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ABSTRACT

Rainfall modeling often involves complex spatial patterns that vary across locations. Traditional
spatial models such as Geographically Weighted Regression (GWR) assume linear relationships
and may fall short in capturing nonlinear interactions among predictors and the small sample
size is more challenging to fix the assumptions. To address this limitation, this study applies the
Geographically Weighted Random Forest (GWRF) method is a hybrid approach that integrates
Random Forest (RF), a non-parametric machine learning algorithm with geographically weighted
modeling. GWRF is advantageous as it accommodates both spatial heterogeneity and nonlinear
relationships, making it suitable for modeling monthly rainfall, which is inherently spatially varied
and influenced by complex factors. This study aims to implement and evaluate the performance
of the GWRF model in monthly rainfall prediction across East Java. The model is tested using
various numbers of trees to determine the optimal structure, and its performance is assessed
using Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), and corrected AIC
(AICc). Results indicate that the model tends to overestimate the Out-of-Bag (OOB) Error at all
tree variations, with the smallest RMSE (85.68) achieved at 750 trees. Humidity emerges as the
most influential variable in predicting monthly rainfall in the region, based on variable importance
analysis.
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INTRODUCTION

Geostatistics can be defined as a set of numerical techniques that deal with data
involving location attributes. Geostatistics can model spatial trends as well as spatial
correlations. Spatial analysis plays an important role in planning, risk assessment, and
decision-making in environmental management and conservation [1]. Spatial analysis
evaluates a variable geographically which helps in the identification of patterns and
trends that may not be apparent from limited point data. There is a well-known spatial
analysis method, Geographically Weighted Regression (GWR), introduced by
Fotheringham in 2003, used to understand spatial variation in the relationship between
dependent and independent variables [2].
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GWR is limited by the assumptions attached to its parameter estimation process,
namely the assumptions of linearity and stationarity even with locally varying
coefficients. In addition, GWR assumes that the residuals are identical and independent,
and does not consider the presence of local multicollinearity that may affect the accuracy
of parameter estimation [3]. These limitations can reduce the effectiveness of GWR in
capturing the complexity of more complicated spatial data, especially when non-linear
relationships or interactions between more complex variables need to be taken into
account [4]. Thus, there is a need for an analysis method that is able to capture the
complexity of the data.

In recent years, machine learning has developed rapidly and become a modern
data analysis method. The advantages of machine learning are flexibility and not limited
to linear relationships. Some machine learning methods include Support Vector Machine
(SVM), K-Nearest Neighbor (K-NN), Gradient Boosting (GB), and Random Forest (RF).
Hashimoto et al. (2019) proposed the NASA Earth Exchange Gridded Daily Meteorology
(NEX-GDM) RF model to map daily rainfall (among other meteorological variables) with
1 km spatial resolution using satellite, reanalysis, radar, and topographic data for the
contiguous United States, from 1979 to 2017 [5]. Previous researchers have compared the
performance of several machine learning methods such as Appiah-Badu et al. (2022)
conducted research related to rainfall prediction with machine learning algorithms in
Ghana [6]. The analysis results show that RF provides better performance than K-NN and
Decision Tree. Similarly, research by Nurwatik et al. (2022) concluded that RF is the best
model than K-NN and Naive Bayes for modeling landslide vulnerability in Malang
Regency, Indonesia [7]. Other studies have also shown that RF performs well for value
prediction [8], [9], [10].

Building on the strengths of RF, researchers have developed Geographically
Weighted Random Forest (GWRF) to incorporate spatial heterogeneity into the model.
GWREF is based on the concept of a spatially varying coefficient model where the global
process is broken down into several local sub-models, similar to the GWR approach [11].
GWREF has the advantage of overcoming multicollinearity problems, so it can process all
independent variables without requiring a filtering stage. This model is also able to
improve prediction accuracy and provide a more comprehensive analysis of the spatial
relationship between independent and dependent variables compared to GWR [3].

Several previous studies have applied GWRF in various cases. Studies on remote
sensing and population modeling with 1319 observations show that GWRF can improve
prediction accuracy when the spatial scale used is appropriate [12]. In an analysis of the
spatial variability of type 2 diabetes mellitus (T2D) prevalence in the United States with
3108 data observations, GWRF models showed that GWRF performed superior to GW-
OLS. This model is considered more suitable for spatial analysis, especially in overcoming
multicollinearity across different geographic locations [13]. In addition, a study on spatial
heterogeneity in traffic accident frequency and its influencing factors in the United States
with 18411 observations compared the performance of GW-RF, GWR, and global RF. The
results show that GWRF has higher prediction accuracy than global RF, with lower Mean
Squared Error (MSE) values, and better overall performance than GWR based on higher
R? values [14]. Some previous research using big sample size shows that GWRF has a good
performance.

Rainfall plays an important role in many aspects, including water resources
planning, the agricultural sector, as well as disaster mitigation in East Java [15]. Rainfall
variability can affect water availability for irrigation, determine cropping patterns for
farmers, and contribute to disaster risks such as floods and droughts. Therefore,
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understanding the factors that influence rainfall is essential in order to design more
effective adaptation and mitigation strategies in the face of climate change and weather
dynamics in the region.

Monthly rainfall is influenced by several key factors, including temperature,
humidity and elevation, which can vary spatially [16]. Higher temperatures have the
potential to increase evaporation and cloud formation, but under certain conditions can
reduce rainfall due to an increase in the atmosphere's capacity to hold water vapor. High
relative humidity plays an important role in cloud formation and rainfall, while low
humidity levels can inhibit the condensation process and reduce the chance of rain. In
addition, elevation affects the distribution of rainfall through the orographic rainfall
mechanism, where higher elevation areas tend to receive more rainfall compared to low-
lying areas. To understand the pattern of the relationship between monthly rainfall and
these factors, this study uses a spatial model approach that is able to capture variations
in the pattern of relationships in various locations, so that the results of the analysis can
provide more accurate insights in water resources planning and disaster mitigation in
East Java. However, the main challenge in this study is the limited rainfall data.

Based on this background, we are interested in studying the GWRF model to
overcome spatial heterogeneity in the case of monthly rainfall in East Java with small
sample size. The purpose of this study is to apply the GRF model to monthly rainfall, train
the model, and explore its performance. In addition, we explore the influence of
geographical scale and unique GWRF results, such as the importance of spatial features of
the independent variables, to show the impact of the importance of local variables.

METHODS

The research follows several stages: (1) compiling monthly rainfall and climate-related
data for East Java, (2) preprocessing and georeferencing the data, (3) building GWRF
models with varying numbers of decision trees, (4) evaluating model performance using
RMSE, AIC, and AICc, (5) identifying the most influential variables based on variable
importance measures.

Data

The data used in this study are secondary data obtained from the East Java Meteorology,
Climatology and Geophysics Agency (BMKG) website in November 2023-April 2024
which is the rainy season period. The data used contains three variables, namely daily
rainfall (mm), temperature (°C), and air humidity (%). This study uses 11 observation
locations as spatial units shown in Figure 1.
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Figure 1. Study Area

The study area in this research is East Java, which is one of the provinces in
Indonesia. Astronomically, East Java is located between 111°0' to 114°4' East Longitude
and 7°12' to 8°48' South Latitude. East Java Province borders the Java Sea to the north,
the Indian Ocean to the south, the Bali Strait to the east, and Central Java Province to the
west. This astronomical location gives East Java a tropical climate with weather variations
influenced by latitude and altitude from sea level. East Java has 11 weather and climate
observation stations. Weather and climate observation stations have a strategic role in
providing data that forms the basis for scientific analysis and evidence-based policy
making. The resulting long-term data is essential for monitoring climate dynamics,
including rainfall patterns, temperature and humidity, to understand trends in
environmental change and their impact on ecosystems.

This study uses three variables, including average total rainfall per month, average
temperature, and average humidity. Details of the variables used in this study are

presented in Table 1.
Table 1. Details of the variables

No. Variable Definition Unit

1 Monthly Response The average amount of rainfall each Milimetre (mm)
Rainfall (Y) Variable month that falls in an area.

2 Temperature Predictor Variable A measure of how hot or cold the air ~ Celcius Degree
(°Q) is at a given time and place. (°Q)

3 Humidity (%) Predictor Variable The average percentage of water Percent (%)

vapor content in the air at a given
time and place.
4 Xy Spatial element Coordinates of spatial data point Degree

Exploratory Analysis

To examine the overall relationship between monthly rainfall and its influencing
factors, we utilized statistics descriptive, and spatial distribution maps of the factors.
Additionally, we computed the Pearson correlation coefficient to quantify the association
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between monthly rainfall and the factors. The Pearson correlation formula is shown as
follows [17]:

Iy MET [ )
VG = 02 S 0 - 9

(1)

with r as correlation coefficient which has range [—1,1]. A negative coefficient indicates
the opposite direction of the relationship, while a positive sign indicates a unidirectional
relationship. Between two variables x and y with n observations. The strength of the
correlation between two variables is categorized as follows Table 2 [17].

Table 2. Categorization of correlation coefficient

Absolute magnitude of the Observed Correlation Interpretation
Coefficient
0.00-0.10 Negligible correlation
0.10-0.39 Weak correlation
0.40-0.69 Moderate correlation
0.70-0.89 Strong correlation
0.90-1.00 Very strong correlation

Random Forest

Random Forest (RF) was first introduced by Leo Breiman in 2001 as an ensemble
method that combines the ideas of bagging (bootstrap aggregating) and random subspace
selection [18]. It is a collection of decision trees built using the bagging method. In this
approach, multiple decision trees are trained on different subsets of the data. Each tree
makes a prediction, and the final result is obtained by aggregating the predictions from
all trees to improve overall accuracy. The first step in building an RF is performing
bootstrap sampling, which involves randomly selecting samples with replacement from
the original dataset. From a dataset with N observations, a sample of <N is randomly
selected, with some data points potentially being selected more than once. Bootstrap
sampling is performed for each tree to be built, ensuring that each tree receives a slightly
different dataset.

After bootstrap sampling, a decision tree is constructed from the data. However, at
each splitin the tree, only a subset of the features is considered to determine the best split,
a process known as random feature selection, with the Mean Squared Error (MSE)
criterion typically used [19]. The splitting at each node continues until a stopping
condition is met, such as the maximum tree depth or a minimum number of data points in
the leaf node. Each tree provides a prediction, and the final prediction is the aggregation
of all tree predictions. In regression, this aggregation is the average of all tree predictions,
typically written in:

T
Fo =2 G @
t=1
with
fi(x) :thepredictionint —tree
T : Number of tree in forest

One of the advantages of RF is its ability to calculate variable importance which
measures how much each feature contributes to forming predictions. The RF regression
equation is shown in equation below [11].
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Y,=ax;+ei=1,..,n (3)
Y; define as respon variable for i-th observation and ax; define as non linear prediction
from RF based on all predicor variables x with e is an error in the model. This equation
formed using all datset without spatial element.

Geographically Random Forest

Spatial modeling is done because the data shows the relationship between variables is
different depending on the location (spatial heterogeneity). The RF algorithm involving
spatial elements developed by Georganos et al. (2021) is known as the GRF algorithm. The
main concept of GRF is similar to GWR [11]. For each location i, a local RF calculation is
performed which only includes a number of observations in the vicinity. This will result
in different RF calculations at each sample point which is commonly referred to as the
GRF local model. In GRF, equation (3) is expanded so that equation (4) becomes the GRF
global model and equation (5) is the GRF local model.

Yi = Cl1Xl'1 +Cl2Xl'2 +ei=12,..,n (4)
Yi = ai(ui,vi)xl-+e,i = 1,...,7’l (5)

Where a;(u;, v;)x; is the calibrated RF model prediction at location i where (u;, v; ) are
the coordinate. A sub-model is built for each data location, taking into account only the
surrounding observations. The area used by the sub-model is called the neighborhood or
kernel, and the maximum distance between the data points and the kernel is called the
bandwidth [20]. There are two common types of kernels, namely 'adaptive' and
'fixed'[21]. The use of adaptive kernels is advantageous when the sample density varies
across space [22], [23]. The calculation of the gaussian adaptive kernel is obtained by the
formulas written in equation (6).

(o)
w;(u;,v;) = exp| — (6)
bicg)

Where dij = \/(ul - uj) Z+ (vi - vj) 2

d;j is defined as euclidean distance between i and j locations. b; 4 is defined as adaptive
bandwidth with neares neighbour is symboled by gq.

GRF modeling is based on the heterogeneity of spatial variation so that each
location has a different parameter value. The parameter value in GRF is calculated
through the impurity value using the variance of the target value (Y) at each node before
and after the split. If node S is divided into two subsets, namely left node (S;) and right
node (Sg), then the variance after separation can be calculated by equation (7).

N N
Vargr = WLVar(SL) + WRVar(SR) (7)

Where N, is the number of observations in left node, Ny is the number of observations in
rigth node, var(S,) is the variance of left node after split, and var(Sg) is tahe variance of
right node after split. Impurity decrease calculated as variance reduction is written in the
following equation.

Aimpurity = var(S) — Vars,;; (8)
The greater variance reduction after splitting, the more effective splitting is in improving
the homogeneity of smaller nodes. The determination of variable importance is done by
summing up the entire impurity reduction (dimpurity) of each variable across all trees
in the forest. Thus, the importance value of a variable Xjis calculated as follows.
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T
VI(Xj) = z z Almpurityy, 9)
t=1 splitet
As an evaluation of the GRF model, there are two approaches that can be used,
namely Out-of-Bag (OOB) error and non-OOB error. OOB error is useful for measuring
model accuracy by using data that is not selected in the bootstrap process as a test sample
without requiring additional validation data. The calculation of OOB error is done with
equation (10).

N
1
OO0B error = NZ(YL- —9:1)? (10)
i=1

with Y; is actual value in i-th location, ¥; as predivcted value without i-th observation in
training model, and N is number of observation.

Evaluation Performance

Root Mean Square Error (RMSE) is a statistical metric used to measure how well a
model's predictions match actual observations. It calculates the square root of the mean
squared differences between predicted and actual values [24]. A lower RMSE indicates
higher model accuracy. Unlike MSE, RMSE is in the same unit as the target variable,
making it more interpretable [25].

Model performance can also be evaluated using the Akaike Information Criterion
(AIC) and its corrected version (AICc). AIC helps compare models based on parsimony,
while AICc adjusts for small sample sizes. Their formulas are given as:

n
1
RMSE = —Z(z0 —5,)? 1)
n i=1
AlIC = —-2InlL + 2k (12)
2k(k + 1)
AlCc = AIC + —— (13)
n—k—1

Where L is the model likelihood, n is the number of observations, and k is the
number of model parameters.

RESULTS AND DISCUSSION
Exploratory Data Analysis

For our target dataset, the total number of sample data is 11 observations from rain
station points in East Java. The size of this dataset is relatively small, so we would like to
extrapolate the performance of RF to overcome spatial heterogeneity in small sample
sizes. Descriptive statistics showing an overview of the observed data are shown in Table

3.
Table 3. Descriptive Statistics

Variable Minimum Value Maximum Value Mean
Monthly Rainfall (mm) 186.35 498.1 283.048
Temperature (°C) 23.35 29.42 27.60
Humidity (%) 74.64 87.53 80.27

The minimum monthly rainfall in East Java during the study period was 186.35
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mm which occurred at Banyuwangi Meteorological Station. While the maximum monthly
rainfall 0of 498.1 mm occurred at Nganjuk Geophysical Station. The minimum temperature
occurred at Pasuruan Geophysical Station and the maximum temperature occurred at
Silver I Meteorological Station. The lowest air humidity occurs at Malang Geophysical
Station and the highest humidity occurs at Pasuruan Geophysical Station. The distribution
of average monthly rainfall values, average temperature, and average air humidity in East
Java is visually shown in Figure 2.
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Figure 2. Distribution of (a) temperature, (b) humidity, (c) mothly rainfall in East Java

The spatial distribution of temperature (Figure 2(a)) in the East Java region based on
data from several observation points. It can be seen that the distribution of temperature
is not homogeneous, but shows variations between locations indicating spatial
heterogeneity. Some points in the southwest and northeast parts of the region appear to
have relatively higher temperature values than other points, while the central to southern
areas tend to show lower temperature values. This distribution pattern may reflect the
influence of geographical factors such as altitude, distance from the coast, or land cover
that differ between regions [26].

Humidity in the East Java region (Figure (2b)) shows variations between locations,
indicating spatial inhomogeneity. Some locations in the northern and central parts show
relatively higher humidity levels, while points in the southern and eastern parts tend to
have lower humidity. This variation may be influenced by differences in geographical
conditions, such as altitude, vegetation and proximity to water bodies. This moisture
distribution pattern is important to analyze further as it can affect other atmospheric
processes such as cloud formation and rainfall, as well as being one of the important
factors in spatial rainfall prediction models.

Figure 3(c) shows the spatial variation of rainfall in East Java, which appears uneven
between locations. Points in the west tend to have higher rainfall than other regions. This
pattern reflects spatial heterogeneity, which is important to consider in predictive
modeling.

Each variable in this study was tested for its relationship with the Pearson
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correlation analysis presented in Table 4.

Table 4. Pearson Correlation Analysis

Temperature Humidity Monthly Rainfall
Temperature 1 -0.5888 -0.5451
Humidity -0.5888 1 0.4227
Monthly Rainfall -0.5451 0.4227 1

The results of the Spearman correlation analysis show a significant relationship
between temperature, humidity and monthly rainfall. There is a negative correlation of -
0.5451 between temperature and monthly rainfall indicating that an increase in
temperature tends to reduce rainfall. This is likely because higher temperatures increase
the rate of evaporation, thus reducing the amount of rain that falls in an area. Meanwhile,
the relationship between humidity and monthly rainfall shows a positive correlation of
0.4227, meaning that the higher the humidity, the greater the likelihood of increased
rainfall. High humidity usually indicates more water vapor content in the atmosphere,
which has the potential to support cloud formation and rainfall.

The effect of heterogeneity can be identified by the Breusch Pagan test with
Breusch Pagan test statistics calculated based on equation (2.1). The results of the test are
presented in Table 5.

Table 5. Breusch Pagan Test for Spatial Heterogeneity Test
Statistic df P-value

6.2918 2 0.0430

Based on the test results in Table 5, it is obtained that the p-value is 0.0430 where
the value is less than the real level of 0.05. This means that the diversity of rainfall at 11
rainfall stations in East Java is heterogeneous.

Evaluation Performance

The dataset used is 11 examples of observation results from the rainfall station. We
determine the response variable is mothly rainfall and predictor variables are
temperature and humidity. All data will be useed as training data. Next, we used GRF
methods to model the training data using a varying tree numbers in RF algorithm (k =
10,50,100,500,750,and 100) as model selection process. The best model of GRF
determined based on RMSE, AIC, and AICc. The comparison varying tree numbers (k) in
the GRF model is shown in Table 6.

Table 6. Performance Evaluation of Varying Tree Numbers of GRF Model

00B Not 00B
k RMSE AIC AICc RMSE AIC AICc Time(Second)

25 8632 10408  107.51 31.10 8162 8504 0.9620
50 90.89 10521  108.64 3720 8556 8898 0.4451
100 9640 10651  109.54 3434 8380  87.23 0.5055
500 8598  103.99  107.42 33.06 8296 86.39 0.5108
750  85.68 103.91  107.34 33.87 8350  86.92 0.6344
1000 8645 10411  107.54 33.87 8350  86.92 1.1043
2000 8630  104.07  107.50 30.77 8139  84.82 1.0976
5000 8624  104.06  107.49 30.43 81.15  84.58 1.7564
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The model evaluation results show that varying the number of trees (K) in GWRF from
25 to 5000 does not significantly change the RMSE, AIC, or AICc values. The values of these
performance metrics tend to be stable and within a narrow range, which indicates that
increasing the complexity of the model through increasing the number of trees does not
necessarily improve the prediction accuracy. This may be due to several factors, such as
the limited amount of data, the complexity of the relationships between variables that are
not too high, or the spatial structure that is not too complex to require a large number of
trees. In terms of OOB error, the RMSE values range from 85.68 to 96.40, with the lowest
value at k=750. Both AIC and AICc show a similar pattern, with the lowest AIC occurring
at k=750 (103.91), and the lowest AlICc at k=750 (107.42). For the non-O0B model (Not
0O0B), the RMSE is lower than the OOB model in all scenarios, with the lowest RMSE
(31.10) found at k=25. This happens because the Not O0OB model uses the entire dataset
for training and evaluation, allowing it to better capture data patterns, while OOB only
uses a portion of the data for validation to provide a more objective estimate of model
generalization. In terms of computation time, increasing the number of trees raises
execution time, with the longest time occurring at k=5000 (1.7564 seconds). Therefore,
the optimal number of trees based on accuracy and computational efficiency is k=750.

Feature Importance

The global GRF model builds one model for the entire study area without
considering locality differences. The coefficient in the GRF model is the proportion of
impurity results on variable importance as presented in Table 7.

Table 7. Global Variable Importance

Variable Impurity
Temperature 25015.98
Humidity 24257.44

The global feature importance of GRF model places the avaerage of temperature in
East Java is more important than humidity in monthly rainfall modeling. Besides globally,
GRF is able to identify locally important features shown in Table 8.

The local variable importance results from the GRF model indicate that air
humidity generally has a greater contribution than average temperature in predicting
monthly rainfall in East Java. This is evident from the higher average importance values
for air humidity at most locations. For example, at the Geophysical Station in Nganjuk, the
average temperature variable has the highest importance value, while at the Trunojoyo
Meteorological Station, its contribution is very low (6242.076). This suggests that
temperature may be more relevant in certain areas but less influential in others.
Meanwhile, air humidity tends to have more stable importance values, with the highest at
the Geophysical Station in Nganjuk (30630.388) and the lowest at the Trunojoyo
Meteorological Station (8920.223).
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Table 8. Local variable Importance

Feature Importance Value

! Station Temperature Humidity
1  Geophysics Malang 26800.056 27374.475
2 Climatology Malang 21483.331 25976.092
3  Geophysics Nganjuk 29135.592 30630.388
4  Geophysics Pasuruan 21380.199 21122.283
5 Meteorology Banyuwangi 9483.96 12994.019
6  Meteorology Dhoho 30043.275 25685.635
7  Meteorology Juanda 15881.001 17809.18
8 Meteorology Perak I 15994.245 18104.771
9  Meteorology Sangkapura 16988.595 12322.308
10 Meteorology Trunojoyo 6242.076 8920.223
11 Meteorology Tuban 24950.421 22031.922

The importance values indicate the order of importance between the independent
variables. Thus, the GRF local model can be written in equation (14).

where,

Xip
a(u;, v)X;
€;

Yi = a(uiJ vi)Xip + El',i = 1, ,11,p = 112

: response variable at i location
: predicted value

: p-th predictor variable in i location
: predictive function of GRF model

: residual of GRF model

(14)

The results of GRF modeling produce a fitted value which is the prediction result
at the sample point along with the residuals shown in Table 9.

Table 9. The Results of GRF Model

i Station Actual Value (Y;) Fitted Value (Y)) Residual (¢;)
1 Geophysics Malang 21691 230.86 13.95
2 Climatology Malang 316.07 328.80 12.73
3 Geophysics Nganjuk 498.10 464.57 -33.53
4 Geophysics Pasuruan 283.25 315.66 32.41
5 Meteorology Banyuwangi 186.35 193.03 6.68
6 Meteorology Dhoho 334.89 320.80 -14.10
7 Meteorology Juanda 284.84 276.75 -8.11
8 Meteorology Perak | 206.53 22212 15.58
9 Meteorology Sangkapura 303.27 309.88 6.61
10  Meteorology Trunojoyo 238.51 252.51 13.99
11  Meteorology Tuban 294.82 291.95 -2.87

The highest residuals occur at Nganjuk Geophysical and Pasuruan Geophysical
stations which are areas with the highest monthly rainfall. This indicates that the fitted
value of the GRF model has not been able to identify extreme values in the data.
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Disccussion

This study applies GWRF modeling to monthly rainfall data in East Java with only
11 observations. The monthly rainfall in East Java exhibits spatial heterogeneity, as
indicated by a significant Breusch-Pagan test. The presence of spatial heterogeneity
implies that the influence of temperature and humidity varies across different regions,
necessitating a localized modeling approach. Previous studies discussed in the
introduction section have applied the GWRF model to relatively large sample sizes (>500).
This presents a challenge when applying GWRF to small-sample rainfall data [27].

The best GWRF model selection is based on a model selection process with varying
numbers of trees. The analysis results show that RMSE, AIC, and AICc decrease as the
number of trees increases up to k = 750, after which they increase again at k = 1000. The
determination of the optimal number of trees in the RF algorithm cannot be generalized
for all cases, as highlighted by Oshiro (2012), who suggested that there may be a threshold
where adding more trees leads to diminishing performance while increasing
computational costs [28]. The results with different numbers of trees in GRF show that,
overall, models using OOB error perform worse than those using Non-OOB error. This
indicates that using OOB data for evaluation produces higher error estimates, suggesting
that the model struggles to capture patterns in the data. The overestimation of OOB error
in the GWRF model may be due to the small sample size, as discussed in study on the
overestimation of Random Forest’s OOB error [29]. The GWRF model is also capable of
identifying variable importance at each location. Based on the variable importance
analysis, seven out of the 11 observation sites indicate that humidity is the most
important factor in modeling monthly rainfall.

The GWRF model does not require specific distribution assumptions and is able to
adjust local weights at each observation location, making it particularly suitable for
spatial data with high heterogeneity. For rainfall prediction, such heterogeneity reflects
local variations in climate controlling factors that are difficult to capture by global models.
Our findings align with previous research that compared spatially weighted approaches
to non-spatial methods [30], [31], [32].

CONCLUSIONS

Based on the results of the discussion that has been done, several conclusions
related to monthly rainfall modeling are obtained. The analysis shows that there is a
spatial heterogeneity effect on monthly rainfall data in East Java which indicates the effect
of predictor variables on monthly rainfall is different in each location. There are several
key findings, among others, related to the performance of GRF when applied to monthly
rainfall data with small sample sizes and how the level of importance of predictor
variables at each observation location. The analysis results show that the GRF model
overestimates the OOB error, so it can be said that the GRF modeling results are not
optimal in small samples. This highlights the need for future studies to incorporate robust
validation techniques, such as cross-validation or bootstrapping, especially in spatial
datasets with few observations. Furthermore, residuals from the GRF model should be
carefully analyzed to detect spatial autocorrelation or non-random patterns that could
influence model accuracy. Regarding the importance of predictor variables, the analysis
shows that in most of the observed locations, humidity has a higher importance than
temperature in predicting monthly rainfall. This finding suggests that rainfall prediction
models at a regional level, such as in East Java, should consider locally adaptive methods
rather than relying solely on global models that assume homogeneous relationships.
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Additionally, improving the interpretability of GWRF models is crucial; in particular,
future research should focus on developing or adapting methods to statistically test the
significance of variable importance at local levels. These advancements would not only
increase the reliability of spatial predictions but also enhance their applicability in
decision-making processes, such as water resource management and climate adaptation
planning.

This study has limitations related to the exploration of residuals from the GRF that
may be suspected to be the cause of overestimation. Thus, future research is expected to
be able to handle overestimates in the GRF model by exploring the residuals obtained and
can add predictor variables that affect monthly rainfall. In terms of the current GWRF
model, it still needs to be refined in its practical application, namely calculating the
significance level of variable importance like the global RF method.
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