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ABSTRACT

Graph theory approaches have become an important tool for studying algebraic structures such
as rings and modules. Specifically, graphs associated with modules provide valuable insights into
their internal properties. In this paper, we investigate the relationship between the torsion graph
and the annihilator graph of the module Z, over a commutative ring, focusing on their structural
properties based on the prime factorization of n. We identify the torsion elements and
annihilators of Z,, then construct and analyze the corresponding graphs. It investigates the
fundamental characteristics of these graphs and establishes theoretical results regarding their
connectivity and completeness. Through this approach, we highlight specific algebraic conditions
on n that implies isomorphism or partial correspondence between the graphs. Our results reveal
a strong connection between two distinct graph constructions, offering a broader understanding
of algebraic graph theory and its applications in module theory.
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INTRODUCTION

Graph theory is an important branch of mathematics that studies how objects are
connected through a network of nodes and edges. It originated in Euler's journal on the
Seven Bridges of Konigsberg in 1736 [1]. Since then, graph theory has developed into a
useful field with wide applications in computer science, biology, social sciences, and
engineering [2].

Formally, a graph ¢ = (V,E) is a pair of sets that consists of the vertex set I and edge
set E € V2 [3]. This abstraction allows a systematic study of the structural properties
and combinatorial characteristics of networks [1]. A simple graph is a graph without
loops (edges connecting a vertex to itself) or multiple edges between the same pair of
vertices [4]. Graph G is connected if there exists a path for every pair of vertices in G [1].
A complete graph with n vertices, denoted by K,,, is a simple graph where every pair of
distinct vertices is adjacent. A bipartite graph is a graph whose vertices can be
partitioned into two disjoint sets V; and V, such that every edge connects a vertex from
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V; to V,, with no edges between vertices within the same set. Furthermore, a complete
bipartite graph is a bipartite graph in which every vertex in V; is adjacent to every vertex
in V, [1]. A complete bipartite graph is denoted by K,,_, if [V;| =n; and [V;| = n,. An
empty graph is a graph with V = @ and E = @, simply write as @ [3].

Over the years, graph theory has been developed in various ways, one of which is to
relate it to algebraic structures such as rings. This idea has led to graph theory-based
models that reflect algebraic properties. The earliest and most influential idea is the
zero-divisor graph of a ring proposed by Beck [5] in 1988. He defined all elements of a
ring as vertices, and two distinct vertices are adjacent if their product is zero. His work
aimed to study such graphs in terms of coloring problems.

Later, Anderson and Livingston [6] refined Beck's approach by restricting the set of
vertices to nonzero divisors of the commutative ring, resulting in a more focused
structure and preserving the essential behavior of the ring. This version, now the
standard definition, denoted by I'(R), has become a cornerstone in the study of graph-
based rings. A further extension of this idea was introduced by Behboodi [7] by
developing the graph of the zero divisors of a module, generalizing to the case of rings
and opening up a wider class of algebraic objects for graph-theoretic investigation.

Based on the basic idea of zero divisor graphs, researchers have developed new graph
models to capture various aspects of ring and module theory. One such model is the
annihilator graph of ring R is denoted by AG(R), introduced by Badawi [10]. This graph
uses nonzero zero divisors of the ring as vertices and connects two distinct elements if
their union annihilator is not equal to their product annihilator. Subsequent studies
have extended and deepened this model. Nikmehr [9] explored further structural
aspects of AG(R), examining properties like connectivity and completeness under
various algebraic conditions. Dutta [10] focused on finite commutative rings and
identified specific classes where the annihilator graph is complete or contains particular
substructures. Barati [11] continued this line of inquiry by analyzing the annihilator
graph in broader classes of commutative rings and refining known results. Furthermore,
Nikandish [12] investigated coloring properties of the annihilator graph, providing
insight into chromatic numbers and clique structures.

The concept was further extended to modules by Hamidizadeh [13] and Nozari [14].
Nozari’s approach defines the annihilator graph of an R-module M, denoted by AG(M),
using the set of elements in R that annihilate some nonzero element of the module M.
Let M be an R-module, the annihilator of x in M is a subset of M defined as Ann,,(x) =
{m € M | xm = 0} and annihilator of M in R defined as Anngz(M) = {s € R | sM = 0}.
The vertex set of these annihilator graph is Zz(M)\Anng(M) where s € Zzx(M) if s € R
and there exists a nonzero element m € M such that sm = 0,,. The adjacency condition
similarly reflects a difference in the union and product-based annihilators of elements in
the module M which means two different vertices x and y is adjacent if Ann,(x) U
Anny (y) # Anny (xy). This model provides a deeper understanding of the interaction
between module elements and their annihilators from a graph-theoretic perspective.

While zero-divisor and annihilator graphs emphasize the behavior of elements in a
ring or module with respect to multiplication and annihilation, another compelling
graph-theoretic structure arises from torsion theory is the torsion graph of a module.
First introduced by Ghalandarzadeh and Malakooti Rad [15], the torsion graph captures
the interplay between torsion elements in a module via their shared annihilators. Let M
be an R-module, where R is a commutative ring with identity. An element m € M is a
torsion element if there exists a nonzero r € R such that rm = 0. The set of nonzero
torsion elements is the vertex set of the torsion graph. Two distinct torsion elements x
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and y are adjacent in the torsion graph if and only if the intersection of their annihilators
in R is nontrivial, i.e.,, Anng(x) N Anng(y) # 0 where Anngz(x) = {r € R | rx = 0}. This
construction yields a simple undirected graph that reflects both the module structure
and the behavior of annihilation within the ring.

The introduction of the torsion graph brought a new dimension to the study of
algebraic structures through graph theory. In their foundational work [15],
Ghalandarzadeh and Malakooti Rad investigated fundamental properties of the torsion
graph, such as connectivity, isolated vertices, and graph invariants under certain module
conditions. The development continued in [16], where Ghalandarzadeh analyzed
connected subgraphs of the torsion graph and provided criteria for when such
subgraphs occur, relating them to properties of the module and its annihilators. Further
extending this work, Rad [17] examined graph invariants such as diameter and girth,
offering insights into the global structure of the torsion graph and conditions under
which it is connected or possesses short cycles.

While the zero-divisor graph, annihilator graph, and torsion graph have each been
studied in depth, the connections between these graph types have received relatively
little attention. This paper addresses that gap by investigating the structural relationship
between the torsion graph and the annihilator graph when the module is Z,, over itself.
The main objective is to determine conditions under which these graphs coincide, differ,
or reveal unique structural properties, and to establish a clear correspondence between
them in the context of Z,,.

The ring Z,, the integers modulo n, is a good setting for this kind of analysis. As a
finite commutative ring with identity, it provides a manageable yet structurally rich
environment. Its algebraic behavior depends on the prime factorization of n, and it
admits decomposition into a product of local rings via the Chinese Remainder Theorem,
which helps in clarifying the structure of associated graphs. Moreover, torsion elements
and annihilators in Z, can be studied through elementary number theory and ideal
theory, making the exploration both theoretically insightful and computationally
accessible.

By focusing on M = R and M = Z,, we explore the fundamental properties of the
torsion and annihilator graphs and identify their points of intersection and divergence.
This work contributes to the field by offering a clearer understanding of how different
algebraic graph models relate within a concrete and widely applicable ring structure,
laying groundwork for future generalizations to broader classes of modules and rings.

METHODS

In this study, we use a mathematical proof approach to explore the properties of the
torsion graph and annihilator graph of the module Z,, over a commutative ring, then we
compare them to investigate the relationship between them. Our primary method is
direct proof by selecting two arbitrary vertices and showing the adjacency between
them based on the graph definition. In the particular situation where the structure of Z,
requires separate consideration of different types of elements, then we apply proof by
cases to handle all possibilities.

In addition, we also use a literature-based approach. We draw on known results
about torsion elements, annihilators, and graph constructions in module theory to help
our analysis and explain when and why the torsion graph and annihilator graph align or
differ. This combination of direct argument and theoretical background allows us to
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clearly understand the correspondence between the two graphs. Firstly, it is necessary
to review the formal definition of the torsion graph and annihilator graph.

Definition 1 [15] Let R be a ring and M be an R-module. The torsion graph of M,
denoted by I'zx(M) is a simple undirected graph with the vertex set containing the
nonzero torsion element of M and two distinct vertices x and y is adjacent if Anngz(x) N
Anng(y) # 0.

Definition 2 [14] Let R be a ring and M be an R-module. The annihilator graph of M,
denoted by AG(M) is a simple undirected graph with the vertex set is Zzx(M)\Anng(M)
and two different vertices x and y is adjacent if Anny, (x) U Anny, (y) # Anny (xy).

In this paper, we focus on the structural properties based on the prime factorization
of n. Furthermore, the prime factorization is divided into some cases for n is a prime
number, n is a power of a prime number, n is a multiplication of two and three distinct
prime numbers. For each case, the research methodology involves the following

procedures:
i.  Identify the vertex set of the torsion graph and annihilator graph for the module
M=1,.

ii. Investigate the adjacency between each vertex in the I'gy (M) and AG(M).
iii. ~ Determine the graph type of the I'x(M) and AG(M).
iv.  Analyze the correspondence between I'y (M) and AG (M).

RESULTS AND DISCUSSION

In the first case, if M = Z, for any prime number p then AG(M) and I'x(M) is an
empty graph. Since T(Zp) = {0}, then V = @, that implies AG(M) and I'x(M) is an empty
graph.

Secondly, we investigate the torsion graph and annihilator graph for M = Lok for any
prime number p and positive integer k > 2.

Theorem 3 Let M = Z« is an R-module for any prime number p and positive integer

k = 2. Then
a. Torsion graph I'x(M) is a complete graph K,
b. Annihilator graph AG(M) is a complete graph K,

wheren = p*~1 — 1.

Proof.
Since R = Z,« then torsion element of M has form ap for positive integer a or we can

write
T(M) ={ap | a € N}

Since ap € M then we have the number of vertices is
Z.
M —1 = 14
p

Let x and y be two arbitrary different elements in V where x = a;p and y = a,p for
positive integer a,; and a,, then

VI =ITM)"| = k=11
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p*ix = p*¥1(a;p) = a,;(0) =0

It means that Anng(x) contain p¥~1 such that p*~! € Annz(x) N Anngz(y). Therefore, for
any x,y € V satisfy Anng(x) N Anng(y) # 0 or x and y is adjacent. Proved that I'x (M) is
complete graph K,,. For the annihilator graph, consider the following vertex set.

V={ap|a€N}={ap ap? ..,ap* ! |a €N,a < p}

Let x and y be two arbitrary different elements in V where x = a,p*¥ and y = a,p*2 for
positive integer a;,a, < p and k4, k, < k then

Anny(x) = AnnM(alﬁ) = pk-ki
and Anny, (y) = p*~*2M. Without loss of generality, suppose that k; > k, then

Anny (xy) = AnnM(alazpkl“kZ)
_ pk—(kr"kz)M, k1 + k2 <k
 \pR Gtk M, kg +ky >k

Since 0 < k4, k, < k then p*¥~*1M # pk—(katk2)M and p*~F1 # p2k-(kitka) M such that
Anny, (xy) # Anny(x) U Anny, (y). Therefore, x and y is adjacent for all x,y in V and
AG(M) is a complete graph K,,. ]

Based on Theorem 3, the torsion graph and the annihilator graph of the module is
same when n is a prime power number. Furthermore, we can see an example regarding
this correspondence in the following torsion and annihilator graph of module Zg and Z¢
over itself.

Example 4 Let M; = Zg is a Zg-module and M, = Z,, is a Z,4-module. Note that M; and
M, are Z for p = 2 with k = 3 and k = 4, respectively. Based on Theorem 3, we have
AG(M) =Tr(M) is complete graph K,,. Moreover, the graph AG(M,) = AG(Zg) = K,,,
and AG(M) = AG(Z¢) = K,, wheren; =231 —1=3andn, =2*1-1=7.

Figure 1. The annihilator and torsion graph of Zg and Z.

After that, we investigate the torsion and annihilator graph for Z, where n is the
multiplication of two different prime numbers p; and p,.
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Theorem 5 Let M = Z,_ ,, is an R-module for prime p; and p, where p; # p,. Then
a. Annihilator graph AG(M) is a complete bipartite graph K, ,,..
b. Torsion graph I'; (M) is a union of two complete graph K,, UK,, .

wheren; =p, —landn, =p;, — 1.

Proof.
Since M = R = Z,,,, then a;p; and a,p; are torsion elements of M. Suppose that

T(M) = {alﬂ, azzl al, az (S N}
such that we have the vertex set is
V ={aip1,a,p; | a1,a, €N,a; <py,a, <p;}
Then, split the vertex set into two partitions V; and V,

Vi ={a:p1 | a; € N,a; <p,}

V, ={az;p; | a; € N,a; < p4}
The cardinality of the partitioned vertex setis |V;| = p, — 1 and |V,| = p; — 1. After that,
we will prove that AG (M) is a complete bipartite graph.

a. Without loss of generality, let x and y are two arbitrary different elements in V;
where x = ap; and y = bp; for some positive integer a, b < p, then

Anny(x) = Anny (apy) = poM
Anny (y) = Anny (bpy) = p2M
Anny, (xy) = AnnM(abplz) =p,M

such that Anny, (xy) = p,M = Ann,,(x) U Anny, (y). Therefore, x, y is not adjacent
forall x,y € V; and x, y is not adjacent for all x, y € V.

b. Let x and y be arbitrary element in V; and V,, respectively, where x = ap; and y =
bp, for some positive integer a < p, and b < p, then

Anny (x) = Anny (apy) = M
Anny (y) = Anny (bpz) = 1M
Anny (xy) = Anny (abp;p;) = Anny(0) = M

Since 1 € M, 1 & p;M, and 1 & p,M then Ann,, (xy) # Anny(x) U Ann,, (y). Hence,
x and y is adjacent forallx € V; and y € V,.

Therefore, AG(M) is a complete bipartite graph K,, ,, where n; = |V;| and n, = [V,].
Now, we will prove that the torsion graph for V; and V, are complete graphs and there is
no edge form V; and V.

a. Without loss of generality, let x and y are two arbitrary different elements in V;
where x = ap; and y = bp; then

Anng(x) = Anng(ap;) = PzR
Anng(y) = Anng(bp;) = D;R
such that Anngz(x) N Anngz(y) # 0. Hence x,y is adjacent for any x,y € V; and
x,y €V,.
b. Let x and y be arbitrary element in V; and V,, respectively, where x = ap; and y =
bp, then
Anng(x) = Anng(ap;) = PzR
Anng(y) = Anng(bp;) = 1R
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Clear that Anng(x) N Anng(y) = 0, then x and y is not adjacent.
Therefore, T'zx(M) is a union of the complete graph K,,, and K,, where n; = |V;| and

‘n2=|V2|W1thV10V2 =¢. [ |

Example 6 Let M; = Z,, is a Z;o-module and M, = Z;5 is a Z;5-module. Note that the
{2,4,6,8}, V;, = {5}, V5, = {3,6,9,12}, and V,, = {5, 10}. The annihilator graph for M,
and M, is complete bipartite K, ; and K, ,, respectively. Meanwhile the torsion graph for
M; and M, is K, U K; and K, U K,, respectively.

@
® ®
(a) (b)
®
®
®@

(c) (d)

Figure 2. (a) The annihilator graph of Z,,, (b) the annihilator graph of Z,, (c) the torsion
graph of Z,,, and (d) the torsion graph of Z;s.

Based on the Theorem 5 and Example 6, the torsion and annihilator graph have a
unique relation which is the union of the edge sets is V X V, while the intersection of
them is empty set. Therefore, if n multiplication of two distinct prime numbers, this
relationship can be represented in the following corollary.
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Corollary 7 If M = Z, ,, is an R-module where p; and p, are two different prime
numbers, then AG(M) = I'r(M).

In the next theorem, we will discuss Z,, where n is the multiplication of three distinct
prime numbers. Moreover, we will investigate the connectedness of the annihilator and
torsion graph.

Theorem 8 Let M = Z, is an R-module where n = p;p,p; is the multiplication of three
different prime numbers and V' = V\ U;.; V;; where V;; = {aﬁlp_] |a € N}. Let G; and G,
are induced subgraphs of AG(M) and I'y (M), respectively.

a. IfV(G,) = V'then G, is a complete 3-partite graph K;, . ..

b. IfV(G,) = V' then G, is a union of three complete graph K,,, UK,,, UK.

c. IfV(G,) = Uj<;V;j then G, is a complete 3-partite graph K, 1n, m.-

d. IfV(G,) = U;<;V;; then G, is a complete graph K,,,.

Proof.
Suppose that the vertex set can be partitioned into

-0

i=1 i<j
where V; = {aﬁl |la €N,a#mp,meN,j+# i} and V;; = {aﬁlp_] |a € N}. Clear that, we
haveV; nV; = @,V;; NV = 0,V;; NV = @ for any different index i,j,kand V; N V; = @
forallindex i,j,k € {1,2,3}. Let V' = V\ U V;; then V' =V, UV, U V3.
a. Suppose thatV(G,) = V' =V, UV, U V;. Let x, y are two arbitrary different elements
in V; for i = 1,2,3 such that x = ap, and y = bp, for some natural number a and b
that is not multiple of p; for all j # i. Note that

Anny (x) = Anny (ap,) = p,pxM
Anny (y) = Anny (bp,) = p,pxM
Anny(xy) = AnnM(abE) = p,pkM
for any distinct index i, j, k. Hence, Anny (x) U Anny, (y) = Anny(xy) then x and y is
not adjacent. After that, let x and y be an arbitrary element in V; and V}, respectively,
for i # j such that x = ap, and y = bp, for some natural number a and b that is not
multiple of p, and py,, respectively, for all k; # i and k, # j. Note that
Anny (x) = Anny(ap,) = p,pxM
Anny(y) = AnnM(bp_]) = p,pxM
Anny (xy) = AnnM(abﬁlp_]) =pM
for any distinct index i,j, k. Hence, Anny(x) U Anny(y) # Anny(xy) then x is
adjacent with y. Therefore, G, is complete 3-partite graph K, ,, ,, where n; = |V;|
fori = 1,2,3.
b. Suppose thatV(G,) = V' =V; UV, U V. Let x, y are two arbitrary different elements

in V; for i = 1,2,3 such that x = ap, and y = bp, for some natural number a and b
that is not multiple of p; for all j # i. Note that

Anng(x) = Anng(ap,) = p,pkR
Anng(y) = Anng(bp,) = p,PkR
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for any distinct index i, j, k. Hence, Anng(x) N Anng(y) # 0 then x is adjacent with
y. Therefore, V; in G, induce a complete graph K, with n; = |V;| for i = 1,2,3. Next,
let x and y be an arbitrary element in V; and V}, respectively, for i # j such that x =
ap, and y = bp, for some natural number a and b that is not multiple of p;, and py,
respectively, for all k; # i and k, # j. Note that

Anng(x) = Anng(ap,) = p,pkR
Anng(y) = AnnR(bﬁ]) = p,pxR

for any distinct index i, j, k. It is clear that p,p,R N p,p,R = 0, then x and y is not
adjacent. Hence, G, is a union of three complete graph K, UK, 6 U K, with n; =
[Vil.

c. Suppose that V(G;) = U;;V;; = Vi, U Vi3 U V3. Without loss of generality, let x,y
are two arbitrary different elements in V;, such that x = ap;p, and y = bp;p, for
some natural number a and b. Note that

Anny (x) = Anny (apip;) = psM
Anny (y) = Anny (bp1p;) = psM
Anny (xy) = Anny(abp?p?) = D3M
Hence, Anny (x) U Anny (y) = Ann,(xy) such that x and y is not adjacent. Next,

without loss of generality, let x, y are two arbitrary different elements in V;, and V3,
respectively, such that x = ap;p, and y = bp;p; for some natural number a and b.

Anny, (x) = Anny (ap;p;) = M
Anny (y) = Anny (bp.p3) = P;M
Anny (xy) = Anny(abp?p,p5) = M
Clear that Anny(x) U Anny(y) # Anny(xy) such that x is adjacent with y.
Therefore, G, is a complete 3-partite graph K, m, m,where m; = |Vi,|,m, = |V33],
and m3 = |Vy3].
d. Suppose that V(G,) = U;; V;; = Vi, U V33 U V3. Without loss of generality, let x,y

are two arbitrary different elements in V;, such that x = ap;p, and y = bp;p, for
some natural number a and b. Note that

Anng(x) = Anng(apipz) = D3R
Anng(y) = Anng(bp1p2) = D3R
Hence, Anng(x) N Anngz(y) # 0 such that x and y is adjacent. After that, without

loss of generality, let x,y are two arbitrary different elements in V;, and Vi3,
respectively, such that x = ap;p, and y = bp;p; for some natural number a and b.

Anng(x) = Anng(ap;p;) = PR

Anng(y) = Anng(bp;p3) = P2R
Clear that Anngz(x) N Anngz(y) # 0 because p,p3 contains in both of them. Hence, x
is adjacent with y. Therefore, G, is a complete graph K,,, where m = |Ui<j Vij | ]

In the Theorem 8, the connection between the torsion and annihilator graph has
similar characteristic with the relationship in the Theorem 5 for the induced subgraph
based on the vertex set partition. To clarify their relationship, we partition the vertex set
into two subsets. Hence, we obtain the following graph relation.
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Corollary 9 Let M = Z,, is an R-module where n = p;p,p; is the multiplication of three
different prime numbers and V' = V\ U;<; V;; where V;; = {aﬁlﬁ] |a € N}. Let G, and G,
are induced subgraphs of AG(M) and I'yx(M), respectively. If V(G;) = V' = V(G,) then
Gl = G_z

Although we have the partial relation between them, we don’t know whether they are
connected graph or disjoint graph. Therefore, we investigate the connectedness for each
graph based on the previous results.

Theorem 10 Let M = Z, is an R-modules where n = p;p,p; is the multiplication of
three different prime numbers. Then AG (M) and 'z (M) are connected graphs.

Proof.

First, consider that the vertex set V can be partitioned as in the proof of Theorem 8 then
suppose that V' = V\ U;;V;; and V" = U V;;. Let AG(M') and AG(M") are induced
subgraphs of AG(M) with the vertex set are V' and V", respectively. Based on Theorem
8, we have AG(M') and AG(M'") are complete 3-partite graphs. Let u and v are arbitrary
elements in V' and V", then choose x = ap; in V' and y = bp,p; in V"' for some natural
number a and b such that Anny(x) = p,psM, Anny(y) = p;M, and Ann,(xy) = M.
Thus, Ann,, (x) U Anny, (y) # Ann,(xy) which mean x is adjacent with y. Since AG(M")
and AG(M'") are complete 3-partite graph then there exists a path from u to x and from
v to y. Finally, since x and y is adjacent then there exists a path from u to v which mean
AG(M) is connected. On the other side, let [y (M) and I['x(M") are induced subgraphs of
[z (M) with the vertex set are V' and V", respectively, then we have I';(M’) is a union of
three complete graphs and I'x(M") is a complete graph based on Theorem 8. We will
show that for any V;, there exist vertices x; € V; such that x; is adjacent with a vertex in
V". Without loss of generality, choose x =p; € V; and y =p;p, € V4, such that
Anng(x) = p;p3R and Anng(y) = p3R. Hence, Anng(x) N Anng(y) # 0 because p,p; €
Anng(x) N Anng(y), it means that x and yis adjacent. Therefore, V;,V,,and V; are

connected with V", Finally, I'x (M) is connected. |
Example 11 Let M = Z3, is a Zzo-module and let p; = 2,p, = 3, and p3 = 5. Note that
the vertex set V can be partitioned into V;, = {2,4,8,14,16,22,26,28},V, = {3,9,21,27},

< =< ) &4' _'=i%\"i:£§
g

Figure 3. The annihilator graph of Z;,
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CONCLUSIONS

This research highlights the strong correspondence between the two associated
graphs of the module Z, over itself: the torsion graph and the annihilator graph.
Although their exact relationship varies depending on the prime factorization of n, they
consistently exhibit a high degree of structural connection. In some cases, the graphs are
identical; in others, they are complementary or share partially overlapping
substructures. This variation reflects how the properties of the ring influence the
graphical expression of module-theoretic properties, especially the torsion elements and
the annihilator of the modules.

The correspondence identified between these graphs contributes to bridging the gap
between module theory and graph theory, offering new tools for interpreting algebraic
structures through combinatorial frameworks. Such insights can be valuable in
simplifying complex algebraic relationships or uncovering hidden symmetries in module
categories.

Future research can extend these findings by continuing the investigation across
broader prime factorizations of n, with the aim of systematically characterizing the
correspondence for all possible forms of n, where n is any finite product of prime
powers. Moreover, the analysis may be broadened by considering Z,, as a module over a
commutative ring R where R # Z,, thereby exploring how these graph correspondences
evolve in more general module and ring contexts.
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