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ABSTRACT 

This study examines the concept of operator (ℎ, 𝑚)-convexity within the context of Hilbert 
spaces, aiming to advance the understanding of operator convex functions. Operator convex 
functions play a pivotal role in various mathematical disciplines, particularly in optimization and 
the study of inequalities. The paper introduces the notion of an operator (ℎ, 𝑚)-convex function, 
which generalizes existing classes of operator convexity, and explores its fundamental 
properties. The methodological framework relies on a theoretical analysis of bounded operators 
and their relationships with other forms of operator convex functions. Key findings demonstrate 
that, under certain conditions, the product of two operator convex functions retains operator 
convexity. Furthermore, the study establishes convergence results for matrix (ℎ, 𝑚)-convex 
functions. These contributions enhance the theoretical foundation of operator convexity, offering 
a basis for future research and applications. The results not only deepen the understanding of 
operator (ℎ, 𝑚)-convex functions but also support the development of sharper inequalities, 
thereby broadening the applicability of operator convexity within mathematical analysis. 
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INTRODUCTION 

The concept of convexity is central to the study of applied mathematics [1].  
Convexity was initially defined and used in the study of arc length by Archimedes. The 
definition of convexity proposed by Archimedes is similar to the current definition, which 
states that a set is called convex if the set contains all line segments formed by any two 
points in the set. It is written mathematically as in the Definition 1 below. 

Definition 1  (see [2]). Let 𝑋 be a non-empty set.  𝑋 ⊆ ℝ𝑛 is called a convex set if for any 
𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0,1) holds 

𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑋. 
Similarly, a curve (function) is called as convex if the line segment connecting any two 
points on the function's graph lies above the curve[1]. We can write it mathematically as 
in the Definition 2 below. 
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Definition 2 (see [2]). Let X be a convex set. A functions 𝜑: 𝑋 → ℝ is called a convex, if 
for any 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ (0,1) holds  

𝜑(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝜑(𝑥) + (1 − 𝛼)𝜑(𝑦). (1) 
If the inequality (1) is reversed, then 𝜑 is called a concave. In other words if 𝜑 is a 
convex, then – 𝜑 is a concave, vice versa. 

Various studies based on the definition and classical convexity theories have been 
developed, leading to various variations in the definitions and convexity theories that 
are more general than classical convexity. In 1984, Toader [3] introduced the definition 
of 𝑚-convex functions, in which it must be defined on a 𝑚-convex set. In this class, when 
𝑚 = 0, it is called starshaped functions [4]. In 2007, Varošanec [5] introduced a new 
class of convexity, which is ℎ-convexity. He studied the ℎ-convex function definition and 
their properties. Here, ℎ: 𝐽 → [0, ∞) is nonnegative and the interval 𝐽 ⊇ (0,1). This is also 
the generalization of some classes in convexity, such as Godunova-Levin functions (see 
[6]), 𝑠-convex functions (see [7], [8]), 𝑃-functions (see [9]), and 𝑠-Godunova-Levin 
functions (see [10]).  Combining the concepts of ℎ-convexity and 𝑚-convexity, Özdemir 
et al. [11] studied (ℎ, 𝑚)-convex functions’s definition and their properties. In this class 
of convex functions, the domain should be a 𝑚-convex set. The special class that 
generalized from this class is (𝑠, 𝑚)-convex functions (see [12], [13]) and (𝑠, 𝑚)-
Godunova-Levin functions (see [14]).  

Operator convex functions are important tools in functional analysis, matrix analysis, 
quantum information and so on (For instance, see [15], [16], [17], [18], [19]). These are 
real functions whose extensions to self-adjoint operator preserve order. The motivation 
for constructing the definition of operator convex function came from Theorem 1. First, 
we denote ℋ  be a Hilbert space with an inner product 〈⋅,⋅〉 , while ℬ(ℋ) =
{𝐵|𝐵: ℋ → ℋ is a bounded and linear operator}  and 1ℋ  is the identity operator in 
Hilbert space ℋ. 

Theorem 1 (see [20]). Let ℬ(ℋ) = {𝐵|𝐵: ℋ → ℋ is a bounded and linear operator} . 
Then, there exist a unique ∗-isometric isomorphism Gelfand map 𝛷: 𝐶(𝜎(𝐵)) → ℬ(ℋ), 

such that is for any 𝜑1, 𝜑2 ∈ 𝐶(𝜎(𝐵)) holds 

(i) 𝛷(𝜑1 + 𝜑2) = 𝛷(𝜑1) + 𝛷(𝜑2). 
(ii) 𝛷(𝑐𝜑1) = 𝑐𝛷(𝜑1). 
(iii) 𝛷(𝜑1𝜑2) = 𝛷(𝜑1)𝛷(𝜑2). 
(iv) 𝛷(𝜑1̅̅̅̅ ) = 𝛷(𝜑1)∗. 
(v) If 𝜑1(𝑢) = 𝑢 and 𝜑1(𝑢) = 1, then 𝛷(𝜑1) = 𝐵 and 𝛷(𝜑1) = 1ℋ  respectively. 
(vi) 𝜑1(𝑥) ≥ 0, then 𝛷(𝜑1) is positive operator. 

For convenience, before we go further to the definition of operator convex functions, we 
give the notation of operator orders 

𝐴 ≼ 𝐵 (2) 
means 

〈𝐴𝑥, 𝑥〉 ≤ 〈𝐵𝑥, 𝑥〉, (3) 
for any 𝑥 ∈ ℋ. Thus, changing the sign in (2) with “≺”, “≽”, “≻”, and “=” means changing 
the sign in (3) with “<”, “≥”, “>”, and “=” respectively. We also denote ℬ+(ℋ) is a family 
of bounded linear positive operator in Hilbert space and ℘ be a subspace from the 
family ℬ+(ℋ). 

By using that theorem Bhatia [15] gives the definition of the operator convex 
function as follows. 
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Definition 3 (see [15]). A function 𝜑: 𝐼 → ℝ is called to be operator convex function, if 
for any self-adjoint operator 𝐴, 𝐵 ∈ ℬ(ℋ) with 𝜎(𝐴), 𝜎(𝐵) ⊆ 𝐼 and 𝛼 ∈ (0,1) holds 

𝜑(𝛼𝐴 + (1 − 𝛼)𝐵) ≼ 𝛼𝜑(𝐴) + (1 − 𝛼)𝜑(𝐵). 
By applying the same approach used to construct the definition of operator convex 

functions, Salaş et al. [21] studied about the operator (ℎ, 𝑚)-convex function’s definition 
in Hilbert space using the concept of (h,m)-convex functions studied by Özdemir et al. 
[11]. By using Theorem 1 Salaş et al. [21] constructed the definition of the operator 
(ℎ, 𝑚)-convex functions for operators in ℘ as written in the following Definition 4.  

Definition 4 (see [21]). Let 𝑚 ∈ [0,1] and ℎ: 𝐽 ⊇ (0,1) → [0, ∞). A function 𝜑: [0, 𝑏] → ℝ 
is called a operator (ℎ, 𝑚)-convex function, if for any self-adjoint operator 𝐴, 𝐵 ∈ ℘ with 
𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏] and 𝛼 ∈ (0,1) holds 

𝜑(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ ℎ(𝛼)𝜑(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑(𝐵). 

From Definition 4 above, we can get some other classes in operator convexity in Hilbert 
space, if we take ℎ(𝛼) = 𝛼, then we get the definition of operator 𝑚-convex functions 
(see [18], [22], [23]). Meanwhile, if we take the value of 𝑚 equals one, then we obtain 
the definition of operator ℎ-convex functions (see [24]). 

They also constructed the Hermite-Hadamard type inequalities for operator (ℎ, 𝑚)-
convex functions. However, the investigation of the fundamental properties of (ℎ, 𝑚)-
convex operator functions is essential for establishing a solid theoretical framework 
upon which further analysis and applications can be built. For instance, if we want to 
construct an extension of the Hermite-Hadamard type inequality—namely, the Hermite-
Hadamard inequality for the product of two operator convex functions. When we study 
this topic, an important issue arises regarding whether the product of two operator 
convex functions remains operator convex, and under what conditions the resulting 
function can maintain operator convexity. This consideration motivates us to conduct 
research on the fundamental properties of (ℎ, 𝑚)-operator convex functions. 

Based on developments that have been presented, in this paper, we provide some 
fundamental properties for operator (ℎ, 𝑚)-convex functions in Hilbert space. Using the 
fact that matrix is a bounded linear operator, we also provide the definition and the 
properties of the matrix (ℎ, 𝑚)-convex functions as a special case, when the operator is a 
self-adjoint matrix. Then, we study about the relation between operator (ℎ, 𝑚)-convex 
functions and matrix (ℎ, 𝑚)-convex functions. 

 

METHODS  

Our methodology for composing this research is literature review. This research is 
composed by using a theoretical approach, that is reviewing, analyzing, and extending 
existing concepts of (ℎ, 𝑚)-convex functions to operators in Hilbert spaces. Thus, our 
methods for composing this article can be written as follows: 

(i) Conduct a comprehensive literature review related to (ℎ, 𝑚)-convexity and 
operator convexity. 

(ii) Using the definition of operator (ℎ, 𝑚)-convex functions that have been studied 
by Salaş et al. [21] and the characteristic of the ℎ function in Varošanec [5] to 
derive new fundamental properties. 

(iii) Formulate the definition of matrix (ℎ, 𝑚)-convex functions. 
(iv) Investigate the relationship between operator (ℎ, 𝑚)-convex functions and 

matrix (ℎ, 𝑚)-convex functions. 
All theoretical proofs are constructed based on operator theory, functional analysis, and 
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properties of convex functions without the use of empirical or computational 
experiments.  

RESULTS AND DISCUSSION  

In this section, we discuss some basic properties in the operator version of (ℎ, 𝑚)-
convexity class, where the operator is bounded  linear operator in Hilbert space. We also 
give the matrix (ℎ, 𝑚)-convex function definition as a special case of this class of 
convexity. 

Firstly, we present an example of the operator (ℎ, 𝑚)-convex functions in the 
following Example 1. 

Example 1. Let ℎ(𝛼) = 3𝛼 , 𝑚 ∈ (0,1] , ℊ = {𝐴|𝐴 ∈ ℬ+(ℋ) with 𝐴 = 𝐴∗ and 𝜎(𝐴) =

{𝜆 ∈ ℝ+|𝜆 ≤ 2}}. A function 𝜑, defined by 

𝜑(𝑥) = {

1

2
𝑥, 0 ≤ 𝑥 < 1,

3

2
𝑥, 1 ≤ 𝑥 ≤ 2,

 

is an operator (ℎ, 𝑚)-convex functions for operator in ℊ.  

We can prove Example 1 by using contradiction. So, if we take two operators 𝐴, 𝐵 at least 

one exists 𝛼 ∈ [0,1] such that the condition in the Definition 4 is not valid. Without loss 

generalization we choose 𝜎(𝐴) ⊆ [0, 1) and 𝜎(𝐵) ⊆ [1, 2]. Yet, by using spectral theorem 

for every eigenvalue contained in {𝜆 ∈ ℝ+|𝜆 ≤ 1}, we obtain that the eigenvalues of 

whether ℎ(𝛼)
1

2
(𝐴) + 𝑚ℎ(1 − 𝛼)

3

2
(𝐵) −

3

2
(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) = 3𝑚(1 − 𝛼)𝐵  or 

ℎ(𝛼)
1

2
(𝐴) + 𝑚ℎ(1 − 𝛼)

3

2
(𝐵) −

1

2
(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) = 3𝛼𝐴 are all positive. Hence, for 

any 𝛼 ∈ [0,1] we have   

ℎ(𝛼)𝜑(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑(𝐵) − 𝜑(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≽ 0. 

 
Now, we construct the linearity property of operator (ℎ, 𝑚)-convex functions. This 

property is essential to develop some inequalities that are generated from operator 
(ℎ, 𝑚)-convex functions. We present it as in the following Proposition 1 and Proposition 
2.  

Proposition 1. Let [0, 𝑏] be an interval, 𝑚 ∈ [0,1], and ℎ: 𝐽 ⊇ (0,1) → [0, ∞). Suppose 
𝜑1, 𝜑2: [0, 𝑏] → ℝ are operator (ℎ, 𝑚)-convex functions. Then, 𝜑1 + 𝜑2 is also operator 
(ℎ, 𝑚)-convex function on [0, 𝑏]. 

Proof: Let 𝐴, 𝐵 ∈ ℘ with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏]. Since 𝜑1, 𝜑2 are two operator (ℎ, 𝑚)-convex 
functions, then for any 𝛼 ∈ (0,1) we have 

(𝜑1 + 𝜑2)(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵)  = 𝜑1(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) + 𝜑1(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) 
≼ ℎ(𝛼)𝜑1(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑1(𝐵) + ℎ(𝑡)𝜑2(𝐴) 

+𝑚ℎ(1 − 𝛼)𝜑2(𝐵) 
≼ ℎ(𝛼)(𝜑1 + 𝜑2)(𝐴) + 𝑚ℎ(1 − 𝛼)(𝜑1 + 𝜑2)(𝐵). 

That means 𝜑1 + 𝜑2 is operator (ℎ, 𝑚)-convex function on the interval [0,b]. 
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█ 

Proposition 2. Let 𝑚 ∈ [0,1], ℎ: 𝐽 ⊇ (0,1) → [0, ∞), and 𝑘 ∈ (0, ∞). Suppose 𝜑: [0, 𝑏] →
ℝ be an operator (ℎ, 𝑚)-convex function. Then, 𝑘𝜑 is also an operator (ℎ, 𝑚)-convex 
function on [0, 𝑏]. 

Proof: Let 𝐴, 𝐵 ∈ ℘  with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏] .  Since 𝜑  is an operator (ℎ, 𝑚)-convex 
function, then for any 𝛼 ∈ (0,1) we have 

(𝑘𝜑)(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ 𝑘[ℎ(𝛼)𝜑(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑(𝐵)] 
≼ ℎ(𝛼)(𝑘𝜑)(𝐴) + 𝑚ℎ(1 − 𝛼)(𝑘𝜑)(𝐵). 

That means 𝑘𝜑 is an operator (ℎ, 𝑚)-convex function. 
█ 

The following proposition discusses the properties of operator (ℎ, 𝑚)-convex 
functions through the composition of two functions. However, a certain condition must 
be satisfied, which is related to the monotonicity of one of the functions.  

Proposition 3. Let [0, 𝑏], [0, 𝑐] be two intervals, 𝑚 ∈ [0,1], and ℎ: 𝐽 ⊇ (0,1) → [0, ∞). 
Suppose 𝜑1: [0, 𝑏] → ℝ be an operator (ℎ, 𝑚)-convex function for operators in ℘ and 
monotone operator function and 𝜑2: [0, 𝑐] → ℝ be an operator 𝑚-convex function for 
operators in ℘, with 𝜑2([0, 𝑐]) ⊆ [0, 𝑏]. Then, the composition function 𝜑1 ∘ 𝜑2 is also 
operator (ℎ, 𝑚)-convex on [0, 𝑐] for operators in ℘. 

Proof: Let 𝐴, 𝐵 ∈ ℘ with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑐].  Since 𝜑2 is an operator 𝑚-convex function 
and 𝜑1 is an operator monotone function, then for any 𝛼 ∈ (0,1) we have 

( 𝜑1 ∘ 𝜑2)(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ 𝜑1(𝛼𝜑2(𝐴) + 𝑚(1 − 𝛼)𝜑2(𝐵)). 

Indeed, since 𝜑2([0, 𝑐]) ⊆ [0, 𝑏], also 𝜑1 is operator (ℎ, 𝑚)-convex and monotone, we 
have 

( 𝜑1 ∘ 𝜑2)(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ ℎ(𝛼)𝜑1(𝜑2(𝐴)) + 𝑚ℎ(1 − 𝛼)𝜑1(𝜑2(𝐵)) 
 = ℎ(𝛼) (𝜑1 ∘ 𝜑1)(𝐴) + 𝑚 ℎ(1 − 𝛼)( 𝜑1 ∘ 𝜑2)(𝐵). 

That means, 𝜑1 ∘ 𝜑2 is an operator (ℎ, 𝑚)-convex function on the interval [0, 𝑐] for 
operators in ℘. 

█ 

We consider two functions that map from an interval 𝐽 ⊇ (0,1) to the set of real 
numbers ℝ, namely ℎ1 and ℎ2. The next property is obtained by comparing those two 
functions. 

Proposition 4. Let  𝑚 ∈ [0,1] and ℎ1, ℎ2: 𝐽 ⊇ (0,1) → [0, ∞) with ℎ1 ≤ ℎ2 . If 𝜑: [0, 𝑏] → ℝ 
is an operator (ℎ1, 𝑚)-convex function for operators in ℘, then 𝜑 is also an operator 
(ℎ2, 𝑚)-convex function for operators in ℘. 

Proof: Let 𝐴, 𝐵 ∈ ℘ with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏] .  Since 𝜑  is an operator (ℎ1, 𝑚)-convex 
function and ℎ1 ≤ ℎ2, then for any 𝛼 ∈ (0,1) we have 

𝜑(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ ℎ1(𝛼)𝜑(𝐴) + 𝑚ℎ1(1 − 𝛼)𝜑(𝐵) 
   ≼ ℎ2(𝛼)𝜑(𝐴) + 𝑚ℎ2(1 − 𝛼)𝜑(𝐵). 

Hence,  𝜑 is also an operator (ℎ2, 𝑚)-convex function. 
█ 

Similar to the previous property, by considering two scalars 𝑚1, 𝑚2 ∈ [0,1], we can 
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obtain the following property. 

Proposition 5. Let ℎ: 𝐽 ⊇ (0,1) → [0, ∞) and 𝑚1, 𝑚2 ∈ [0,1] with 𝑚1 ≤ 𝑚2. If 𝜑: [0, 𝑏] →
ℝ is an operator (ℎ, 𝑚1)-convex function for operators in ℘ and monotone decreasing, 
then 𝜑 is also an operator (ℎ, 𝑚2)-convex function for operators in ℘. 

Proof: Let 𝐴, 𝐵 ∈ ℘ with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏] .  Since 𝜑  is an operator (ℎ, 𝑚1)-convex 
function and 𝑚1 ≤ 𝑚2, then for any 𝛼 ∈ (0,1) we have 

𝜑(𝛼𝐴 + 𝑚2(1 − 𝛼)𝐵) ≼ ℎ(𝛼)𝜑(𝐴) + 𝑚1ℎ(1 − 𝛼)𝜑(𝐵) 
 ≼ ℎ(𝛼)𝜑(𝐴) + 𝑚2ℎ(1 − 𝛼)𝜑(𝐵). 

Hence,  𝜑 is also an operator (ℎ, 𝑚2)-convex function. 
█ 

Now, we move to the multiplicative property of two (ℎ, 𝑚)-convex operator functions that 

are presented, which support the development of the Hermite-Hadamard type inequalities for 

the product of two (ℎ, 𝑚)-convex operator functions. In the following proposition, we need to 

assume that ℘ is also a family of commutative and comparable operators. 

Proposition 6. Let ℎ: 𝐽 ⊇ (0,1) → [0, ∞), and 𝑚 ∈ [0,1] such that ℎ(𝛼) + 𝑚ℎ(1 − 𝛼) ≤ 1.  
Also suppose 𝐴, 𝐵 ∈ ℘ be commutative and comparable (i.e. 𝐴𝐵 = 𝐵𝐴 and 𝐴 ≼ 𝐵 or 𝐴 ≽
𝐵) with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏]. If both 𝜑1, 𝜑2: [0, 𝑏] → [0, ∞) are operator (ℎ, 𝑚)-convex and 
operator monotone functions, then 𝜑1𝜑2 is also operator (ℎ, 𝑚)-convex functions on the 
interval [0, 𝑏]. 

Proof: By the assumptions 𝐴, 𝐵 ∈ ℘ be commutative and comparable with 𝜎(𝐴), 𝜎(𝐵) ⊆
[0, 𝑏]. Without loss the generalization, we take 𝐴 ≼ 𝐵. According to [10], it holds that 
𝜑1(𝐴)𝜑2(𝐵) = 𝜑2(𝐵)𝜑1(𝐴). Since 𝜑1, 𝜑2 are operator monotone functions, then we have 
𝜑1(𝐵) − 𝜑1(𝐴) ≽ 0 and  𝜑2(𝐵) − 𝜑2(𝐴) ≽ 0. So, by multiplication we have 

(𝜑1(𝐵) − 𝜑1(𝐴))(𝜑2(𝐵) − 𝜑2(𝐴)) ≽ 0  

or 
𝜑1(𝐵)𝜑2(𝐵) + 𝜑1(𝐴)𝜑2(𝐴) ≽ 𝜑1(𝐴)𝜑2(𝐵) + 𝜑1(𝐵)𝜑2(𝐴) . (5) 

Next, because 𝜑1, 𝜑2 are operator (ℎ, 𝑚)-convex functions, then we get 
𝜑1𝜑2(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) = 𝜑1(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ∙ 𝜑2(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) 

 ≼ [ℎ(𝛼)𝜑1(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑1(𝐵)] 
   × [ℎ(𝛼)𝜑2(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑2(𝐵)] 

   = ℎ2(𝛼)𝜑1(𝐴)𝜑2(𝐴) + 𝑚2ℎ2(1 − 𝛼)𝜑1(𝐵)𝜑2(𝐵) 
 +𝑚ℎ(𝛼)ℎ(1 − 𝛼)[𝜑1(𝐴)𝜑2(𝐵) + 𝜑1(𝐵)𝜑2(𝐴)]. 

Based on (5), we thus have 
𝜑1𝜑2(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ ℎ2(𝛼)𝜑1(𝐴)𝜑2(𝐴) + 𝑚2ℎ2(1 − 𝛼)𝜑1(𝐵)𝜑2(𝐵) 

  +𝑚ℎ(𝛼)ℎ(1 − 𝛼)[𝜑1(𝐴)𝜑2(𝐴) + 𝜑1(𝐵)𝜑2(𝐵)]. 
    = ℎ(𝛼)[ℎ(𝛼) + 𝑚ℎ(1 − 𝛼)]𝜑1(𝐴)𝜑2(𝐴) 

  +𝑚ℎ(1 − 𝛼)[ℎ(𝛼) + 𝑚ℎ(1 − 𝛼)]𝜑1(𝐵)𝜑2(𝐵) 
By the assumption that ℎ(𝛼) + 𝑚ℎ(1 − 𝛼) ≤ 1. Hence, we obtain 

𝜑1𝜑2(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ ℎ(𝛼)𝜑1(𝐴)𝜑2(𝐴) + 𝑚ℎ(1 − 𝛼)𝜑1(𝐵)𝜑2(𝐵). 
That means 𝜑1𝜑2  is an operator (ℎ, 𝑚)-convex functions on the interval [0, 𝑏]  for 
operators in ℘. 

█ 

The characteristic of ℎ in reference [5] has several consequences to the properties of 
the operator (ℎ, 𝑚)-convex functions. In the following Theorem 2 and Theorem 3, we 
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obtain the properties of the operator (ℎ, 𝑚)-convex functions based on the characteristic 
of the ℎ functions.  

Theorem 2. Let 𝑚 ∈ [0,1] and ℎ: 𝐽 ⊇ (0,1) → [0, ∞). The following theorems are held: 
(a) Let 𝜑: [0, 𝑏] → ℝ be operator (ℎ, 𝑚)-convex function and 𝜑(0) = 0. If ℎ is a super-

multiplicative function, then holds 
𝜑(𝛼𝐴 + 𝑚𝛽𝐵) ≼ ℎ(𝛼)𝜑(𝐴) + 𝑚ℎ(𝛽)𝜑(𝐵), 

where 𝐴, 𝐵 ∈ ℘ such that 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏] and 𝛼, 𝛽 ∈ [0, ∞) with 𝛼 + 𝛽 ≤ 1. 
(b) Let 𝜑: [0, 𝑏] → ℝ such that – 𝜑 be operator (ℎ, 𝑚)-convex function and 𝜑(0) = 0. 

If ℎ is a sub-multiplicative function, then holds 
𝜑(𝛼𝐴 + 𝑚𝛽𝐵) ≽ ℎ(𝛼)𝜑(𝐴) + 𝑚ℎ(𝛽)𝜑(𝐵), 

where 𝐴, 𝐵 ∈ ℘ such that 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏] and 𝛼, 𝛽 ∈ [0, ∞) with 𝛼 + 𝛽 ≤ 1. 

Proof: Let 𝐴, 𝐵 ∈ ℘ with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑏]. We separate our proof for each poin (a) and 
(b) as follows.  

(a) Let 𝛼, 𝛽 be positive numbers such that 𝛼 + 𝛽 = 𝑡 ≤ 1 or we write 
𝛼

𝑡
+

𝛽

𝑡
= 1. Also let 

us define 𝜆1 =
𝛼

𝑡
 and 𝜆2 =

𝛽

𝑡
. Since 𝜑 be operator (ℎ, 𝑚)-convex function on 𝐼 and 𝜑(0) =

0, then have 
𝜑(𝛼𝐴 + 𝑚𝛽𝐵) = 𝜑(𝜆1𝑡𝐴 + 𝑚𝜆2𝑡𝐵) ≼ ℎ(𝜆1)𝜑(𝑡𝐴) + 𝑚ℎ(𝜆2)𝜑(𝑡𝐵) 

 = ℎ(𝜆1)𝜑(𝑡𝐴 + 𝑚(1 − 𝑡)0) + 𝑚ℎ(𝜆2)𝜑(𝑡𝐵 + 𝑚(1 − 𝑡)0) 
≼ ℎ(𝜆1)[ℎ(𝑡)𝜑(𝐴) + 𝑚ℎ(1 − 𝑡)𝜑(0)] 

+𝑚ℎ(𝜆2)[ℎ(𝑡)𝜑(𝐵) + 𝑚ℎ(1 − 𝑡)𝜑(0)] 
= ℎ(𝜆1)ℎ(𝑡)𝜑(𝐴) + 𝑚ℎ(𝜆2)ℎ(𝑡)𝜑(𝐵). 

Since ℎ is a super-multiplicative function, then we obtain 
𝜑(𝛼𝐴 + 𝑚𝛽𝐵) ≼ ℎ(𝜆1𝑡)𝜑(𝐴) + 𝑚ℎ(𝜆2𝑡)𝜑(𝐵) 

= ℎ(𝛼)𝜑(𝐴) + 𝑚ℎ(𝛽)𝜑(𝐵). 
The proof for case (b) in this theorem is similar to the proof for case (a). 

█ 

Theorem 3. Let 𝑚 ∈ [0,1] , ℎ𝑘: 𝐽𝑘 ⊇ (0,1) → [0, ∞)  with 𝑘 = 1,2 , and ℎ2(𝐽2) ⊆ 𝐽1  such 
that there exists ℎ2(𝑡) + ℎ2(1 − 𝑡) ≤ 1 for every 𝑡 ∈ (0,1). Suppose  𝜑1: [0, 𝑏] → ℝ and 
𝜑2: [0, 𝑐] → ℝ with 𝜑2([0, 𝑐]) ⊆ [0, 𝑏] and 𝜑1(0) = 0. 

(a) If the function ℎ1  is a super-multiplicative, 𝜑1  is an operator (ℎ1, 𝑚)-convex 
function and monotone on the interval [0, 𝑏], and 𝜑1 is an operator (ℎ2, 𝑚)-
convex function, then 𝜑1 ∘ 𝜑2 is an  operator (ℎ3, 𝑚)-convex function on the 
interval [0, 𝑐]. 

(b) If the function ℎ1  is a sub-multiplicative, −𝜑1  is an operator (ℎ1, 𝑚)-convex 
function and monotone, and −𝜑2 is an operator (ℎ2, 𝑚)-convex function, then 
−𝜑1 ∘ (−𝜑2) is an operator (ℎ3, 𝑚)-convex function on the interval [0, 𝑐]. 

Here ℎ3 = ℎ1 ∘ ℎ2. 

Proof: Let 𝐴, 𝐵 ∈ ℘ with 𝜎(𝐴), 𝜎(𝐵) ⊆ [0, 𝑐]. We separate our proof for each case (a) and 
(b) as follows.  
(a) Since 𝜑2 is an operator (ℎ2, 𝑚)-convex function on [0, 𝑐] and 𝜑1  is a monotone 
operator, then for any 𝛼 ∈ (0,1) we have 

( 𝜑1 ∘ 𝜑2)(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ 𝜑1(ℎ2(𝛼)𝜑2(𝐴) + 𝑚ℎ2(1 − 𝛼)𝜑2(𝐵)). 

Next, using Theorem 2 (a) and due to the assumption which says  𝜑2([0, 𝑐]) ⊆ [0, 𝑏], 𝜑1 
is operator (ℎ1, 𝑚)-convex function on [0, 𝑏], and ℎ2(𝐽2) ⊆ 𝐽1. If we choose ℎ2(𝛼) +
ℎ2(1 − 𝛼) ≤ 1, then for every 𝛼 ∈ (0,1) we obtain 
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( 𝜑1 ∘ 𝜑2)(𝛼𝐴 + 𝑚(1 − 𝛼)𝐵) ≼ ℎ1(ℎ2(𝛼))𝜑1(𝜑2(𝐴)) + 𝑚ℎ1(ℎ2𝛼)𝜑1(𝜑2(𝐵)) 

= ℎ3(𝛼)𝜑1(𝜑2(𝐴)) + 𝑚ℎ3(1 − 𝛼)𝜑1(𝜑2(𝐵)). 

The proof for case (b) in this theorem is similar to the proof for case (a).█ 
Now, we introduce the definition of matrix (ℎ, 𝑚)-convex functions, which is a special 

case in our discussions. Let us denote ℳ𝑛(ℋ) as a family of matrices with 𝑛 order. Thus, 
if 𝑀 ∈ ℳ𝑛(ℋ), then 𝐴: ℋ𝑛 → ℋ𝑛, in which ℋ𝑛 ⊆ ℋ is a finite dimensional space. For 
more detailed information about matrix convex functions, it can be seen in [15], [22], 
and [25]. In [15, 22], it stated that if 𝑀 ∈ ℳ𝑛(ℂ) is a self-adjoint matrix, then a unitary 
operator 𝑈 ∈ ℳ𝑛(ℂ)  and a diagonal matrix 𝐷 = diag[𝜆1, … , 𝜆𝑛] ∈ ℳ𝑛(ℂ) , with the 
eigenvalues 𝜆𝑖 ∈ 𝜎(𝐴)(𝑖 = 1, … , 𝑛) exists such that 𝑀 = 𝑈𝐷𝑈∗  and 𝜑(𝑀) = 𝑈𝜑(𝐷)𝑈∗ . 
Here, 𝜑(𝐷) ∈ ℳ𝑛(ℂ). So, it can be written as 𝜑(𝐷) = diag[𝜑(𝜆1), … , 𝜑(𝜆𝑛)]. From the 
Definition 4, then we obtain the definition of matrix (ℎ, 𝑚)-convex functions as in the 
following Definition 5. 

Definition 5. Let 𝑚 ∈ [0,1], 𝑛 ∈ ℕ, and ℎ: 𝐽 ⊇ (0,1) → [0, ∞). A function 𝜑: [0, 𝑏] → ℝ is 
called to be matrix (ℎ, 𝑚)-convex function if for every self-adjoint matrices 𝑀1, 𝑀2 ∈
ℳ𝑛(ℋ) and 𝛼 ∈ (0,1) holds 

𝜑(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2) ≼ ℎ(𝛼)𝜑(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2). 

Note that, the matrix (ℎ, 𝑚)-convex functions also have properties of operator (ℎ, 𝑚)-
convex functions, since they are a special case. In the following Proposition 7 and 
Proposition 8, we present two special properties of the matrix (ℎ, 𝑚)-convex functions. 

Proposition 7. Let 𝑚 ∈ [0,1] and ℎ: 𝐽 → [0, ∞). Suppose 𝜑: [0, 𝑏] → ℝ be a continuous 
function on the interval [0, 𝑏]. 𝜑 is an operator (ℎ, 𝑚)-convex function if only if 𝜑 is a 
matrix (ℎ, 𝑚)-convex function.  

Proof: (⇒) Let 𝑀1, 𝑀2 ∈ ℳ𝑛(ℋ)  be self-adjoint matrices and ℋ𝑛 ⊆ ℋ  be a finite 
dimensional space. Also let 𝑃𝑛 ∈ ℳ𝑛(ℋ) be the projection matrix on ℋ𝑛. Define 𝑀1̂ ≔
𝑀1𝑃𝑛: ℋ → ℋ𝑛 and 𝑀2̂ ≔ 𝑀2𝑃𝑛: ℋ → ℋ𝑛 . Since 𝑀1 , 𝑀2 are two self-adjoint matrices, 
then for every 𝑥, 𝑦 ∈ ℋ, we can obtain 

〈𝑀1̂𝑥, 𝑦〉 = 〈𝑀1𝑃𝑛𝑥, 𝑦〉 = 〈𝑀1𝑥, 𝑦〉 = 〈𝑥, 𝑀1𝑦〉 = 〈𝑥, 𝑀1𝑃𝑛𝑦〉 = 〈𝑥, 𝑀1̂𝑦〉. 
So, if 𝑀1, 𝑀2 are self-adjoint matrices, then 𝑀1̂, 𝑀2̂ also are self-adjoint matrices. It can be 

observed that 𝜑(𝑀1) = 𝜑(𝑀1̂)|
ℋ𝑛

. Thus, we have  

𝜑(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2) = 𝜑(𝛼𝑀1̂ + 𝑚(1 − 𝛼)𝑀2̂) ≼ ℎ(𝛼)𝜑(𝑀1̂) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2̂) 

= ℎ(𝛼)𝜑(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2). 
(⇐) By the assumption 𝜑 is a continuous function on [0, 𝑏], according to the Weierstrass 

approximation theorem (see [26, Theorem B]), then a sequence of polynomials exists, namely 
{𝑝𝑛}𝑛∈ℕ, such that 𝑝𝑛 → 𝜑 on [0, 𝑏]. Let us consider a subspace ℋ𝑘𝑛

⊆ ℋ𝑛, in which it is 

generated by the vectors 1ℋ𝑥, 𝑀1𝑥, 𝑀1
2𝑥, … , 𝑀1

𝑘𝑛𝑥, 𝑀2𝑥, 𝑀2
2𝑥, … , 𝑀2

𝑘𝑛𝑥 . Also let 𝑃𝑘𝑛
∈

ℳ𝑘𝑛
(ℋ) be the projection matrix on ℋ𝑛𝑘

. Thus, we can define 𝑀1𝑛
≔ 𝑀1𝑃𝑘𝑛

: ℋ𝑛 → ℋ𝑘𝑛
 

and 𝑀2𝑛
≔ 𝑀2𝑃𝑘𝑛

: ℋ𝑛 → ℋ𝑘𝑛
. Since  

〈𝑀1𝑛
𝑥, 𝑦〉 = 〈𝑀1𝑃𝑘𝑛

𝑥, 𝑦〉 = 〈𝑀1𝑥, 𝑦〉 = 〈𝑥, 𝑀1𝑦〉 = 〈𝑥, 𝑀1𝑃𝑘𝑛
𝑦〉 = 〈𝑥, 𝑀1𝑛

𝑦〉, 

then 𝑀1𝑛
 and 𝑀2𝑛

 are self-adjoint matrices. This means 𝑝𝑛(𝑀1𝑛
)𝑥 = 𝑝𝑛(𝑀1)𝑥 or  

𝑝𝑛(𝑀1𝑛
)𝑥 − 𝑝𝑛(𝑀1)𝑥 = 0. 

Because 𝜑 is a continuous function on [0, 𝑏], thus for any 𝜀 > 0, there exist 𝑁 ∈ ℕ such 
that for 𝑛 > 𝑁 holds 
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‖[𝜑(𝑀1) − 𝑝𝑛(𝑀1)]𝑥‖ <
𝜀

2
. 

Hence, we can calculate 
  

‖[𝜑(𝑀1𝑛
) − 𝜑(𝑀1)]𝑥‖ = ‖[𝜑(𝑀1𝑛

) − 𝑝𝑛(𝑀1𝑛
) + 𝑝𝑛(𝑀1𝑛

) − 𝑝𝑛(𝑀1) + 𝑝𝑛(𝑀1) − 𝜑(𝑀1)]𝑥‖ 

 ≤ ‖[𝜑(𝑀1𝑛
) − 𝑝𝑛(𝑀1𝑛

)]𝑥‖ + ‖[𝑝𝑛(𝑀1𝑛
) − 𝑝𝑛(𝑀1)]𝑥‖ 

+‖[𝑝𝑛(𝑀1) − 𝜑(𝑀1)]𝑥‖ 

<
𝜀

2
+ 0 +

𝜀

2
= 𝜀.                                            

This means, 𝜑(𝑀1𝑛
)𝑥 converges to 𝜑(𝑀1)𝑥. Using the same way, we can obtain  that 

𝜑(𝑀2𝑛
)𝑥  converges to 𝜑(𝑀2)𝑥  and 𝜑(𝛼𝑀1𝑛

+ 𝑚(1 − 𝛼)𝑀1𝑛
)𝑥  converges to 𝜑(𝛼𝑀1 +

𝑚(1 − 𝛼)𝑀2)𝑥. Next, since 𝜑 is matrix (ℎ, 𝑚)-convex functions, then we have 

𝜑(𝛼𝑀1𝑛
+ 𝑚(1 − 𝛼)𝑀2𝑛

) ≼ ℎ(𝛼)𝜑(𝑀1𝑛
) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2𝑛

) 

or  

ℎ(𝛼)𝜑(𝑀1𝑛
) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2𝑛

) − 𝜑(𝛼𝑀1𝑛
+ 𝑚(1 − 𝛼)𝑀2𝑛

) ≽ 0. 

It means 
〈[ℎ(𝛼)𝜑(𝑀1𝑛

) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2𝑛
) − 𝜑(𝛼𝑀1𝑛

+ 𝑚(1 − 𝛼)𝑀2𝑛
)]𝑥, 𝑥〉 ≥ 0. 

Since 𝑛 tends to infinity, then we have 

lim
𝑛→∞

〈[ℎ(𝛼)𝜑(𝑀1𝑛
) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2𝑛

) − 𝜑(𝛼𝑀1𝑛
+ 𝑚(1 − 𝛼)𝑀2𝑛

)]𝑥, 𝑥〉 ≥ 0. 

Hence, we get 
〈[ℎ(𝛼)𝜑(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀1) − 𝜑(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2)]𝑥, 𝑥〉 ≥ 0.  

That can be expressed as 
𝜑(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2) ≼ ℎ(𝛼)𝜑(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2). 

This is the end of our proof. 
 █ 

The contrapositive of the statement in Proposition 7 is: 𝜑 is not an operator (ℎ, 𝑚)-
convex function if and only if 𝜑  is not a matrix (ℎ, 𝑚)-convex function. This is 
particularly interesting because we can prove that a function is not an operator (ℎ, 𝑚)-
convex function by taking two self-adjoint matrices and showing that they do not satisfy 
the condition in Definition 5. For instance, let us consider a function 𝑔: [0,10] → ℝ by the 

rule 𝑔(𝑢) = 𝑢3, for any 𝑢 ∈ [0,10]. For ℎ(𝛼) = 𝛼 and 𝑚 =
10

11
, 𝑔 is not an operator (ℎ, 𝑚 )-

convex function. The proof is quite simple, we just need take two arbitary self-adjoint 

matrices 𝑀1 = (
1 0
0 0

) and 𝑀2 = (
2 1
1 1

). We can see the spectrum of each matrix 

𝜎(𝑀1) = {0, 1}  and 𝜎(𝑀2) = {0.3820, 2.6180}  are contained in the interval [0,10] . 

However, if we choose 𝛼 =
5

11
, then we obtain 

𝛼𝑀1
3 +

10

11
(1 − 𝛼)𝑀2

3 − (𝛼𝑀1 +
10

11
(1 − 𝛼)𝑀2)

3

=
1

1771561
(

5389860 4128180
4128180 3114300

) =: 𝑀ℎ . 

Since 𝑀ℎ has one negative eigenvalue, then we can conclude that 𝑀ℎ is not positive definite 
matrix. Hence, according to Proposition 7, the function 𝑔 is not an operator (ℎ, 𝑚 )-convex 

function for ℎ(𝛼) = 𝛼 and 𝑚 =
10

11
. 

The next proposition show the convergence of the sequence of matrix (ℎ, 𝑚)-convex 
functions. However, by using Proposition 7, this property also holds for the operator 
(ℎ, 𝑚)-convex functions as written in Corollary 1 below. 
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Proposition 8. Let 𝑚 ∈ [0,1], 𝑛 ∈ ℕ, and ℎ: 𝐽 ⊇ (0,1) → [0, ∞). Also let the sequence of 
functions {𝜑𝑛}𝑛∈ℕ with 𝜑𝑛: [0, 𝑏] → ℝ be a sequence of matrix (ℎ, 𝑚)-convex functions. If 
𝜑𝑛 converges to 𝜑, then 𝜑 is also a matrix (ℎ, 𝑚)-convex function on the interval [0, 𝑏]. 

Proof: Let 𝑀1, 𝑀2 ∈ ℳ𝑛(ℋ) be self-adjoint matrices with 𝜎(𝑀1), 𝜎(𝑀2) ⊆ [0, 𝑏]. Thus, we 
can write 𝑀1 = 𝑈𝐷𝑈∗ , where 𝑈  is a unitary matrix and diagonal matrix 𝐷 =
diag[𝜆1, … , 𝜆𝑛] with the eigenvalues 𝜆𝑖(𝑖 = 1, … , 𝑛) ∈ 𝜎(𝑀1).  Since 𝜑𝑛 converges to 𝜑, 
then we have 

𝜑𝑛(𝑀1) = 𝜑𝑛(𝑈𝐷𝑈∗) = 𝑈𝜑𝑛(𝐷)𝑈∗ = 𝑈𝜑(𝐷)𝑈∗ = 𝜑(𝑈𝐷𝑈∗) = 𝜑(𝑀1). 
That means 𝜑𝑛(𝑀1) → 𝜑(𝑀1). Using the same way for matrix operator 𝑀2, we obtain 
that 𝜑𝑛(𝑀2) converges to 𝜑(𝑀2). 
Next, because {𝜑𝑛}𝑛∈ℕ are sequence of (ℎ, 𝑚)-convex function, then it holds 

𝜑𝑛(𝛼𝑀1 + 𝑚(1 − 𝑡)𝑀2) ≼ ℎ(𝛼)𝜑𝑛(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑𝑛(𝑀2) 
or 

ℎ(𝛼)𝜑𝑛(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑𝑛(𝑀2) − 𝜑𝑛(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2) ≽ 0 
It means 

〈[ℎ(𝛼)𝜑𝑛(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑𝑛(𝑀2) − 𝜑𝑛(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2)]𝑥, 𝑥〉 ≥ 0. 
Since 𝑛 tends to infinity, then we have 

lim
𝑛→∞

〈[ℎ(𝛼)𝜑𝑛(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑𝑛(𝑀2) − 𝜑𝑛(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2)]𝑥, 𝑥〉 ≥ 0. 

Hence, we obtain  
〈[ℎ(𝛼)𝜑(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2) − 𝜑(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2)]𝑥, 𝑥〉 ≥ 0 

or it can be expressed as 
𝜑(𝛼𝑀1 + 𝑚(1 − 𝛼)𝑀2) ≼ ℎ(𝛼)𝜑(𝑀1) + 𝑚ℎ(1 − 𝛼)𝜑(𝑀2). 

This is the end of our proof. 
█ 

Corollary 1. Let 𝑚 ∈ [0,1]  and ℎ: 𝐽 → [0, ∞) . If {𝜑𝑛}𝑛∈ℕ  with 𝜑𝑛: [0, 𝑏] → ℝ  are a 
sequence of operator (ℎ, 𝑚)-convex functions such that 𝜑𝑛 → 𝜑, then 𝜑 is an of operator 
(ℎ, 𝑚)-convex functions on [0, 𝑏]. 

The results obtained above provide a theoretical framework for further exploration 
in operator convexity. These properties have potential applications in areas such as 
functional analysis, matrix analysis, and quantum information theory. Moreover, by 
extending the operator convexity notions, one can derive sharper operator inequalities, 
which are valuable for optimization problems and mathematical physics. 

CONCLUSIONS 

In this study, we developed a foundational framework for operator (ℎ, 𝑚)-convex 
functions, that is establishing several fundamental properties and extending our results 
for matrix case. We obtain the relation property between operator (ℎ, 𝑚)-convex 
functions and matrix (ℎ, 𝑚)-convex functions. This study has the potential to open new 
avenues for research in inequality theory and operator analysis.  
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