions between susceptible cattle and the LSD
virus in the environment, it can increase the number of infected cattle, infected vectors
and virus population. However, the fewer interactions between susceptible cattle and the
LSD virus in the environment, it can effectively decrease the number of infected cattle
subpopulation, infected vectors subpopulation, and virus population.

Next, we take the values of parameters as in Table 1 but with four different values of
k, namely ¥ = 1.2,0.8, 0.5, 0.15. By selecting these values of k, the corresponding values
of Ry, are 0.8526,1.0551,1.6876, 5.6133. The initial values are used to be N(0) =
(500,25,15,20,10,10,5). This simulation is shown in Figure 4.
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Figure 4. The numerical simulation with several values of x in I, I,,, P

Based on the Figure 4 we get information, by increasing vaccination to susceptible cattle,
it is effectively to reduce the number of infected cattle subpopulation, infected vectors
subpopulation, and virus population. However, by decreasing vaccinations to susceptible
cattle, it can increase the number of infected cattle subpopulation, infected vectors
subpopulation, and virus population.

Discussion

In this section, we discuss the comparison of our research and previous research. Based
on the results in our study, the proposed LSD model that we introduce similar to the
model in [17], the LSD transmission through cattle, vector, and pathogen (virus)
population. The key difference of our and their research is that our model consider
vaccination for susceptible cattle, we define as vaccinated cattle subpopulation (V) and it
is not present in their model. Highlighting the novelty of our model that vaccination can
control the disease. In addition, the effect of vaccination in our study also give impact for
infected cattle and infected vectors, as we see in [16]. By using our proposed model, we
know that vaccination not only influences the number of infected individuals but also
affects the amount of virus in the environment. The broader perspective about
vaccination adds new layer to understand the dynamics of LSD. This comparative analysis
illustrates how our study builds on previous research by introducing novel elements.

CONCLUSIONS

In this article, we develop the LSD model that contains seven compartments: susceptible
cattle, vaccinated cattle, infected cattle, recovered cattle, susceptible vector, infected
vector, and LSDV in the environment. The non-negativity and boundedness of the solutions
for the proposed LSD spread model are proven. The LSD model has two equilibrium points,
there are the DFE point (E?) and the EE point (E*). The DFE point exists and the stability
is asymptotically stable for local and global if Ry < 1. The EE exists if it satisfies the criteria
and the stability is locally asymptotically stable if it satisfies the Lienard-Chipart criteria.
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From the sensitivity analysis, the parameters 8, and k has significant change in the value
of Ry . It shows the appropriate strategy to address the LSD outbreak is to increase
vaccination for healthy cattle and to reduce the LSD virus in the environment by
performing environmental disinfection.
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