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ABSTRACT 

Graph theory approaches have become an important tool for studying algebraic structures such 
as rings and modules. Specifically, graphs associated with modules provide valuable insights into 
their internal properties. In this paper, we investigate the relationship between the torsion graph 
and the annihilator graph of the module ℤ𝑛 over a commutative ring, focusing on their structural 
properties based on the prime factorization of 𝑛. We identify the torsion elements and 
annihilators of ℤ𝑛, then construct and analyze the corresponding graphs. It investigates the 
fundamental characteristics of these graphs and establishes theoretical results regarding their 
connectivity and completeness. Through this approach, we highlight specific algebraic conditions 
on 𝑛 that implies isomorphism or partial correspondence between the graphs. Our results reveal 
a strong connection between two distinct graph constructions, offering a broader understanding 
of algebraic graph theory and its applications in module theory. 
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INTRODUCTION 

Graph theory is an important branch of mathematics that studies how objects are 
connected through a network of nodes and edges. It originated in Euler's journal on the 
Seven Bridges of Königsberg in 1736 [1]. Since then, graph theory has developed into a 
useful field with wide applications in computer science, biology, social sciences, and 
engineering [2]. 

Formally, a graph 𝐺 = (𝑉, 𝐸) is a pair of sets that consists of the vertex set 𝑉 and edge 
set 𝐸 ⊆ 𝑉2 [3]. This abstraction allows a systematic study of the structural properties 
and combinatorial characteristics of networks [1]. A simple graph is a graph without 
loops (edges connecting a vertex to itself) or multiple edges between the same pair of 
vertices [4]. Graph 𝐺 is connected if there exists a path for every pair of vertices in 𝐺 [1].  
A complete graph with 𝑛 vertices, denoted by 𝐾𝑛 , is a simple graph where every pair of 
distinct vertices is adjacent. A bipartite graph is a graph whose vertices can be 
partitioned into two disjoint sets 𝑉1 and 𝑉2 such that every edge connects a vertex from 
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𝑉1 to 𝑉2, with no edges between vertices within the same set. Furthermore, a complete 
bipartite graph is a bipartite graph in which every vertex in 𝑉1 is adjacent to every vertex 
in 𝑉2 [1]. A complete bipartite graph is denoted by 𝐾𝑛1,𝑛2

 if |𝑉1| = 𝑛1 and |𝑉2| = 𝑛2. An 

empty graph is a graph with 𝑉 = ∅ and 𝐸 = ∅, simply write as ∅ [3].  
Over the years, graph theory has been developed in various ways, one of which is to 

relate it to algebraic structures such as rings. This idea has led to graph theory-based 
models that reflect algebraic properties. The earliest and most influential idea is the 
zero-divisor graph of a ring proposed by Beck [5] in 1988. He defined all elements of a 
ring as vertices, and two distinct vertices are adjacent if their product is zero. His work 
aimed to study such graphs in terms of coloring problems. 

Later, Anderson and Livingston [6] refined Beck's approach by restricting the set of 
vertices to nonzero divisors of the commutative ring, resulting in a more focused 
structure and preserving the essential behavior of the ring. This version, now the 
standard definition, denoted by Γ(𝑅), has become a cornerstone in the study of graph-
based rings. A further extension of this idea was introduced by Behboodi [7] by 
developing the graph of the zero divisors of a module, generalizing to the case of rings 
and opening up a wider class of algebraic objects for graph-theoretic investigation. 

Based on the basic idea of zero divisor graphs, researchers have developed new graph 
models to capture various aspects of ring and module theory. One such model is the 
annihilator graph of ring 𝑅 is denoted by 𝐴𝐺(𝑅), introduced by Badawi [10]. This graph 
uses nonzero zero divisors of the ring as vertices and connects two distinct elements if 
their union annihilator is not equal to their product annihilator. Subsequent studies 
have extended and deepened this model. Nikmehr [9] explored further structural 
aspects of 𝐴𝐺(𝑅), examining properties like connectivity and completeness under 
various algebraic conditions. Dutta [10] focused on finite commutative rings and 
identified specific classes where the annihilator graph is complete or contains particular 
substructures. Barati [11] continued this line of inquiry by analyzing the annihilator 
graph in broader classes of commutative rings and refining known results. Furthermore, 
Nikandish [12] investigated coloring properties of the annihilator graph, providing 
insight into chromatic numbers and clique structures. 

The concept was further extended to modules by Hamidizadeh [13] and Nozari [14]. 
Nozari’s approach defines the annihilator graph of an 𝑅-module 𝑀, denoted by 𝐴𝐺(𝑀), 
using the set of elements in 𝑅 that annihilate some nonzero element of the module 𝑀. 
Let 𝑀 be an 𝑅-module, the annihilator of 𝑥 in 𝑀 is a subset of 𝑀 defined as 𝐴𝑛𝑛𝑀(𝑥) =
{𝑚 ∈ 𝑀 | 𝑥𝑚 = 0𝑀} and annihilator of 𝑀 in 𝑅 defined as 𝐴𝑛𝑛𝑅(𝑀) = {𝑠 ∈ 𝑅 | 𝑠𝑀 = 0}. 
The vertex set of these annihilator graph is 𝑍𝑅(𝑀)\𝐴𝑛𝑛𝑅(𝑀) where 𝑠 ∈ 𝑍𝑅(𝑀) if 𝑠 ∈ 𝑅 
and there exists a nonzero element 𝑚 ∈ 𝑀 such that 𝑠𝑚 = 0𝑀 . The adjacency condition 
similarly reflects a difference in the union and product-based annihilators of elements in 
the module 𝑀 which means two different vertices 𝑥 and 𝑦 is adjacent if 𝐴𝑛𝑛𝑀(𝑥) ∪
𝐴𝑛𝑛𝑀(𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥𝑦). This model provides a deeper understanding of the interaction 
between module elements and their annihilators from a graph-theoretic perspective. 

While zero-divisor and annihilator graphs emphasize the behavior of elements in a 
ring or module with respect to multiplication and annihilation, another compelling 
graph-theoretic structure arises from torsion theory is the torsion graph of a module. 
First introduced by Ghalandarzadeh and Malakooti Rad [15], the torsion graph captures 
the interplay between torsion elements in a module via their shared annihilators. Let 𝑀 
be an 𝑅-module, where 𝑅 is a commutative ring with identity. An element 𝑚 ∈ 𝑀 is a 
torsion element if there exists a nonzero 𝑟 ∈ 𝑅 such that 𝑟𝑚 = 0. The set of nonzero 
torsion elements is the vertex set of the torsion graph. Two distinct torsion elements 𝑥 
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and 𝑦 are adjacent in the torsion graph if and only if the intersection of their annihilators 
in 𝑅 is nontrivial, i.e., 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0 where 𝐴𝑛𝑛𝑅(𝑥) = {𝑟 ∈ 𝑅 | 𝑟𝑥 = 0}. This 
construction yields a simple undirected graph that reflects both the module structure 
and the behavior of annihilation within the ring. 

The introduction of the torsion graph brought a new dimension to the study of 
algebraic structures through graph theory. In their foundational work [15], 
Ghalandarzadeh and Malakooti Rad investigated fundamental properties of the torsion 
graph, such as connectivity, isolated vertices, and graph invariants under certain module 
conditions. The development continued in [16], where Ghalandarzadeh analyzed 
connected subgraphs of the torsion graph and provided criteria for when such 
subgraphs occur, relating them to properties of the module and its annihilators. Further 
extending this work, Rad [17] examined graph invariants such as diameter and girth, 
offering insights into the global structure of the torsion graph and conditions under 
which it is connected or possesses short cycles.  

While the zero-divisor graph, annihilator graph, and torsion graph have each been 
studied in depth, the connections between these graph types have received relatively 
little attention. This paper addresses that gap by investigating the structural relationship 
between the torsion graph and the annihilator graph when the module is ℤ𝑛  over itself. 
The main objective is to determine conditions under which these graphs coincide, differ, 
or reveal unique structural properties, and to establish a clear correspondence between 
them in the context of ℤ𝑛 . 

The ring ℤ𝑛 , the integers modulo 𝑛, is a good setting for this kind of analysis. As a 
finite commutative ring with identity, it provides a manageable yet structurally rich 
environment. Its algebraic behavior depends on the prime factorization of 𝑛, and it 
admits decomposition into a product of local rings via the Chinese Remainder Theorem, 
which helps in clarifying the structure of associated graphs. Moreover, torsion elements 
and annihilators in ℤ𝑛 can be studied through elementary number theory and ideal 
theory, making the exploration both theoretically insightful and computationally 
accessible. 

By focusing on 𝑀 = 𝑅 and 𝑀 = ℤ𝑛 , we explore the fundamental properties of the 
torsion and annihilator graphs and identify their points of intersection and divergence. 
This work contributes to the field by offering a clearer understanding of how different 
algebraic graph models relate within a concrete and widely applicable ring structure, 
laying groundwork for future generalizations to broader classes of modules and rings. 

METHODS 

In this study, we use a mathematical proof approach to explore the properties of the 
torsion graph and annihilator graph of the module ℤ𝑛 over a commutative ring, then we 
compare them to investigate the relationship between them. Our primary method is 
direct proof by selecting two arbitrary vertices and showing the adjacency between 
them based on the graph definition. In the particular situation where the structure of ℤ𝑛 
requires separate consideration of different types of elements, then we apply proof by 
cases to handle all possibilities. 

In addition, we also use a literature-based approach. We draw on known results 
about torsion elements, annihilators, and graph constructions in module theory to help 
our analysis and explain when and why the torsion graph and annihilator graph align or 
differ. This combination of direct argument and theoretical background allows us to 
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clearly understand the correspondence between the two graphs. Firstly, it is necessary 
to review the formal definition of the torsion graph and annihilator graph. 

 
Definition 1 [15] Let 𝑅  be a ring and 𝑀 be an 𝑅-module. The torsion graph of 𝑀, 
denoted by Γ𝑅(𝑀) is a simple undirected graph with the vertex set containing the 
nonzero torsion element of 𝑀 and two distinct vertices 𝑥 and 𝑦 is adjacent if 𝐴𝑛𝑛𝑅(𝑥) ∩
𝐴𝑛𝑛𝑅(𝑦) ≠ 0. 

 

Definition 2 [14] Let 𝑅  be a ring and 𝑀 be an 𝑅-module. The annihilator graph of 𝑀, 
denoted by 𝐴𝐺(𝑀) is a simple undirected graph with the vertex set is 𝑍𝑅(𝑀)\𝐴𝑛𝑛𝑅(𝑀) 
and two different vertices 𝑥 and 𝑦 is adjacent if 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥𝑦). 
 

In this paper, we focus on the structural properties based on the prime factorization 
of n. Furthermore, the prime factorization is divided into some cases for 𝑛 is a prime 
number, 𝑛 is a power of a prime number, 𝑛 is a multiplication of two and three distinct 
prime numbers. For each case, the research methodology involves the following 
procedures: 
i. Identify the vertex set of the torsion graph and annihilator graph for the module 

𝑀 = ℤ𝑛 . 

ii. Investigate the adjacency between each vertex in the Γ𝑅(𝑀) and 𝐴𝐺(𝑀). 

iii. Determine the graph type of the Γ𝑅(𝑀) and 𝐴𝐺(𝑀). 

iv. Analyze the correspondence between Γ𝑅(𝑀) and 𝐴𝐺(𝑀). 

RESULTS AND DISCUSSION  

In the first case, if 𝑀 = ℤ𝑝 for any prime number 𝑝 then 𝐴𝐺(𝑀) and Γ𝑅(𝑀) is an 

empty graph. Since 𝑇(ℤ𝑝) = {0̅}, then 𝑉 = ∅, that implies 𝐴𝐺(𝑀) and Γ𝑅(𝑀) is an empty 

graph. 
Secondly, we investigate the torsion graph and annihilator graph for 𝑀 = ℤ𝑝𝑘  for any 

prime number 𝑝 and positive integer 𝑘 ≥ 2. 
 

Theorem 3 Let 𝑀 = ℤ𝑝𝑘  is an 𝑅-module for any prime number 𝑝 and positive integer 

𝑘 ≥ 2. Then 
a. Torsion graph Γ𝑅(𝑀) is a complete graph 𝐾𝑛 
b. Annihilator graph 𝐴𝐺(𝑀) is a complete graph 𝐾𝑛 

where 𝑛 = 𝑝𝑘−1 − 1. 

Proof. 
Since 𝑅 = ℤ𝑝𝑘  then torsion element of 𝑀 has form 𝑎𝑝̅ for positive integer 𝑎 or we can 

write 
𝑇(𝑀) = {𝑎𝑝̅ | 𝑎 ∈ ℕ} 

Since 𝑎𝑝̅ ∈ 𝑀 then we have the number of vertices is 

|𝑉| = |𝑇(𝑀)∗| =
|ℤ𝑝𝑘 |

𝑝
− 1 = 𝑝𝑘−1 − 1 

Let 𝑥 and 𝑦 be two arbitrary different elements in 𝑉 where 𝑥 = 𝑎1𝑝̅ and 𝑦 = 𝑎2𝑝̅ for 
positive integer 𝑎1 and 𝑎2, then 
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𝑝𝑘−1̅̅ ̅̅ ̅̅ 𝑥 = 𝑝𝑘−1̅̅ ̅̅ ̅̅ (𝑎1𝑝̅) = 𝑎1(0) = 0 

It means that 𝐴𝑛𝑛𝑅(𝑥) contain 𝑝𝑘−1̅̅ ̅̅ ̅̅  such that 𝑝𝑘−1 ∈ 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦). Therefore, for 
any 𝑥, 𝑦 ∈ 𝑉 satisfy 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0 or 𝑥 and 𝑦 is adjacent. Proved that Γ𝑅(𝑀) is 
complete graph 𝐾𝑛 . For the annihilator graph, consider the following vertex set. 

𝑉 = {𝑎𝑝̅ | 𝑎 ∈ ℕ} = {𝑎𝑝̅, 𝑎𝑝2̅̅ ̅, … , 𝑎𝑝𝑘−1̅̅ ̅̅ ̅̅   | 𝑎 ∈ ℕ, 𝑎 < 𝑝} 

Let 𝑥 and 𝑦 be two arbitrary different elements in 𝑉 where 𝑥 = 𝑎1𝑝𝑘1̅̅ ̅̅  and 𝑦 = 𝑎2𝑝𝑘2̅̅ ̅̅  for 
positive integer 𝑎1, 𝑎2 < 𝑝 and 𝑘1, 𝑘2 < 𝑘 then 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎1𝑝𝑘1̅̅ ̅̅ ) = 𝑝𝑘−𝑘1̅̅ ̅̅ ̅̅ ̅𝑀 

and 𝐴𝑛𝑛𝑀(𝑦) = 𝑝𝑘−𝑘2𝑀. Without loss of generality, suppose that 𝑘1 > 𝑘2 then 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎1𝑎2𝑝𝑘1+𝑘2̅̅ ̅̅ ̅̅ ̅̅ )

= {
𝑝𝑘−(𝑘1+𝑘2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑀,   𝑘1 + 𝑘2 ≤ 𝑘

𝑝2𝑘−(𝑘1+𝑘2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑀,   𝑘1 + 𝑘2 > 𝑘

 

Since 0 < 𝑘1, 𝑘2 < 𝑘 then 𝑝𝑘−𝑘1𝑀 ≠ 𝑝𝑘−(𝑘1+𝑘2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑀 and 𝑝𝑘−𝑘1 ≠ 𝑝2𝑘−(𝑘1+𝑘2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑀 such that 
𝐴𝑛𝑛𝑀(𝑥𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦). Therefore, 𝑥 and 𝑦 is adjacent for all 𝑥, 𝑦 in 𝑉 and 
𝐴𝐺(𝑀) is a complete graph 𝐾𝑛 .            ∎ 

Based on Theorem 3, the torsion graph and the annihilator graph of the module is 
same when 𝑛 is a prime power number. Furthermore, we can see an example regarding 
this correspondence in the following torsion and annihilator graph of module ℤ8 and ℤ16 
over itself. 

Example 4 Let 𝑀1 = ℤ8 is a ℤ8-module and 𝑀2 = ℤ16 is a ℤ16-module. Note that 𝑀1 and 
𝑀2 are ℤ𝑝𝑘  for 𝑝 = 2 with 𝑘 = 3 and 𝑘 = 4, respectively. Based on Theorem 3, we have 

𝐴𝐺(𝑀) = Γ𝑅(𝑀) is complete graph 𝐾𝑛 . Moreover, the graph 𝐴𝐺(𝑀1) = 𝐴𝐺(ℤ8) = 𝐾𝑛1
 

and 𝐴𝐺(𝑀2) = 𝐴𝐺(ℤ16) = 𝐾𝑛2
 where 𝑛1 = 23−1 − 1 = 3 and 𝑛2 = 24−1 − 1 = 7. 

    
 

Figure 1. The annihilator and torsion graph of ℤ8 and ℤ16. 

After that, we investigate the torsion and annihilator graph for ℤ𝑛 where 𝑛 is the 
multiplication of two different prime numbers 𝑝1 and 𝑝2. 

  



Correspondence Between Torsion and Annihilator Graph of Modules Zn Over Commutative Rings 

Ari Andari 408 

Theorem 5 Let 𝑀 = ℤ𝑝1𝑝2
 is an 𝑅-module for prime 𝑝1 and 𝑝2 where 𝑝1 ≠ 𝑝2. Then 

a. Annihilator graph 𝐴𝐺(𝑀) is a complete bipartite graph 𝐾𝑛1,𝑛2
. 

b. Torsion graph Γ𝑅(𝑀) is a union of two complete graph 𝐾𝑛1
∪ 𝐾𝑛2

. 

where 𝑛1 = 𝑝2 − 1 and 𝑛2 = 𝑝1 − 1. 

Proof. 
Since 𝑀 = 𝑅 = ℤ𝑝1𝑝2

 then 𝑎1𝑝1̅̅̅ and 𝑎2𝑝2̅̅ ̅ are torsion elements of 𝑀. Suppose that 

𝑇(𝑀) = {𝑎1𝑝1̅̅̅, 𝑎2𝑝2̅̅ ̅ | 𝑎1, 𝑎2 ∈ ℕ} 

such that we have the vertex set is 

𝑉 = {𝑎1𝑝1̅̅̅, 𝑎2𝑝2̅̅ ̅ | 𝑎1, 𝑎2 ∈ ℕ, 𝑎1 < 𝑝2, 𝑎2 < 𝑝1} 

Then, split the vertex set into two partitions 𝑉1 and 𝑉2 

𝑉1 = {𝑎1𝑝1̅̅̅ | 𝑎1 ∈ ℕ, 𝑎1 < 𝑝2} 
𝑉2 = {𝑎2𝑝2̅̅ ̅ | 𝑎2 ∈ ℕ, 𝑎2 < 𝑝1} 

The cardinality of the partitioned vertex set is |𝑉1| = 𝑝2 − 1 and |𝑉2| = 𝑝1 − 1. After that, 
we will prove that 𝐴𝐺(𝑀) is a complete bipartite graph. 

a. Without loss of generality, let 𝑥 and 𝑦 are two arbitrary different elements in 𝑉1 
where 𝑥 = 𝑎𝑝1̅̅̅ and 𝑦 = 𝑏𝑝1̅̅̅ for some positive integer 𝑎, 𝑏 < 𝑝2 then 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎𝑝1̅̅̅) = 𝑝2̅̅ ̅𝑀 
𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑏𝑝1̅̅̅) = 𝑝2̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎𝑏𝑝1
2̅̅ ̅) = 𝑝2̅̅ ̅𝑀 

such that 𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝑝2̅̅ ̅𝑀 = 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦). Therefore, 𝑥, 𝑦 is not adjacent 
for all 𝑥, 𝑦 ∈ 𝑉1 and 𝑥, 𝑦 is not adjacent for all 𝑥, 𝑦 ∈ 𝑉2. 

b. Let 𝑥 and 𝑦 be arbitrary element in 𝑉1 and 𝑉2 , respectively, where 𝑥 = 𝑎𝑝1̅̅̅ and 𝑦 =
𝑏𝑝2̅̅ ̅ for some positive integer 𝑎 < 𝑝2 and 𝑏 < 𝑝1 then 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎𝑝1̅̅̅) = 𝑝2̅̅ ̅𝑀 
𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑏𝑝2̅̅ ̅) = 𝑝1̅̅̅𝑀 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎𝑏𝑝1̅̅̅𝑝2̅̅ ̅) = 𝐴𝑛𝑛𝑀(0̅) = 𝑀 

Since 1̅ ∈ 𝑀, 1̅ ∉ 𝑝1̅̅̅𝑀, and 1̅ ∉ 𝑝2̅̅ ̅𝑀 then 𝐴𝑛𝑛𝑀(𝑥𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦). Hence, 
𝑥 and 𝑦 is adjacent for all 𝑥 ∈ 𝑉1 and 𝑦 ∈ 𝑉2. 

Therefore, 𝐴𝐺(𝑀) is a complete bipartite graph 𝐾𝑛1,𝑛2
 where 𝑛1 = |𝑉1| and 𝑛2 = |𝑉2|. 

Now, we will prove that the torsion graph for 𝑉1 and 𝑉2 are complete graphs and there is 
no edge form 𝑉1 and 𝑉2. 

a. Without loss of generality, let 𝑥 and 𝑦 are two arbitrary different elements in 𝑉1 
where 𝑥 = 𝑎𝑝1̅̅̅ and 𝑦 = 𝑏𝑝1̅̅̅ then 

𝐴𝑛𝑛𝑅(𝑥) = 𝐴𝑛𝑛𝑅(𝑎𝑝1̅̅̅) = 𝑝2̅̅ ̅𝑅 
𝐴𝑛𝑛𝑅(𝑦) = 𝐴𝑛𝑛𝑅(𝑏𝑝1̅̅̅) = 𝑝2̅̅ ̅𝑅 

such that 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0. Hence 𝑥, 𝑦 is adjacent for any 𝑥, 𝑦 ∈ 𝑉1  and 
𝑥, 𝑦 ∈ 𝑉2. 

b. Let 𝑥 and 𝑦 be arbitrary element in 𝑉1 and 𝑉2, respectively, where 𝑥 = 𝑎𝑝1̅̅̅ and 𝑦 =
𝑏𝑝2̅̅ ̅ then 

𝐴𝑛𝑛𝑅(𝑥) = 𝐴𝑛𝑛𝑅(𝑎𝑝1̅̅̅) = 𝑝2̅̅ ̅𝑅 
𝐴𝑛𝑛𝑅(𝑦) = 𝐴𝑛𝑛𝑅(𝑏𝑝2̅̅ ̅) = 𝑝1̅̅̅𝑅 
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Clear that 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) = 0, then 𝑥 and 𝑦 is not adjacent. 
Therefore,  Γ𝑅(𝑀) is a union of the complete graph 𝐾𝑛1

 and 𝐾𝑛2
 where 𝑛1 = |𝑉1| and 

𝑛2 = |𝑉2| with 𝑉1 ∩ 𝑉2 = ∅.             ∎ 
 
Example 6 Let 𝑀1 = ℤ10 is a ℤ10-module and 𝑀2 = ℤ15 is a ℤ15-module. Note that the 
vertex set is 𝑉1 = {2̅, 4̅, 5̅, 6̅, 8̅} and 𝑉2 = {3̅, 5̅, 6̅, 9̅, 10̅, 12̅} where the partition is 𝑉11 =

{2̅, 4̅, 6̅, 8̅}, 𝑉12 = {5̅}, 𝑉21 = {3̅, 6̅, 9̅, 12̅}, and 𝑉22 = {5̅, 10̅}. The annihilator graph for 𝑀1 

and 𝑀2 is complete bipartite 𝐾4,1 and 𝐾4,2, respectively. Meanwhile the torsion graph for 

𝑀1 and  𝑀2 is 𝐾4 ∪ 𝐾1 and 𝐾4 ∪ 𝐾2, respectively. 

 

   

(a) (b)  

 

   

       (c)          (d) 

 

Figure 2. (a) The annihilator graph of ℤ10, (b) the annihilator graph of ℤ15, (c) the torsion 
graph of ℤ10, and (d) the torsion graph of ℤ15. 

Based on the Theorem 5 and Example 6, the torsion and annihilator graph have a 
unique relation which is the union of the edge sets is 𝑉 × 𝑉, while the intersection of 
them is empty set. Therefore, if 𝑛 multiplication of two distinct prime numbers, this 
relationship can be represented in the following corollary.  
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Corollary 7 If 𝑀 = ℤ𝑝1𝑝2
 is an 𝑅-module where 𝑝1 and 𝑝2 are two different prime 

numbers, then 𝐴𝐺(𝑀) = Γ𝑅(𝑀)̅̅ ̅̅ ̅̅ ̅̅ . 

In the next theorem, we will discuss ℤ𝑛 where 𝑛 is the multiplication of three distinct 
prime numbers. Moreover, we will investigate the connectedness of the annihilator and 
torsion graph. 

Theorem 8 Let 𝑀 = ℤ𝑛 is an 𝑅-module where 𝑛 = 𝑝1𝑝2𝑝3 is the multiplication of three 
different prime numbers and 𝑉′ = 𝑉\ ⋃ 𝑉𝑖𝑗𝑖<𝑗  where 𝑉𝑖𝑗 = {𝑎𝑝𝑖̅𝑝𝑗̅ | 𝑎 ∈ ℕ}. Let 𝐺1 and 𝐺2 

are induced subgraphs of 𝐴𝐺(𝑀) and Γ𝑅(𝑀), respectively. 
a. If 𝑉(𝐺1) = 𝑉′ then 𝐺1 is a complete 3-partite graph 𝐾𝑛1,𝑛2,𝑛3

. 

b. If 𝑉(𝐺2) = 𝑉′ then 𝐺2 is a union of three complete graph 𝐾𝑛1
∪ 𝐾𝑛2

∪ 𝐾𝑛3
. 

c. If 𝑉(𝐺1) = ⋃ 𝑉𝑖𝑗𝑖<𝑗  then 𝐺1 is a complete 3-partite graph 𝐾𝑚1,𝑚2,𝑚3
. 

d. If 𝑉(𝐺2) = ⋃ 𝑉𝑖𝑗𝑖<𝑗  then 𝐺2 is a complete graph 𝐾𝑚 . 

Proof. 
Suppose that the vertex set can be partitioned into 

𝑉 = (⋃ 𝑉𝑖

3

𝑖=1

) ∪ (⋃ 𝑉𝑖𝑗

𝑖<𝑗

) 

where 𝑉𝑖 = {𝑎𝑝𝑖̅ | 𝑎 ∈ ℕ, 𝑎 ≠ 𝑚𝑝𝑗̅, 𝑚 ∈ ℕ, 𝑗 ≠ 𝑖} and 𝑉𝑖𝑗 = {𝑎𝑝𝑖̅𝑝𝑗̅ | 𝑎 ∈ ℕ}. Clear that, we 

have 𝑉𝑖 ∩ 𝑉𝑗 = ∅, 𝑉𝑖𝑗 ∩ 𝑉𝑗𝑘 = ∅, 𝑉𝑖𝑗 ∩ 𝑉𝑖𝑘 = ∅ for any different index 𝑖, 𝑗, 𝑘 and 𝑉𝑖 ∩ 𝑉𝑗𝑘 = ∅ 

for all index 𝑖, 𝑗, 𝑘 ∈ {1,2,3}. Let 𝑉′ = 𝑉\ ⋃ 𝑉𝑖𝑗𝑖<𝑗  then 𝑉′ = 𝑉1 ∪ 𝑉2 ∪ 𝑉3. 

a. Suppose that 𝑉(𝐺1) = 𝑉′ = 𝑉1 ∪ 𝑉2 ∪ 𝑉3. Let 𝑥, 𝑦 are two arbitrary different elements 
in 𝑉𝑖  for 𝑖 = 1,2,3 such that 𝑥 = 𝑎𝑝𝑖̅ and 𝑦 = 𝑏𝑝𝑖̅ for some natural number 𝑎 and 𝑏 
that is not multiple of 𝑝𝑗  for all 𝑗 ≠ 𝑖. Note that 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎𝑝𝑖̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑏𝑝𝑖̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎𝑏𝑝𝑖
2̅̅ ̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑀 

for any distinct index 𝑖, 𝑗, 𝑘. Hence, 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑥𝑦) then 𝑥 and 𝑦 is 
not adjacent. After that, let 𝑥 and 𝑦 be an arbitrary element in 𝑉𝑖  and 𝑉𝑗 , respectively, 

for 𝑖 ≠ 𝑗 such that 𝑥 = 𝑎𝑝𝑖̅ and 𝑦 = 𝑏𝑝𝑗̅ for some natural number 𝑎 and 𝑏 that is not 

multiple of 𝑝𝑘1
 and 𝑝𝑘2

, respectively, for all 𝑘1 ≠ 𝑖 and 𝑘2 ≠ 𝑗. Note that 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎𝑝𝑖̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑏𝑝𝑗̅) = 𝑝𝑖̅𝑝𝑘̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎𝑏𝑝𝑖̅𝑝𝑗̅) = 𝑝𝑘̅̅ ̅𝑀 

for any distinct index 𝑖, 𝑗, 𝑘. Hence, 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥𝑦) then 𝑥 is 
adjacent with 𝑦. Therefore, 𝐺1 is complete 3-partite graph 𝐾𝑛1,𝑛2,𝑛3

 where 𝑛𝑖 = |𝑉𝑖| 

for 𝑖 = 1,2,3. 
b. Suppose that 𝑉(𝐺2) = 𝑉′ = 𝑉1 ∪ 𝑉2 ∪ 𝑉3. Let 𝑥, 𝑦 are two arbitrary different elements 

in 𝑉𝑖  for 𝑖 = 1,2,3 such that 𝑥 = 𝑎𝑝𝑖̅ and 𝑦 = 𝑏𝑝𝑖̅ for some natural number 𝑎 and 𝑏 
that is not multiple of 𝑝𝑗  for all 𝑗 ≠ 𝑖. Note that 

𝐴𝑛𝑛𝑅(𝑥) = 𝐴𝑛𝑛𝑅(𝑎𝑝𝑖̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑅 

𝐴𝑛𝑛𝑅(𝑦) = 𝐴𝑛𝑛𝑅(𝑏𝑝𝑖̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑅 
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for any distinct index 𝑖, 𝑗, 𝑘. Hence, 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0 then 𝑥 is adjacent with 
𝑦. Therefore, 𝑉𝑖  in 𝐺2 induce a complete graph 𝐾𝑛𝑖

with 𝑛𝑖 = |𝑉𝑖| for 𝑖 = 1,2,3. Next, 

let 𝑥 and 𝑦 be an arbitrary element in 𝑉𝑖  and 𝑉𝑗 , respectively, for 𝑖 ≠ 𝑗 such that 𝑥 =

𝑎𝑝𝑖̅ and 𝑦 = 𝑏𝑝𝑗̅ for some natural number 𝑎 and 𝑏 that is not multiple of 𝑝𝑘1
 and 𝑝𝑘2

, 

respectively, for all 𝑘1 ≠ 𝑖 and 𝑘2 ≠ 𝑗. Note that 

𝐴𝑛𝑛𝑅(𝑥) = 𝐴𝑛𝑛𝑅(𝑎𝑝𝑖̅) = 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑅 

𝐴𝑛𝑛𝑅(𝑦) = 𝐴𝑛𝑛𝑅(𝑏𝑝𝑗̅) = 𝑝𝑖̅𝑝𝑘̅̅ ̅𝑅 

for any distinct index 𝑖, 𝑗, 𝑘. It is clear that 𝑝𝑗̅𝑝𝑘̅̅ ̅𝑅 ∩ 𝑝𝑖̅𝑝𝑘̅̅ ̅𝑅 = 0, then 𝑥 and 𝑦 is not 

adjacent. Hence, 𝐺2 is a union of three complete graph 𝐾𝑛1
∪ 𝐾𝑛2

∪ 𝐾𝑛3
 with 𝑛𝑖 =

|𝑉𝑖|. 
c. Suppose that 𝑉(𝐺1) = ⋃ 𝑉𝑖𝑗𝑖<𝑗 = 𝑉12 ∪ 𝑉13 ∪ 𝑉23 . Without loss of generality, let 𝑥, 𝑦 

are two arbitrary different elements in 𝑉12  such that 𝑥 = 𝑎𝑝1̅̅̅𝑝2̅̅ ̅ and 𝑦 = 𝑏𝑝1̅̅̅𝑝2̅̅ ̅ for 
some natural number 𝑎 and 𝑏. Note that 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎𝑝1̅̅̅𝑝2̅̅ ̅) = 𝑝3̅̅ ̅𝑀 
𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑏𝑝1̅̅̅𝑝2̅̅ ̅) = 𝑝3̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎𝑏𝑝1
2̅̅ ̅𝑝2

2̅̅ ̅) = 𝑝3̅̅ ̅𝑀 

Hence, 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑥𝑦) such that 𝑥 and 𝑦 is not adjacent. Next, 
without loss of generality, let 𝑥, 𝑦 are two arbitrary different elements in 𝑉12  and 𝑉13 , 
respectively, such that 𝑥 = 𝑎𝑝1̅̅̅𝑝2̅̅ ̅ and 𝑦 = 𝑏𝑝1̅̅̅𝑝3̅̅ ̅ for some natural number 𝑎 and 𝑏. 

𝐴𝑛𝑛𝑀(𝑥) = 𝐴𝑛𝑛𝑀(𝑎𝑝1̅̅̅𝑝2̅̅ ̅) = 𝑝3̅̅ ̅𝑀 
𝐴𝑛𝑛𝑀(𝑦) = 𝐴𝑛𝑛𝑀(𝑏𝑝1̅̅̅𝑝3̅̅ ̅) = 𝑝2̅̅ ̅𝑀 

𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝐴𝑛𝑛𝑀(𝑎𝑏𝑝1
2̅̅ ̅𝑝2̅̅ ̅𝑝3̅̅ ̅) = 𝑀 

Clear that 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥𝑦) such that 𝑥 is adjacent with 𝑦. 
Therefore, 𝐺1 is a complete 3-partite graph 𝐾𝑚1,𝑚2,𝑚3

where 𝑚1 = |𝑉12|, 𝑚2 = |𝑉13|, 

and 𝑚3 = |𝑉23|. 
d. Suppose that 𝑉(𝐺2) = ⋃ 𝑉𝑖𝑗𝑖<𝑗 = 𝑉12 ∪ 𝑉13 ∪ 𝑉23 . Without loss of generality, let 𝑥, 𝑦 

are two arbitrary different elements in 𝑉12  such that 𝑥 = 𝑎𝑝1̅̅̅𝑝2̅̅ ̅ and 𝑦 = 𝑏𝑝1̅̅̅𝑝2̅̅ ̅ for 
some natural number 𝑎 and 𝑏. Note that 

𝐴𝑛𝑛𝑅(𝑥) = 𝐴𝑛𝑛𝑅(𝑎𝑝1̅̅̅𝑝2̅̅ ̅) = 𝑝3̅̅ ̅𝑅 
𝐴𝑛𝑛𝑅(𝑦) = 𝐴𝑛𝑛𝑅(𝑏𝑝1̅̅̅𝑝2̅̅ ̅) = 𝑝3̅̅ ̅𝑅 

Hence, 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0 such that 𝑥 and 𝑦 is adjacent. After that, without 
loss of generality, let 𝑥, 𝑦 are two arbitrary different elements in 𝑉12  and 𝑉13 , 
respectively, such that 𝑥 = 𝑎𝑝1̅̅̅𝑝2̅̅ ̅ and 𝑦 = 𝑏𝑝1̅̅̅𝑝3̅̅ ̅ for some natural number 𝑎 and 𝑏. 

𝐴𝑛𝑛𝑅(𝑥) = 𝐴𝑛𝑛𝑅(𝑎𝑝1̅̅̅𝑝2̅̅ ̅) = 𝑝3̅̅ ̅𝑅 
𝐴𝑛𝑛𝑅(𝑦) = 𝐴𝑛𝑛𝑅(𝑏𝑝1̅̅̅𝑝3̅̅ ̅) = 𝑝2̅̅ ̅𝑅 

Clear that 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0 because 𝑝2̅̅ ̅𝑝3̅̅ ̅ contains in both of them. Hence, 𝑥 

is adjacent with 𝑦. Therefore, 𝐺2 is a complete graph 𝐾𝑚 where 𝑚 = |⋃ 𝑉𝑖𝑗𝑖<𝑗 |.         ∎ 

In the Theorem 8, the connection between the torsion and annihilator graph has 
similar characteristic with the relationship in the Theorem 5 for the induced subgraph 
based on the vertex set partition. To clarify their relationship, we partition the vertex set 
into two subsets. Hence, we obtain the following graph relation. 
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Corollary 9 Let 𝑀 = ℤ𝑛 is an 𝑅-module where 𝑛 = 𝑝1𝑝2𝑝3 is the multiplication of three 

different prime numbers and 𝑉′ = 𝑉\ ⋃ 𝑉𝑖𝑗𝑖<𝑗  where 𝑉𝑖𝑗 = {𝑎𝑝𝑖̅𝑝𝑗̅ | 𝑎 ∈ ℕ}. Let 𝐺1 and 𝐺2 

are induced subgraphs of 𝐴𝐺(𝑀) and Γ𝑅(𝑀), respectively. If 𝑉(𝐺1) = 𝑉′ = 𝑉(𝐺2) then 
𝐺1 = 𝐺2

̅̅ ̅. 

Although we have the partial relation between them, we don’t know whether they are 
connected graph or disjoint graph. Therefore, we investigate the connectedness for each 
graph based on the previous results. 

Theorem 10 Let 𝑀 = ℤ𝑛 is an 𝑅-modules where 𝑛 = 𝑝1𝑝2𝑝3 is the multiplication of 
three different prime numbers. Then 𝐴𝐺(𝑀) and Γ𝑅(𝑀) are connected graphs. 

Proof. 
First, consider that the vertex set 𝑉 can be partitioned as in the proof of Theorem 8 then 
suppose that 𝑉′ = 𝑉\ ⋃ 𝑉𝑖𝑗𝑖<𝑗  and 𝑉′′ = ⋃ 𝑉𝑖𝑗𝑖<𝑗 . Let 𝐴𝐺(𝑀′) and 𝐴𝐺(𝑀′′) are induced 

subgraphs of 𝐴𝐺(𝑀) with the vertex set are 𝑉′ and 𝑉′′, respectively. Based on Theorem 
8, we have 𝐴𝐺(𝑀′) and 𝐴𝐺(𝑀′′) are complete 3-partite graphs. Let 𝑢 and 𝑣 are arbitrary 
elements in 𝑉′ and 𝑉′′, then choose 𝑥 = 𝑎𝑝1̅̅̅ in 𝑉′ and 𝑦 = 𝑏𝑝2̅̅ ̅𝑝3̅̅ ̅ in 𝑉′′ for some natural 
number 𝑎 and 𝑏 such that 𝐴𝑛𝑛𝑀(𝑥) = 𝑝2̅̅ ̅𝑝3̅̅ ̅𝑀, 𝐴𝑛𝑛𝑀(𝑦) = 𝑝1̅̅̅𝑀, and 𝐴𝑛𝑛𝑀(𝑥𝑦) = 𝑀. 
Thus, 𝐴𝑛𝑛𝑀(𝑥) ∪ 𝐴𝑛𝑛𝑀(𝑦) ≠ 𝐴𝑛𝑛𝑀(𝑥𝑦) which mean 𝑥 is adjacent with 𝑦. Since 𝐴𝐺(𝑀′) 
and 𝐴𝐺(𝑀′′) are complete 3-partite graph then there exists a path from 𝑢 to 𝑥 and from 
𝑣 to 𝑦. Finally, since 𝑥 and 𝑦 is adjacent then there exists a path from 𝑢 to 𝑣 which mean 
𝐴𝐺(𝑀) is connected. On the other side, let Γ𝑅(𝑀′) and Γ𝑅(𝑀′′) are induced subgraphs of 
Γ𝑅(𝑀) with the vertex set are 𝑉′ and 𝑉′′, respectively, then we have Γ𝑅(𝑀′) is a union of 
three complete graphs and Γ𝑅(𝑀′′) is a complete graph based on Theorem 8. We will 
show that for any 𝑉𝑖 , there exist vertices 𝑥𝑖 ∈ 𝑉𝑖  such that 𝑥𝑖 is adjacent with a vertex in 
𝑉′′. Without loss of generality, choose 𝑥 = 𝑝1̅̅̅ ∈ 𝑉1 and 𝑦 = 𝑝1̅̅̅𝑝2̅̅ ̅ ∈ 𝑉12  such that 
𝐴𝑛𝑛𝑅(𝑥) = 𝑝2̅̅ ̅𝑝3̅̅ ̅𝑅 and 𝐴𝑛𝑛𝑅(𝑦) = 𝑝3̅̅ ̅𝑅. Hence, 𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦) ≠ 0 because 𝑝2̅̅ ̅𝑝3̅̅ ̅ ∈
𝐴𝑛𝑛𝑅(𝑥) ∩ 𝐴𝑛𝑛𝑅(𝑦), it means that 𝑥 and 𝑦 is adjacent. Therefore, 𝑉1, 𝑉2, and 𝑉3 are 
connected with 𝑉′′. Finally, Γ𝑅(𝑀) is connected.           ∎ 
 
Example 11 Let 𝑀 = ℤ30 is a ℤ30-module and let 𝑝1 = 2, 𝑝2 = 3, and 𝑝3 = 5. Note that 
the vertex set 𝑉 can be partitioned into 𝑉1 = {2̅, 4̅, 8̅, 14̅̅̅̅ , 16̅̅̅̅ , 22̅̅̅̅ , 26̅̅̅̅ , 28̅̅̅̅ }, 𝑉2 = {3̅, 9̅, 21̅̅̅̅ , 27̅̅̅̅ }, 
𝑉3 = {5̅, 25̅̅̅̅ }, 𝑉12 = {6̅, 12̅̅̅̅ , 18̅̅̅̅ , 24̅̅̅̅ }, 𝑉13 = {10̅̅̅̅ , 20̅̅̅̅ }, and 𝑉23 = {15̅̅̅̅ }. 

 
Figure 3. The annihilator graph of ℤ30 
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CONCLUSIONS 

This research highlights the strong correspondence between the two associated 
graphs of the module ℤ𝑛 over itself: the torsion graph and the annihilator graph. 
Although their exact relationship varies depending on the prime factorization of 𝑛, they 
consistently exhibit a high degree of structural connection. In some cases, the graphs are 
identical; in others, they are complementary or share partially overlapping 
substructures. This variation reflects how the properties of the ring influence the 
graphical expression of module-theoretic properties, especially the torsion elements and 
the annihilator of the modules. 

The correspondence identified between these graphs contributes to bridging the gap 
between module theory and graph theory, offering new tools for interpreting algebraic 
structures through combinatorial frameworks. Such insights can be valuable in 
simplifying complex algebraic relationships or uncovering hidden symmetries in module 
categories. 

Future research can extend these findings by continuing the investigation across 
broader prime factorizations of 𝑛, with the aim of systematically characterizing the 
correspondence for all possible forms of 𝑛, where 𝑛 is any finite product of prime 
powers. Moreover, the analysis may be broadened by considering ℤ𝑛 as a module over a 
commutative ring 𝑅 where 𝑅 ≠ ℤ𝑛, thereby exploring how these graph correspondences 
evolve in more general module and ring contexts. 
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