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Abstract

Maternal mortality remains a complex public health issue with significant spatial variability
across regions. This study aims to model maternal mortality data in East Nusa Tenggara
(NTT) Province using the Bayesian Geographically Weighted Generalized Poisson Regression
(BGWGPR) approach, which accounts for both overdispersion and spatial heterogeneity.
Initially, modeling was conducted using Generalized Poisson Regression (GPR) with two
estimation methods: Maximum Likelihood Estimation (MLE) and Bayesian inference. Based
on the Deviance Information Criterion (DIC), the BGPR model demonstrated superior
performance, with the lowest DIC value of 26.241, indicating better model fit compared
to GPR-MLE. This result served as the basis for advancing to spatial analysis using the
BGWGPR model. Parameter estimation was carried out via Gibbs Sampling, utilizing
a conjugate Gamma prior for the Poisson distribution. The results revealed significant
spatial variation, with 19 regions showing significance across all predictors, while 3 regions
demonstrated only partial significance. The BGWGPR model effectively captures local spatial
differences, offering more accurate and region-specific estimates. This approach supports the
formulation of data-driven and geographically tailored maternal health policies, especially in
areas with diverse geographical and service access conditions like NTT.
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1 Introduction

Maternal Mortality Rate (MMR) is one of the key indicators used to assess the quality of a
region’s healthcare system. Despite various interventions, Indonesia continues to face high MMR,
especially in the eastern regions such as East Nusa Tenggara (NTT) Province. According to data
from the Ministry of Health, NTT recorded an MMR of 153 deaths per 100,000 live births in 2021
[1]. This figure underscores persistent disparities in access to and quality of maternal healthcare
services. The primary medical causes of maternal deaths include postpartum hemorrhage,
eclampsia, and infections. However, non-medical factors such as low educational attainment,
delayed referrals, difficult geographical terrain, and a shortage of healthcare professionals also
significantly contribute to the problem [2]. Geographical factors pose a significant challenge for
provinces with an archipelagic landscape like NTT, leading to disparities in health indicator
achievements across districts and cities [3].
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Bayesian Geographically Weighted Generalized Poisson Regression Modeling

In the context of spatial health data analysis, the statistical approach used must be able
to capture spatial heterogeneity or variation across regions. Conventional regression models,
such as global Poisson regression, tend to assume that the relationship between predictor
variables and the respvonse variable is homogeneous across all regions. Therefore, a model
that can accommodate the varying influences of factors determining maternal mortality rates
(MMR) across different areas is needed. One such approach is the Geographically Weighted
Generalized Poisson Regression (GWGPR) method. Geographically Weighted Regression (GWR)
is a local modeling technique that extends linear regression by estimating location-specific
coefficients, effectively incorporating spatial variation based on geographical coordinates [4].
GWGPR adapts this concept for count data, using a generalized Poisson framework to address
overdispersion—where the variance exceeds the mean—which is common in health-related count
data [5]. A key component of GWGPR is the use of a kernel function, which determines the
spatial weighting scheme. Observations closer to the target location are given more weight than
those farther away [6]. Common kernel functions include Gaussian, bisquare, and exponential
kernels. The bandwidth parameter controls the spatial extent of the local neighborhood: a
smaller bandwidth focuses on more localized patterns but may introduce noise, while a larger
bandwidth smooths the results but may overlook local variability. Bandwidth selection can be
fixed or adaptive—fixed uses the same spatial distance across the study area, while adaptive
adjusts the bandwidth to include a consistent number of neighboring observations, which is
particularly useful in areas with varying population densities [7].

Furthermore, the Bayesian approach is employed to obtain more informative and stable
parameter estimates, particularly when dealing with limited or complex data [8]. In recent years,
Bayesian spatial modeling has gained increasing attention due to its flexibility in capturing spatial
heterogeneity and its robustness in handling overdispersed and sparse data [9]. By combining
prior information with observed data through the likelihood function, Bayesian inference produces
a posterior distribution that better reflects the uncertainty of the parameters. This estimation
process often relies on Markov Chain Monte Carlo (MCMC) techniques such as Gibbs Sampling,
which enable efficient approximation of complex posterior distributions [10].

The integration of the Geographically Weighted Generalized Poisson Regression (GWGPR)
model with the Bayesian approach in this study represents a novel methodological contribution,
particularly in the context of maternal mortality analysis in Indonesia’s eastern regions such
as Nusa Tenggara Timur (NTT). While GWGPR accommodates spatial heterogeneity and
overdispersion, the Bayesian framework adds the ability to incorporate prior knowledge and yield
more stable estimates under uncertainty. To date, limited studies have explored this combination
for localized maternal health data, making this approach a state-of-the-art advancement in spatial
epidemiological modeling. This framework not only enables localized inference for each region
but also supports more equitable and evidence-based policy planning for maternal mortality
interventions.

2 Methods

This study used secondary data from data from the East Nusa Tenggara Central Bureau of
Statistics (www.ntt.bps.go.id ). The response variable used is the number of maternal deaths,
while the predictor variables include the percentage of pregnant women attending the First Visit
(K1) (z1), Percentage Of Pregnant Women Receiving Iron Tablets (TTD) (x32), Percentage Of
Midwifery Complications (x3), percentage of women under 19 years old who have been pregnant
(z4) and Percentage Of Active Family Planning (KB) Participants (z5). The analysis in this
study covers all districts/cities in East Nusa Tenggara with a total of 22 districts/cities included
in the 2022 data. This research uses the Bayesian Geographically Weighted Generalized Poisson
Regression method. The research steps are as follows:
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Poisson Distribution Test

Overdispersion/Underdispersion Test

Significance Testing of Generalized Poisson Regression Parameters using MLE and Bayesian
Best Model Criteria using Deviance Information Criterion (DIC)

Spatial Heterogeneity Test using Breusch-Pagan Test (BP-TEST)

Spatial Weight Calculation using Adaptive Gaussian Kernel

Bandwidth Selection using Cross Validation (CV) Method

Estimating the Geographically Weighted Generalized Poisson Regression using Bayesian

S e B AN o S

Gibbs Sampling Simulation

—_
<

Parameter Testing with Credible Intervals

—_
—_

. Result Interpretation and Mapping

2.1 Poisson Regression

Poisson regression is a statistical model used for analyzing data where the response variable is
a count of events (non-negative integers) and does not follow a normal distribution. Instead,
it assumes the data follows a Poisson distribution, which is commonly used to model random
events that occur at a certain rate over a fixed period or area. The Poisson distribution has a
single parameter, A which represents the average rate or intensity of the events. The probability
of observing y events is calculated using the formula [7][8].

e M\

PX=y) =" y=0.12.. (1)

The Poisson regression model represents the natural logarithm of the expected value Y; which
is proportional to and dependent on the independent variable ;. The equation can be written
as follows [11] :

In(E(Y;)) = %‘Tﬁ = Bo + Brx1; + B2z + - + i
p; = exp(z] B) = exp(Bo + P1x1; + Boxai + - -+ + BrTi) (2)

2.2 Overdispersion

In Poisson regression, one of the assumptions that must be met is the assumption of equality
between the mean and variance, also known as equidispersion [12]. In statistical analysis,
underdispersion occurs when variance is smaller than the mean, while overdispersion occurs when
it is larger. Both can lead to inefficient parameter estimates, affecting model interpretation and
potentially causing incorrect conclusions due to underestimated standard errors. Overdispersion
can be detected by dividing the deviance by the degrees of freedom [13].
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If ¢ = 1 equidispersion occurs. If ¢ < 1, it indicates underdispersion, while ¢ > 1 suggests
overdispersion.

2.3 Spatial Heterogeneity Analysis

The spatial heterogeneity test is used to see the diversity between locations caused by the different
structures in each area [14]. One of the methods used in this test is the Breusch-Pagan Test (BP
Test). The hypothesis is as follows:
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Hy : U(Qul,vl) = J(QUMQ) =...= U(Qun,vn) =02 (no spatial heterogeneity)

H, : At least one o2 # 0% (spatial heterogeneity exists)

(uisvi)

Test Statistic : 1 1
BP = b'Z (z'z) 7™ (4)

2
[

e
where the error element b is formulated as b = —5 — 1, where e; represents the error term for

the ¢ observation, with the assumption that e follgws an independent and identically distributed
normal distribution, e ~ IIDN(0,02). o2 is the variance of the error term e; and Z is the
standardized matrix of size n x (p 4 1), where p denotes the number of predictor variables. This
formulation is used in the Breusch-Pagan test to assess spatial heterogeneity in the model.

2.4 Spatial Weights

In spatial analysis, spatial weights represent the relationship between geographic locations based
on their proximity. These weights give more influence to nearby locations and reduce the influence
of farther locations, thus capturing local variations in spatial data [15]. The weight function used
in this study is an adaptive Gaussian kernel function, defined by the following formula [16].

_ —di;

where w;; represents the weight between location i and location j. The term d;; refers to the
Euclidean distance between these two locations. The adaptive bandwidth, denoted as b;, is
specific to each location ¢ and is calculated using the Cross Validation (CV) method to minimize
prediction error. This adaptive bandwidth allows the model to adjust the influence of each
location based on its proximity to other locations, ensuring that closer locations have more weight
in the model’s computations.

2.5 Bayesian Method

In Bayesian methods, suppose there is a parameter 6 to be estimated. The parameter 6 is
treated as a variable whose value lies within the domain. The prior distribution represents initial
information that is used to form the posterior distribution. By combining prior information
with the data, the posterior calculation becomes more straightforward. According to Bayesian
theory, the posterior distribution is proportional to the product of the prior distribution and the
likelihood function, as expressed in equation (6) [17]:

fO1y)oc fly|0)(0) (6)
where f(0 | y) is the posterior distribution, f(#) is the prior distribution, and f(y | ) is the
likelihood function.

2.6 Bayesian Generalized Poisson Regression

In the Generalized Poisson Regression model, the conditional probability function of y; given the
predictors 14, €2, . . ., Tp; is defined as follows [18]:
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Based on Equation (7), the likelihood function is derived and presented in Equation (8).
The prior specification in the Generalized Poisson Regression model assumes that the regression
parameters [ follow a Gamma distribution, while the dispersion parameter 6 is assumed to follow
a Normal distribution.

n exiTB e:tzrﬁ
L(5,0) =11 (Hg) (1+ 9y)y‘1y1! exp (W) (8)

i—1 \ 1+ Oe"i 14 fevi B
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fO0y) = me e (9)
1 _ 2
F3 1) = =5 e (—W) (10)

The resulting posterior distribution is as follows:

(B —pp)? BY a1 —pe
f(B,01y) — exp( 52 X F(a)ﬁ e -
11
= B 1 w0 (1 4 Oy)
e _ € Y
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Due to the analytical intractability of the posterior distribution in Equation (11), a simulation-
based estimation was conducted using the Markov Chain Monte Carlo (MCMC) framework, with
Gibbs Sampling employed as the primary technique [19].

2.7 Bayesian Model Convergence Test

Convergence checking in MCMC aims to ensure that the generated samples match the target
distribution, which is the posterior distribution. Two commonly used methods are trace plots
and MC Error [20]. A trace plot is a graph that shows the relationship between iterations
and the values generated; if this plot does not show any specific pattern or strong periodicity,
then convergence is achieved. However, if convergence has not been reached, the number of
iterations needs to be increased. Meanwhile, MC Error is calculated by dividing the samples
into several groups (batches), then computing the average for each batch and the overall average.
Convergence is considered met if the MC Error is less than 5% of the standard deviation. Thus,
trace plots are used to visually assess stability, while MC Error provides a numerical measure to
ensure the accuracy of the results [21].

L e ) (12)
vy t=(b—1)v+1
1 E
G(O) = % S Gem) (13)

The formula to calculate MC Error is as follows refl4:

K
MCEI[G(0)] = \l K(Kl—l) > (G(O)b — G(@))2 (14)

b=1
Notation:
e K : Number of batches
e v : Number of samples in each batch
e b : Index for the number of batches
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o G(0), : Average sample in each batch

e G(0) : Overall sample mean

e R’ : Total number of generated samples

Considering the importance of capturing spatial variation and ensuring estimation stability
in the analysis of complex maternal health data, this study adopts the Bayesian Geographically
Weighted Generalized Poisson Regression (BGWGPR) approach. Prior to applying the spatial
model, a comparison is conducted between the Generalized Poisson Regression (GPR) models
estimated using Maximum Likelihood Estimation (MLE) and Bayesian methods, with the
Deviance Information Criterion (DIC) used to determine the best-fitting model. The selected
model will then be applied in spatial analysis to identify local variations across regions, and the
results will be further discussed in the Results and Discussion section.

3 Results and Discussion

This section presents the results obtained from the application of various Poisson-based regression
models and discusses their implications in the context of maternal mortality in East Nusa
Tenggara Province. The discussion begins with diagnostic tests to validate the core assumptions
of Poisson regression, followed by model estimations, spatial analysis, and convergence diagnostics.

3.1 Poisson Regression Assumption Test

In the distribution test using the Kolmogorov—Smirnov test, the p-value obtained is 0.2262, which
is greater than the 5% significance level. This indicates that the response variable follows a
Poisson distribution. Next, a non-multicollinearity test is performed by examining the Variance
Inflation Factor (VIF) values, which are presented in Table 1.

Table 1: VIF for All Predictor Variables

Variable VIF Value
Percentage of pregnant women attending the first visit (K1) 3.275
Percentage of pregnant women receiving iron tablets (TTD) 3.855
Percentage of Midwifery Complications 2.499
Percentage of Women Under 19 Years Old Who Have Been Pregnant 2.504
Percentage of Active Family Planning (KB) Participants 1.401

The results of the non-multicollinearity test using VIF show that all five predictor variables
have values less than 10, indicating that multicollinearity is not present. Next, an overdispersion
test was conducted. In Poisson regression, there is an assumption that the mean should be
equal to the variance. If the variance is greater than the mean, the data exhibit overdispersion,
whereas if the variance is smaller than the mean, the data exhibit underdispersion. In such cases,
Poisson regression may no longer be appropriate, and alternative methods are needed to handle
overdispersion or underdispersion.

Overdispersion can be detected by dividing the deviance value by the degrees of freedom. In
this analysis, the deviance value is 29.817, with 16 degrees of freedom, resulting in a dispersion
value of 1.864. Since ¢ > 1, it can be concluded that maternal mortality data in the East Nusa
Tenggara Province exhibit overdispersion.

3.2 Generalized Poisson Regression with MLE

Based on the MLE estimation, the resulting GPR model is as follows:

fli = exp (4.177 + 0.0074X3 — 0.0288X5) (1)

Dewi Ratnasari Wijaya 1393



Bayesian Geographically Weighted Generalized Poisson Regression Modeling

The model suggests that midwifery complications (X3) are positively associated with maternal
mortality, whereas active participation in family planning programs (X5) contributes to its
reduction. Specifically, a 1% increase in midwifery complications is estimated to elevate the
risk of maternal death by approximately 0.74%, while a 1% increase in active family planning
participation is associated with a 2.92% reduction in risk. These findings emphasize the critical
role of effectively managing obstetric complications and expanding access to family planning
services in efforts to lower maternal mortality rates.

3.3 Bayesian Generalized Poisson Regression

The Bayesian-based GPR model can be formulated as follows:
fi; = exp (30.2897 — 0.8480X; + 0.9093 X5 — 0.2082X3 — 4.2417X,) (2)

The model indicates that an increase in first antenatal care visits (K1) is associated with a
decrease in maternal mortality (exp(—0.8480) ~ 0.43). Conversely, the provision of Iron Tablets
(TTD) is correlated with an increase in maternal deaths (exp(0.9093) =~ 2.48), possibly because
regions with higher mortality rates implement more intensive TTD distribution. The management
of complications by midwives also contributes to reducing maternal deaths (exp(—0.2082) ~
0.81), reflecting the effectiveness of such interventions. Interestingly, a higher percentage of
pregnancies among women under 19 years old is negatively associated with maternal mortality
(exp(—4.2417) ~ 0.79), which may be influenced by regional factors or other health-related
interventions.

3.4 Best Model

The best model is determined using the DIC value of each model. The better model to use is the
one with the smallest DIC value. Table 2 shows DIC values for every model.

Table 2: DIC Values for Each Model

Model DIC

Generalized Poisson Regression with MLE 76.401
Bayesian Generalized Poisson Regression (BGPR) 26.241

Based on Table 2, the smallest DIC value is obtained from the Bayesian Generalized Poisson
Regression model, which is 26.241. Therefore, this model is selected as the best model in this
study. Subsequently, a spatial heterogeneity test is conducted to examine whether there are
significant differences between regions, which then serves as the basis for continuing the analysis
using the Bayesian Geographically Weighted Generalized Poisson Regression (Bayesian GWGPR)
model.

3.5 Spatial Heterogeneity Assumption Test

The spatial heterogeneity determines whether the regression model residuals vary spatially,
showing that the residual variances vary throughout the observed regions. This test utilizes the
Breusch—Pagan Test (BP Test) with the following hypotheses:

Hy:0l =02=---=0? (no spatial heterogeneity)

H, : At least one o2 # 032- (spatial heterogeneity exists)

The test results show a p-value of 0.026498, which is less than the significance level o = 0.05.
Thus, it can be concluded that spatial heterogeneity exists in the data.
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3.6 Bayesian Convergence Check

In Bayesian modeling, especially when applying the BGWGPR model with MCMC simulations,
it is crucial to validate the accuracy of the simulated results. To achieve this, tools such as the
MC Error and trace dynamic plots are employed to assess the convergence of the simulation
process. Convergence indicates that the output of the simulation aligns with the expected
posterior distribution, confirming that the MCMC chain has stabilized. The trace plot visually
monitors this process, showing the progression of parameter values across iterations. Ideally, a
well-converged chain should display random fluctuations around a central value, without any
discernible patterns, trends, or cycles.

To further assess convergence, the MC Error is calculated by dividing the simulation into
batches and comparing the mean of each batch. Convergence is considered satisfactory when the
MC Error is less than 5% of the standard deviation across the samples. For this analysis, 10,000
iterations were performed using the Gibbs sampling algorithm to ensure thorough exploration of
the parameter space. When both the trace plot and MC Error satisfy their respective criteria, it
can be concluded that the simulation has converged, and the results are reliable for subsequent
analysis.

Trace Plot untuk Lokasl: Alor

Trasi Piot Bata & - Alaw

Figure 1: Convergence Trace Plot for Alor Regency

The trace plot displayed above illustrates the progression of parameter values during the
iteration process for Alor Regency. This graph provides a visual representation of the fluctuations
in parameter values at each iteration of the simulation. In this case, the trace plot shows how
the parameter values change throughout the iterations and whether they reach stability, which is
an indication of the simulation’s convergence.

Meanwhile, the results of the MC Error calculation from the simulation can be found below,
providing further numerical information about the accuracy and stability of the simulation results.
In other words, the trace plot serves to visually verify the stability of the parameters, while the
MC Error provides a numerical measure to assess convergence more objectively.

3.7 Bayesian Parameter Estimation

After confirming convergence for each location, the next step is constructing the BGWGPR
model for each location. The model parameters are presented in Table 4.
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Table 3: Convergence Test Results with Gibbs Sampling for Alor Regency
Parameter Std. Dev. 5% of Std. Dev. MC Error Description

Bo 1.206421 0.060321 0.003910 Convergent
B 0.030538 0.000341 0.001527 Convergent
By 0.026332 0.000294 0.001317 Convergent
53 0.004054 0.000045 0.000203 Convergent
34 0.050274 0.000562 0.002514 Convergent
55 0.017327 0.000194 0.000866 Convergent

Table 4: Beta Coefficients of BGWGPR Model

District /City Bo b1 B2 B3 Ba Bs
Alor 2.3451 -0.4887 -1.0050 -0.1681 3.4579 1.2310
Belu 2.0609 -0.8837 -0.1819 -1.5081 0.5771 0.1894
Ende 2.2673 -0.7202 -0.4005 -0.0135 1.1937 0.0909
Flores Timur 2.2650 -0.9374 -0.2342 -0.9893 0.8765 0.4748
Kota Kupang 2.3454 -1.0227 -0.2150 -1.5048 0.7227 0.5368
Kupang 2.2635 -0.9855 -0.2028 -1.5827 0.6576 0.8377
Lembata 2.1634 -0.9175 -0.2021 -1.2457 0.7377 0.6587
Malaka 2.0762 -0.8923 -0.1831 1.5298 0.5766 0.4123
Manggarai 1.8270 -0.2667 -0.5368 0.9659 1.2830 0.9855
Manggarai Barat 1.7383 -0.2132 -0.5334 -1.1158 1.2776 0.5771
Manggarai Timur 1.8762 -0.3093 -0.5283 -0.8704 1.2781 0.2342
Nagekeo 2.0838 -0.5089 -0.4748  0.4835 2.2599 1.2874
Ngada 1.9880 -0.4098 -0.5050 -0.6795 1.2753 0.8874
Rote Ndao 2.4282 -1.0393 -0.2438 1.1730 0.8649 0.9855
Sabu Raijua 2.2905 -0.8165 -0.3414 -0.0909 1.1480 0.1681
Sikka 2.3751 -0.9202 -0.2993 -0.6731 1.0376 0.5771
Sumba Barat 1.6211 -0.1453 -0.5250 -1.3987 1.2973 0.1681
Sumba Barat Daya 1.6389 -0.1738 -0.5114 1.3260 1.2792 1.1730
Sumba Tengah 1.6198 -0.1332 -0.5338 1.4225 1.3081 0.5334
Sumba Timur 1.7500 -0.2586 -0.5022 1.2432 1.3110 0.1453

Timor Tengah Selatan 2.1496 -0.9307 -0.1894 -1.5952 0.7377 0.5923
Timor Tengah Utara 2.0795 -0.8938 -0.1829  1.5675 0.5694 0.5050

Based on Table 4, the Bayesian Geographically Weighted Generalized Poisson Regression
(BGWGPR) equation for Alor Regency is as follows:

Lialor = exp(2.3451 — 0.4887X; — 1.0051X5 + 0.1681X3 + 3.4579X, — 1.2310X5)  (3)

The model can be interpreted as follows: the number of maternal deaths in Alor Regency
is expected to decrease by exp(—0.4887) = 0.6134 times, or approximately by one case, if
the percentage of pregnant women attending K1 visits increases, assuming all other variables
remain constant. Similarly, maternal deaths will decrease by exp(—1.0051) = 0.3660 times if
the percentage of pregnant women receiving iron supplement tablets (TTD) increases by 1%.
Conversely, maternal deaths tend to increase by exp(0.1681) = 1.183 times if the percentage
of complications handled by midwives rises by 1%. Additionally, maternal mortality is also
expected to rise by exp(3.4579) = 31.74 times if the percentage of women under 19 years old who
have been pregnant increases by 1%. Meanwhile, the number of maternal deaths is projected
to decrease by exp(—1.2310) = 0.2917 times if the percentage of active family planning (KB)
participants increases by 1%.

By using Bayesian GWGPR analysis, the significant parameters for each location were
identified. The results of the location clustering can be seen in Table 5.
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Table 5: Clustering of Regencies/Cities Based on the BGWGPR Model
Group District/City Significant Variables

1 Alor, Belu, Ende, Flores Timur, Kota Kupang, Kupang, Lembata, X, X5, X3, X4, X5
Malaka, Manggarai, Manggarai Barat, Manggarai Timur,
Nagekeo, Ngada, Sabu Raijua, Sikka, Sumba Barat Daya, Sumba
Timur, Timor Tengah Selatan, Timor Tengah Utara

2 Rote Ndao, Sumba Tengah, Sumba Barat X3, X4, X5

Cluster Map of Maternal Mortality in East Nusa Tenggara Province
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Figure 2: Cluster map of Maternal Mortality in NTT Province

3.8 Discussion

The study results indicate that the Bayesian Geographically Weighted Generalized Poisson
Regression (BGWGPR) model effectively accommodates spatial heterogeneity in the relationship
between the response and predictor variables. The Bayesian approach in this model allows
for more flexible and stable parameter estimation, particularly in cases of overdispersion or
underdispersion. Additionally, the model captures complex spatial patterns and variations in
relationships across regions, providing a deeper understanding of the factors influencing the
studied phenomenon.

The analysis results show that the posterior distribution of model parameters demonstrates
good convergence, as evidenced by trace plots and MC Error. This confirms that the Gibbs
Sampling method used in Bayesian estimation produces valid and reliable results. The spatial
heterogeneity test reveals that the relationship between predictor and response variables differs
across regions, emphasizing the importance of a localized approach in spatial regression modeling.
Several factors contribute to this variation, including demographic characteristics, access to
healthcare services, and economic factors in each region. These findings align with previous
studies that highlight the flexibility of nonparametric and Bayesian approaches in capturing
complex spatial patterns.

The clustering of districts into two distinct groups based on the model provides important
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insights into regional disparities. Districts located further to the north—indicated by the green
color—show that all variables in the model significantly influence maternal mortality rates.
This finding suggests that these regions require special attention in efforts to reduce maternal
mortality. This aligns with the real-world situation, where access to healthcare services in these
areas remains very limited. For example, East Manggarai District has a hilly geographical
condition with steep slopes, which poses a significant challenge in providing healthcare services
to pregnant women. The limited accessibility in this area hinders pregnant women from receiving
timely and appropriate medical care, as many areas are difficult to reach by vehicle and require
long journeys to reach the nearest healthcare facility.

Malaka District faces similar challenges, particularly related to the uneven distribution of
healthcare personnel. Many areas in Malaka are located along the border with East Timor, where
infrastructure is limited and the terrain is difficult to access. This situation results in a shortage
of medical personnel in healthcare facilities, which presents a significant challenge for the NTT
provincial government in improving the quality of maternal healthcare services. In addition
to access factors, the issues of early marriage and teenage pregnancy also deserve significant
attention. In N'T'T, the practice of early marriage is still relatively high. The Central Bureau
of Statistics (BPS) of NTT Province reported that in 2021, 82,957 women of reproductive age
married before the age of 19. In East Manggarai District, around 24% of women married between
the ages of 17 and 18. This phenomenon contributes to the high rates of teenage pregnancy,
which carry a high risk of complications and maternal mortality during childbirth. This finding is
further supported by the coefficient value for East Manggarai regarding the percentage of women
under 19 years old who have been pregnant, which shows exp(2.2599), or about 10 maternal
deaths. This number indicates that every 1% increase in the percentage of women who marry
early could directly impact the increase in maternal deaths in this area.

This suggests that districts in Group 1 should receive more attention from the NTT provincial
government in several key areas, including improving access to healthcare services and providing
education on the dangers of early marriage. Efforts should focus not only on enhancing healthcare
infrastructure but also on raising awareness about the risks associated with early pregnancies,
especially in rural and remote areas. Moreover, educational programs aimed at preventing early
marriage and supporting women’s empowerment are crucial in addressing the root causes of
maternal mortality. By prioritizing these areas, the government can significantly reduce maternal
mortality rates and improve the overall well-being of women in these regions.

Then, the BGWGPR model has limitations in prior selection. In this study, a Gamma prior
was used for the parameter A due to its conjugacy with the Generalized Poisson distribution.
While this prior choice is common in Bayesian regression, further exploration of informative
priors could improve estimation accuracy, especially in areas with very few cases.

4 Conclusion

This study demonstrates that the Bayesian Geographically Weighted Generalized Poisson Regres-
sion (BGWGPR) model offers a robust and flexible framework for analyzing maternal mortality
data characterized by spatial heterogeneity and overdispersion. The Bayesian approach enhances
parameter estimation stability, especially in regions with limited data or extreme values, while
the geographically weighted mechanism enables the capture of localized variations in relationships
between predictors and the response variable.

The model reveals that different regions exhibit distinct influences of health-related fac-
tors—such as midwifery complications, family planning participation, antenatal visits, and
teenage pregnancies—on maternal mortality. Such localized insights underscore the importance
of region-specific policies and interventions rather than uniform national strategies. Moreover,
the lower DIC value obtained in the Bayesian model compared to classical methods confirms its
superior model fit and suitability for complex epidemiological data. This finding supports the
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use of Bayesian spatial models in public health decision-making, especially in underserved and
high-risk areas like East Nusa Tenggara (NTT).

For future studies, integrating Bayesian spatial models with machine learning algorithms

could improve predictive accuracy and offer automated detection of spatial patterns. Additionally,
exploring various prior distributions may enhance model performance, particularly in handling
zero-inflated data often found in health and socio-economic datasets.
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