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ABSTRACT

This study examines the concept of operator (h, m)-convexity within the context of Hilbert
spaces, aiming to advance the understanding of operator convex functions. Operator convex
functions play a pivotal role in various mathematical disciplines, particularly in optimization and
the study of inequalities. The paper introduces the notion of an operator (h, m)-convex function,
which generalizes existing classes of operator convexity, and explores its fundamental
properties. The methodological framework relies on a theoretical analysis of bounded operators
and their relationships with other forms of operator convex functions. Key findings demonstrate
that, under certain conditions, the product of two operator convex functions retains operator
convexity. Furthermore, the study establishes convergence results for matrix (h, m)-convex
functions. These contributions enhance the theoretical foundation of operator convexity, offering
a basis for future research and applications. The results not only deepen the understanding of
operator (h, m)-convex functions but also support the development of sharper inequalities,
thereby broadening the applicability of operator convexity within mathematical analysis.
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INTRODUCTION

The concept of convexity is central to the study of applied mathematics [1].
Convexity was initially defined and used in the study of arc length by Archimedes. The
definition of convexity proposed by Archimedes is similar to the current definition, which
states that a set is called convex if the set contains all line segments formed by any two
points in the set. It is written mathematically as in the Definition 1 below.

Definition 1 (see [2]). Let X be a non-empty set. X € R" is called a convex set if for any
x,y € Xand a € (0,1) holds

ax+(1—a)yeX.
Similarly, a curve (function) is called as convex if the line segment connecting any two
points on the function's graph lies above the curve[1]. We can write it mathematically as
in the Definition 2 below.
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Definition 2 (see [2]). Let X be a convex set. A functions ¢: X = Ris called a convex, if
forany x,y € X and a € (0,1) holds

plax+ (1 —a)y) < ap(x) + (1 — a)p(). (1)
If the inequality (1) is reversed, then ¢ is called a concave. In other words if ¢ is a
convex, then - ¢ is a concave, vice versa.

Various studies based on the definition and classical convexity theories have been
developed, leading to various variations in the definitions and convexity theories that
are more general than classical convexity. In 1984, Toader [3] introduced the definition
of m-convex functions, in which it must be defined on a m-convex set. In this class, when
m = 0, it is called starshaped functions [4]. In 2007, Varosanec [5] introduced a new
class of convexity, which is h-convexity. He studied the h-convex function definition and
their properties. Here, h: ] — [0, ) is nonnegative and the interval / 2 (0,1). This is also
the generalization of some classes in convexity, such as Godunova-Levin functions (see
[6]), s-convex functions (see [7], [8]), P-functions (see [9]), and s-Godunova-Levin
functions (see [10]). Combining the concepts of h-convexity and m-convexity, Ozdemir
et al. [11] studied (h, m)-convex functions’s definition and their properties. In this class
of convex functions, the domain should be am-convex set. The special class that
generalized from this class is (s,m)-convex functions (see [12], [13]) and (s,m)-
Godunova-Levin functions (see [14]).

Operator convex functions are important tools in functional analysis, matrix analysis,
quantum information and so on (For instance, see [15], [16], [17], [18], [19]). These are
real functions whose extensions to self-adjoint operator preserve order. The motivation
for constructing the definition of operator convex function came from Theorem 1. First,
we denote H be a Hilbert space with an inner product (.,-), while B(H) =
{B|B: H — H is abounded and linear operator} and 15 is the identity operator in
Hilbert space H.

Theorem 1 (see [20]). Let B(H) = {B|B:H — H is a bounded and linear operator}.
Then, there exist a unique *-isometric isomorphism Gelfand map ¢: C(U(B)) - B(H),
such that is for any ¢4, ¢, € C(O'(B)) holds

(i) (@1 + @) = 2(@1) + P(@2).

(i) P(cp1) = c@(p1).

(iil) @(@192) = P(@1)P(@2).

(iv) @(p1) = (91"

(v) Ifep;(u) =uand @;(u) =1, then @(¢p,) = B and @(¢p,) = 14 respectively.

(vi) @1(x) = 0, then ®@(¢,) is positive operator.

For convenience, before we go further to the definition of operator convex functions, we
give the notation of operator orders
A<B (2)
means
(Ax,x) < (Bx, x), (3)
for any x € . Thus, changing the sign in (2) with “<”, “*”, “>", and “=" means changing
the sign in (3) with “<”, “>", “>”, and “=" respectively. We also denote B* (H) is a family
of bounded linear positive operator in Hilbert space and g be a subspace from the
family B (7).
By using that theorem Bhatia [15] gives the definition of the operator convex
function as follows.
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Definition 3 (see [15]). A function ¢:I — R is called to be operator convex function, if
for any self-adjoint operator A, B € B(H) with a(A),c(B) € I and a € (0,1) holds
p(@A+ (1 —-—a)B) < ap(A) + (1 — a)p(B).

By applying the same approach used to construct the definition of operator convex
functions, Salas et al. [21] studied about the operator (h, m)-convex function’s definition
in Hilbert space using the concept of (h,m)-convex functions studied by Ozdemir et al.
[11]. By using Theorem 1 Salas et al. [21] constructed the definition of the operator
(h, m)-convex functions for operators in  as written in the following Definition 4.

Definition 4 (see [21]). Letm € [0,1] and h:] 2 (0,1) — [0, o). A function ¢:[0,b] = R
is called a operator (h, m)-convex function, if for any self-adjoint operator 4, B € g with
0(A),a(B) € [0,b] and a € (0,1) holds

(@A +m(1l—a)B) < h(a)p(A) + mh(1 — a)e(B).

From Definition 4 above, we can get some other classes in operator convexity in Hilbert
space, if we take h(a) = a, then we get the definition of operator m-convex functions
(see [18], [22], [23]). Meanwhile, if we take the value of m equals one, then we obtain
the definition of operator h-convex functions (see [24]).

They also constructed the Hermite-Hadamard type inequalities for operator (h, m)-
convex functions. However, the investigation of the fundamental properties of (h, m)-
convex operator functions is essential for establishing a solid theoretical framework
upon which further analysis and applications can be built. For instance, if we want to
construct an extension of the Hermite-Hadamard type inequality—namely, the Hermite-
Hadamard inequality for the product of two operator convex functions. When we study
this topic, an important issue arises regarding whether the product of two operator
convex functions remains operator convex, and under what conditions the resulting
function can maintain operator convexity. This consideration motivates us to conduct
research on the fundamental properties of (h, m)-operator convex functions.

Based on developments that have been presented, in this paper, we provide some
fundamental properties for operator (h, m)-convex functions in Hilbert space. Using the
fact that matrix is a bounded linear operator, we also provide the definition and the
properties of the matrix (h, m)-convex functions as a special case, when the operator is a
self-adjoint matrix. Then, we study about the relation between operator (h, m)-convex
functions and matrix (h, m)-convex functions.

METHODS

Our methodology for composing this research is literature review. This research is
composed by using a theoretical approach, that is reviewing, analyzing, and extending
existing concepts of (h, m)-convex functions to operators in Hilbert spaces. Thus, our
methods for composing this article can be written as follows:

(i) Conduct a comprehensive literature review related to (h, m)-convexity and

operator convexity.

(ii) Using the definition of operator (h, m)-convex functions that have been studied
by Salas et al. [21] and the characteristic of the h function in VaroSanec [5] to
derive new fundamental properties.

(iii) Formulate the definition of matrix (h, m)-convex functions.

(iv) Investigate the relationship between operator (h, m)-convex functions and
matrix (h, m)-convex functions.

All theoretical proofs are constructed based on operator theory, functional analysis, and
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properties of convex functions without the use of empirical or computational
experiments.

RESULTS AND DISCUSSION

In this section, we discuss some basic properties in the operator version of (h, m)-
convexity class, where the operator is bounded linear operator in Hilbert space. We also
give the matrix (h, m)-convex function definition as a special case of this class of
convexity.

Firstly, we present an example of the operator (h,m)-convex functions in the
following Example 1.

Example 1. Let h(a) =3a, me (0,1], g = {A|A € BY(H)withA = A*and o (4) =
{1 € R*|1 < 2}}. A function ¢, defined by

p(x) =42

is an operator (h, m)-convex functions for operator in g.

We can prove Example 1 by using contradiction. So, if we take two operators 4, B at least
one exists ¢ € [0,1] such that the condition in the Definition 4 is not valid. Without loss
generalization we choose 0(A4) € [0,1) and o(B) < [1, 2]. Yet, by using spectral theorem
for every eigenvalue contained in {A € R*|1 < 1}, we obtain that the eigenvalues of

whether  h(@)7(A) + mh(1 - a)3(B) —Z(aA+m(1 - a)B) =3m(1—a)B  or
h(a) % (A) + mh(1 — a) % (B) — % (aA +m(1 — a)B) = 3aA are all positive. Hence, for

any a € [0,1] we have
h(a)p(A) + mh(1 — a)e(B) — p(aA +m(1 —a)B) = 0.

Now, we construct the linearity property of operator (h, m)-convex functions. This
property is essential to develop some inequalities that are generated from operator
(h, m)-convex functions. We present it as in the following Proposition 1 and Proposition
2.

Proposition 1. Let [0,b] be an interval, m € [0,1], and h:] 2 (0,1) — [0, o). Suppose
©1,P2:[0,b] - Rare operator (h, m)-convex functions. Then, ¢; + ¢, is also operator
(h, m)-convex function on [0, b].

Proof: Let A, B € g with 6(A4),a(B) < [0, b]. Since ¢, ¢, are two operator (h, m)-convex
functions, then for any a € (0,1) we have
(o1 + @)(@A+m(1l —a)B) = @p(aA+m(1l—a)B) + ¢,(¢A+m(1—a)B)
< h(a@)@1(4) + mh(1 — a),(B) + h(t)p,(A4)
+mh(1 — a)p,(B)
< h(a) (@1 + ¢2)(A) + mh(1 — a) (@1 + @,)(B).
That means ¢, + ¢, is operator (h, m)-convex function on the interval [0,b].
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Proposition 2. Letm € [0,1], h:J 2 (0,1) = [0, ), and k € (0, ). Suppose ¢:[0,b] =
R be an operator (h, m)-convex function. Then, k¢ is also an operator (h, m)-convex
function on [0, b].

Proof: Let A,B € g with d(A),0(B) € [0,b]. Since ¢ is an operator (h, m)-convex
function, then for any a € (0,1) we have
(ko)(aA + m(1 — a)B) < k[h(a)p(4) + mh(1 — a)p(B)]
< h(a)(kp)(A) + mh(1 — a)(kg)(B).
That means k¢ is an operator (h, m)-convex function.
|

The following proposition discusses the properties of operator (h,m)-convex
functions through the composition of two functions. However, a certain condition must
be satisfied, which is related to the monotonicity of one of the functions.

Proposition 3. Let [0, b],[0,c] be two intervals,m € [0,1], and h:]J 2 (0,1) — [0, ).
Suppose ¢4:[0,b] = Rbe an operator (h,m)-convex function for operators in & and
monotone operator function and ¢,:[0,c] = Rbe an operator m-convex function for
operators in g, with ¢,([0,c]) € [0, b]. Then, the composition function ¢, o ¢, is also
operator (h, m)-convex on [0, c] for operators in .

Proof: Let A, B € o with a(A),a(B) S [0,c]. Since ¢, is an operator m-convex function
and ¢ is an operator monotone function, then for any a € (0,1) we have
(@1°o@)(@A+m(1—a)B) < (P1(“§02(A) +m(1 - a)QDZ(B))-
Indeed, since ¢,([0,c]) € [0, b], also ¢, is operator (h, m)-convex and monotone, we
have
(preo@)(@A+m(1l—-a)B) < h(a)§01(§02 (A)) +mh(1 - a)(P1(€02(B))
= h(a) (1 °91)(4) + mh(1 = a)( @y ° @) (B).

That means, @4 © ¢, is an operator (h,m)-convex function on the interval [0, c] for

operators in .
|

We consider two functions that map from an interval ] 2 (0,1) to the set of real
numbers R, namely h; and h,. The next property is obtained by comparing those two
functions.

Proposition 4. Let m € [0,1] and hy, h,:] 2 (0,1) — [0,00) with hy < h, . If @:[0,b] = R
is an operator (h,;, m)-convex function for operators in g, then ¢ is also an operator
(h,, m)-convex function for operators in .

Proof: Let A,B € g with a(A),d(B) € [0,b]. Since ¢ is an operator (h;, m)-convex
function and h; < h,, then for any a € (0,1) we have
(@A +m(1—a)B) < hy(a)p(A) + mhy (1 — a)p(B)
< hy(@)@(4) + mhy(1 - a)e(B).
Hence, ¢ is also an operator (h,, m)-convex function.
|

Similar to the previous property, by considering two scalars my,m, € [0,1], we can
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obtain the following property.

Proposition 5. Let h:J 2 (0,1) - [0, ) and m,, m, € [0,1] with m; < m,. If ¢:[0,b] -
R is an operator (h, m;)-convex function for operators in & and monotone decreasing,
then ¢ is also an operator (h, m,)-convex function for operators in .

Proof: Let A,B € g with a(A),ad(B) € [0,b]. Since ¢ is an operator (h, m,)-convex
function and m; < m,, then for any a € (0,1) we have
p(@A +my(1 —a)B) < h(a)p(A) + mih(1 — a)p(B)
< h(a)(A) + myh(1 — a)@(B).
Hence, ¢ is also an operator (h, m,)-convex function.
|

Now, we move to the multiplicative property of two (h, m)-convex operator functions that
are presented, which support the development of the Hermite-Hadamard type inequalities for
the product of two (h, m)-convex operator functions. In the following proposition, we need to
assume that g is also a family of commutative and comparable operators.

Proposition 6. Let h: ] 2 (0,1) — [0, ), and m € [0,1] such that h(a) + mh(1 —a) < 1.
Also suppose A, B € § be commutative and comparable (i.e. AB=BAand A< BorA >
B) with 6(A4),a(B) < [0, b]. If both ¢4, ¢,: [0, b] = [0, ) are operator (h, m)-convex and
operator monotone functions, then ¢, ¢, is also operator (h, m)-convex functions on the
interval [0, b].

Proof: By the assumptions A4, B € g be commutative and comparable with 6(4),c(B) <
[0, b]. Without loss the generalization, we take A < B. According to [10], it holds that
@1 (A)p,(B) = @,(B)¢p,(A). Since ¢4, @, are operator monotone functions, then we have
@1(B) — @,(A) = 0and ¢,(B) — ¢,(A) > 0. So, by multiplication we have
(91(B) — 91(A))(92(B) — 9,(4)) > 0
or
01 (B)92(B) + ¢1(A)92(A) 7 91 (A)p2(B) + 91 (B)p2(4) . (5)
Next, because ¢, ¢, are operator (h, m)-convex functions, then we get
@192(@A+m(1 —a)B) = p,(¢A+m(1 —a)B) - p,(adA +m(1 —a)B)
< [A(@) @, (4) + mh(1 — a)g,(B)]
X [A(@) @, (A) + mh(1 — a)p,(B)]
= h?(a)p1(A) 92 (A) + m*h*(1 — a)p1(B) 9, (B)
+mh(a)h(1 — a)[p1(A)p,(B) + ¢1(B)p,(4)].
Based on (5), we thus have
P192(aA+m(1 = a)B) < h*(a)p,(A)@,(A) + m*h*(1 — @), (B) @, (B)
+mh(a)h(1 — a)[p1(A) @2 (A) + ¢1(B) g, (B)].
= h(a)[h(a) + mh(1 — a)]e, (A)p,(4)
+mh(1 — a)[h(a) + mh(1 — a)le,(B)@,(B)
By the assumption that h(a) + mh(1 — @) < 1. Hence, we obtain
©192(aA +m(1 — a)B) < h(@)p1(A)p,(4) + mh(1 — a)p,(B)@,(B).
That means ¢;¢, is an operator (h,m)-convex functions on the interval [0, b] for
operators in .
[ |

The characteristic of h in reference [5] has several consequences to the properties of
the operator (h, m)-convex functions. In the following Theorem 2 and Theorem 3, we
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obtain the properties of the operator (h, m)-convex functions based on the characteristic
of the h functions.

Theorem 2. Letm € [0,1] and h:J 2 (0,1) — [0, ). The following theorems are held:
(a) Let : [0, b] = R be operator (h, m)-convex function and ¢(0) = 0. If h is a super-
multiplicative function, then holds
(@A + mpB) < h(a)p(A) + mh(B)o(B),
where A, B € g such that 6(A4),0(B) € [0,b] and @, B € [0,00) witha + B < 1.
(b) Let ¢: [0, b] = R such that - ¢ be operator (h, m)-convex function and ¢(0) = 0.
If h is a sub-multiplicative function, then holds
@(aA + mpB) = h(a)p(A) + mh(B)o(B),
where A, B € g such that 6(A4),c(B) € [0,b] and @, B € [0,0) witha + 8 < 1.

Proof: Let A, B € o with d(A),d(B) < [0, b]. We separate our proof for each poin (a) and
(b) as follows.
B

(a) Let , B be positive numbers such thata + f =t < 1 or we write % tT= 1. Also let

us define 4; = %and A, = é Since ¢ be operator (h, m)-convex function on I and ¢(0) =

0, then have
@(aA + mBB) = p(A,tA + mA,tB) < h(1))p(tA) + mh(A,)@(tB)
= h(A)e(tA +m(1 —t)0) + mh(1,)e(tB + m(1 —t)0)
< h(A)[h(©)(A) + mh(1 — t)p(0)]
+mh(2;)[h(£)(B) + mh(1 — t)p(0)]

= h(ADh(©)(A) + mh(2;)h()@(B).

Since h is a super-multiplicative function, then we obtain
¢(aA +mBB) < h(A,6)p(A) + mh(A,t)p(B)
= h(a)p(4) + mh(B)¢p(B).
The proof for case (b) in this theorem is similar to the proof for case (a).
|

Theorem 3. Letm € [0,1], hy:J, 2 (0,1) = [0, 00) with k = 1,2, and h,(J,) € J; such
that there exists h,(t) + h,(1 —t) < 1 for everyt € (0,1). Suppose ¢4:[0,b] = R and
@5: [0, c] » Rwith ¢,([0,c]) € [0,b] and ¢,(0) = 0.

(a) If the function h; is a super-multiplicative, ¢, is an operator (h;, m)-convex
function and monotone on the interval [0,b], and ¢, is an operator (h,, m)-
convex function, then ¢, o ¢, is an operator (h;, m)-convex function on the
interval [0, c].

(b) If the function h; is a sub-multiplicative, —¢; is an operator (h,, m)-convex
function and monotone, and —¢, is an operator (h,, m)-convex function, then
—@, © (—,) is an operator (h3, m)-convex function on the interval [0, c].

Here h; = hy © h,.

Proof: Let A, B € g with d(A4),d(B) < [0, c]. We separate our proof for each case (a) and
(b) as follows.
(a) Since ¢, is an operator (h,, m)-convex function on [0,c] and ¢; is a monotone
operator, then for any a € (0,1) we have

(@1 °9z) (@A +m(1 = a)B) < ¢1(hy()@,(A) + mhy (1 — @)@, (B)).
Next, using Theorem 2 (a) and due to the assumption which says ¢,([0,c]) € [0, b], ¢,
is operator (h;,m)-convex function on [0, b], and h,(J,) € J;. If we choose h,(a) +
h,(1 — a) < 1, then for every a € (0,1) we obtain
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(pro@)(@A+m(1l—-a)B) < hy (hz(a))fh(fpz(/l)) + mh1(h2“)<P1(<P2 (B))
= hs (a)<P1((P2(A)) + mh3(1 — a)‘/h(‘ﬂz (B))-

The proof for case (b) in this theorem is similar to the proof for case (a).H

Now, we introduce the definition of matrix (h, m)-convex functions, which is a special
case in our discussions. Let us denote M, () as a family of matrices with n order. Thus,
iftM € M,(H), then A: H,, - H,,, in which H,, € H is a finite dimensional space. For
more detailed information about matrix convex functions, it can be seen in [15], [22],
and [25]. In [15, 22], it stated that if M € M, (C) is a self-adjoint matrix, then a unitary
operator U € M,,(C) and a diagonal matrix D = diag[4, ..., 4,] € M, (C), with the
eigenvalues A; € d(A)(i = 1, ...,n) exists such that M = UDU" and ¢ (M) = Up(D)U".
Here, (D) € M, (C). So, it can be written as ¢ (D) = diag[¢(4,), ..., ¢(1,,)]. From the
Definition 4, then we obtain the definition of matrix (h, m)-convex functions as in the
following Definition 5.

Definition 5. Letm € [0,1],n € N, and h:J 2 (0,1) = [0, ). A function ¢: [0, b] = Ris
called to be matrix (h, m)-convex function if for every self-adjoint matrices M;, M, €
M, (H) and a € (0,1) holds

p(aM; + m(1 — a)M;) < h(@)p(M;) + mh(1 — a)p(My).

Note that, the matrix (h, m)-convex functions also have properties of operator (h, m)-
convex functions, since they are a special case. In the following Proposition 7 and
Proposition 8, we present two special properties of the matrix (h, m)-convex functions.

Proposition 7. Letm € [0,1] and h: ] — [0, ). Suppose ¢:[0,b] = Rbe a continuous
function on the interval [0, b]. ¢ is an operator (h, m)-convex function if only if ¢ is a
matrix (h, m)-convex function.

Proof: (=) Let M;,M, € M,,(H) be self-adjoint matrices and H,, € H be a finite
dimensional space. Also let P, € M,, () be the projection matrix on #,,. Define M, :=
M,P,: H — H, and M, := M,P,: H — H,. Since M; ,M, are two self-adjoint matrices,
then for every x, y € H, we can obtain

(Myx,y) = (MyPox, y) = (Myx,y) = (x, Myy) = (x, My P,y) = (x, My ).
So, if M;, M, are self-adjoint matrices, then M;, M, also are self-adjoint matrices. It can be
observed that p(M,) = (M) |7{n' Thus, we have

¢(aMy + m(1 = a)M,) = ¢(aM; + m(1 - )My) < h(a)o(M;) + mh(1 — a)p(M)
= h(@)p(M,) + mh(1 — a)p(My).
(<) By the assumption ¢ is a continuous function on [0, b], according to the Weierstrass
approximation theorem (see [26, Theorem B]), then a sequence of polynomials exists, namely
{Pn}nen, such that p, - ¢ on [0, b]. Let us consider a subspace ;€ H,,, in which it is
generated by the vectors 14, Myx, My2x, ..., My*nx, Myx, My*x, ..., Mo*mx. Also let Py, €
M, (H) be the projection matrix on },, . Thus, we can define My, := M; Py : H, - Hy,
and M, = M,Py :H, - Hy, . Since
(My,x,y) =M1 Py, x,y) = (M1x,y) = (x, Myy) = (x, M1 P, y) = (x, My, y),
then M; and M,  are self-adjoint matrices. This means pn(Mln)x = p,(M;)x or
pn(Mln)x — pn(Mp)x = 0.

Because ¢ is a continuous function on [0, b], thus for any € > 0, there exist N € N such
that forn > N holds
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£
Il (M1) — pn(Mp)]x|| < >
Hence, we can calculate

Ile(My,) — oM ]x|| = [[e(My,) = pn(My,) + P(My,) = Pu(My) + (My) — (M) ]x||
< lo(My,) = pa(My,)]x|| + |[Pn(M1,,) = Pa(MD)] ]|
+I[pn (M) — @(My)] x|

<t40+-=
> 2—8.

This means, ¢(M,,)x converges to ¢(M;)x. Using the same way, we can obtain that

<p(M2n)x converges to ¢(M,)x and <p(aM1n +m(1l-— a)Mln)x converges to ¢(aM; +

m(1 — a)M,)x. Next, since ¢ is matrix (h, m)-convex functions, then we have

¢(aMs, + m(1 — a)My,) < h(@)p(My,) + mh(1 - a)p(My,,)
or
h(@)o(My,) + mh(1 — a)p(M,,) — ¢(aM,, +m(1 —a)M, ) > 0.
It means
([h(@)o(My,) + mh(1 — )p(M,,) — ¢(aM;, + m(1— a)M, )]x,x) = 0.
Since n tends to infinity, then we have
Tllirgo([h(a)(p(Mln) +mh(1—a)p(M,,) — p(aM;, +m(1 — )M, )|x,x) = 0.
Hence, we get
([h(@)pMy) + mh(1 — )p(M,) — p(aM; + m(1 — a)My)]x, x) = 0.
That can be expressed as
p(aM; + m(1 — a)M;) < h(@)p(M;) + mh(1 — a)p(My).

This is the end of our proof.

|

The contrapositive of the statement in Proposition 7 is: ¢ is not an operator (h, m)-
convex function if and only if ¢ is not a matrix (h,m)-convex function. This is
particularly interesting because we can prove that a function is not an operator (h, m)-
convex function by taking two self-adjoint matrices and showing that they do not satisfy
the condition in Definition 5. For instance, let us consider a function g: [0,10] — R by the

rule g(u) = u3, for any u € [0,10]. For h(a) = a and m = g, g is not an operator (h,m )-
convex function. The proof is quite simple, we just need take two arbitary self-adjoint

{ Danar, = ¢ ]

o(M;) ={0,1} and o(M,) = {0.3820,2.6180} are contained in the interval [0,10].
However, if we choose a = % then we obtain

matrices M, =( ) We can see the spectrum of each matrix

3 1 (5389860 4128180

10 10
M3+=(1- M3—<M —(1- M) = =M,.
aMy” + 37 A= a)My” = aMy + 7 (A =M, | = Tomea (128180 3114300) h

Since M;, has one negative eigenvalue, then we can conclude that M;, is not positive definite
matrix. Hence, according to Proposition 7, the function g is not an operator (h, m )-convex

function for h(a) = ¢ and m = g.

The next proposition show the convergence of the sequence of matrix (h, m)-convex
functions. However, by using Proposition 7, this property also holds for the operator
(h, m)-convex functions as written in Corollary 1 below.
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Proposition 8. Letm € [0,1],n €N, and h:] 2 (0,1) — [0, o). Also let the sequence of
functions {¢; }neny With ¢,,: [0, b] = R be a sequence of matrix (h, m)-convex functions. If
¢, converges to ¢, then ¢ is also a matrix (h, m)-convex function on the interval [0, b].

Proof: Let My, M, € M,,(H) be self-adjoint matrices with a(M,), a(M;) < [0, b]. Thus, we
can write M; = UDU*, where U is a unitary matrix and diagonal matrix D =
diag[A4, ..., A,] with the eigenvalues A;(i = 1,...,n) € d(M;). Since ¢,, converges to ¢,
then we have
Pn(My) = @, (UDU™) = U@, (D)U" = Up(D)U" = (UDU") = @(M,).

That means ¢, (M;) - ¢(M,). Using the same way for matrix operator M,, we obtain
that ¢, (M,) converges to ¢ (M,).
Next, because {@, },en are sequence of (h, m)-convex function, then it holds

on(aMy + m(1 — t)M,) < h(a)p,(M;) + mh(1 — a)p,(M,)
or

h(@)pn(My) + mh(1 — @)@, (Mz) — pp(aM; + m(1 — a)M;) = 0
It means
([h(@)@n(My) + mh(1 — @)pn(M2) — @n(aM; + m(1 — a)M,)]x, x) = 0.
Since n tends to infinity, then we have
lim ([~(@)9n(M1) + mh(1 = @) (Mz) = ¢n(aM; + m(1 — a)M;)]x, x) = 0.

Hence, we obtain
([h(@)pMy) + mh(1 — a)p(Mz) — p(aM; + m(1 — a)Mp)]x,x) = 0
or it can be expressed as
p(aM; + m(1 — a)M;) < h(@)p(M;) + mh(1 — a)p(My).
This is the end of our proof.
[ |

Corollary 1. Let m € [0,1] and h:]J — [0,0). If {¢,}ney With ¢,:[0,b] > R are a
sequence of operator (h, m)-convex functions such that ¢,, = ¢, then ¢ is an of operator
(h, m)-convex functions on [0, b].

The results obtained above provide a theoretical framework for further exploration
in operator convexity. These properties have potential applications in areas such as
functional analysis, matrix analysis, and quantum information theory. Moreover, by
extending the operator convexity notions, one can derive sharper operator inequalities,
which are valuable for optimization problems and mathematical physics.

CONCLUSIONS

In this study, we developed a foundational framework for operator (h, m)-convex
functions, that is establishing several fundamental properties and extending our results
for matrix case. We obtain the relation property between operator (h, m)-convex
functions and matrix (h, m)-convex functions. This study has the potential to open new
avenues for research in inequality theory and operator analysis.
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