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ABSTRACT 

Rainfall modeling often involves complex spatial patterns that vary across locations. Traditional 
spatial models such as Geographically Weighted Regression (GWR) assume linear relationships 
and may fall short in capturing nonlinear interactions among predictors  and the small sample 
size is more challenging to fix the assumptions. To address this limitation, this study applies the 
Geographically Weighted Random Forest (GWRF) method is a hybrid approach that integrates 
Random Forest (RF), a non-parametric machine learning algorithm with geographically weighted 
modeling. GWRF is advantageous as it accommodates both spatial heterogeneity and nonlinear 
relationships, making it suitable for modeling monthly rainfall, which is inherently spatially varied 
and influenced by complex factors. This study aims to implement and evaluate the performance 
of the GWRF model in monthly rainfall prediction across East Java. The model is tested using 
various numbers of trees to determine the optimal structure, and its performance is assessed 
using Root Mean Square Error (RMSE), Akaike Information Criterion (AIC), and corrected AIC 
(AICc). Results indicate that the model tends to overestimate the Out-of-Bag (OOB) Error at all 
tree variations, with the smallest RMSE (85.68) achieved at 750 trees. Humidity emerges as the 
most influential variable in predicting monthly rainfall in the region, based on variable importance 
analysis. 
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INTRODUCTION 

Geostatistics can be defined as a set of numerical techniques that deal with data 
involving location attributes. Geostatistics can model spatial trends as well as spatial 
correlations. Spatial analysis plays an important role in planning, risk assessment, and 
decision-making in environmental management and conservation [1]. Spatial analysis 
evaluates a variable geographically which helps in the identification of patterns and 
trends that may not be apparent from limited point data.  There is a well-known spatial 
analysis method, Geographically Weighted Regression (GWR), introduced by 
Fotheringham in 2003, used to understand spatial variation in the relationship between 
dependent and independent variables [2]. 
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GWR is limited by the assumptions attached to its parameter estimation process, 
namely the assumptions of linearity and stationarity even with locally varying 
coefficients. In addition, GWR assumes that the residuals are identical and independent, 
and does not consider the presence of local multicollinearity that may affect the accuracy 
of parameter estimation [3]. These limitations can reduce the effectiveness of GWR in 
capturing the complexity of more complicated spatial data, especially when non-linear 
relationships or interactions between more complex variables need to be taken into 
account [4]. Thus, there is a need for an analysis method that is able to capture the 
complexity of the data. 

In recent years, machine learning has developed rapidly and become a modern 
data analysis method. The advantages of machine learning are flexibility and not limited 
to linear relationships. Some machine learning methods include Support Vector Machine 
(SVM), K-Nearest Neighbor (K-NN), Gradient Boosting (GB), and Random Forest (RF). 
Hashimoto et al. (2019) proposed the NASA Earth Exchange Gridded Daily Meteorology 
(NEX-GDM) RF model to map daily rainfall (among other meteorological variables) with 
1 km spatial resolution using satellite, reanalysis, radar, and topographic data for the 
contiguous United States, from 1979 to 2017 [5]. Previous researchers have compared the 
performance of several machine learning methods such as Appiah-Badu et al. (2022) 
conducted research related to rainfall prediction with machine learning algorithms in 
Ghana [6]. The analysis results show that RF provides better performance than K-NN and 
Decision Tree. Similarly, research by Nurwatik et al. (2022) concluded that RF is the best 
model than K-NN and Naïve Bayes for modeling landslide vulnerability in Malang 
Regency, Indonesia [7]. Other studies have also shown that RF performs well for value 
prediction [8], [9], [10]. 

Building on the strengths of RF, researchers have developed Geographically 
Weighted Random Forest (GWRF) to incorporate spatial heterogeneity into the model. 
GWRF is based on the concept of a spatially varying coefficient model where the global 
process is broken down into several local sub-models, similar to the GWR approach [11]. 
GWRF has the advantage of overcoming multicollinearity problems, so it can process all 
independent variables without requiring a filtering stage. This model is also able to 
improve prediction accuracy and provide a more comprehensive analysis of the spatial 
relationship between independent and dependent variables compared to GWR [3].  

Several previous studies have applied GWRF in various cases. Studies on remote 
sensing and population modeling with 1319 observations show that GWRF can improve 
prediction accuracy when the spatial scale used is appropriate [12]. In an analysis of the 
spatial variability of type 2 diabetes mellitus (T2D) prevalence in the United States with 
3108 data observations, GWRF models showed that GWRF performed superior to GW-
OLS. This model is considered more suitable for spatial analysis, especially in overcoming 
multicollinearity across different geographic locations [13]. In addition, a study on spatial 
heterogeneity in traffic accident frequency and its influencing factors in the United States 
with 18411 observations compared the performance of GW-RF, GWR, and global RF. The 
results show that GWRF has higher prediction accuracy than global RF, with lower Mean 
Squared Error (MSE) values, and better overall performance than GWR based on higher 
R² values [14]. Some previous research using big sample size shows that GWRF has a good 
performance. 

Rainfall plays an important role in many aspects, including water resources 
planning, the agricultural sector, as well as disaster mitigation in East Java [15]. Rainfall 
variability can affect water availability for irrigation, determine cropping patterns for 
farmers, and contribute to disaster risks such as floods and droughts. Therefore, 
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understanding the factors that influence rainfall is essential in order to design more 
effective adaptation and mitigation strategies in the face of climate change and weather 
dynamics in the region. 

Monthly rainfall is influenced by several key factors, including temperature, 
humidity and elevation, which can vary spatially [16]. Higher temperatures have the 
potential to increase evaporation and cloud formation, but under certain conditions can 
reduce rainfall due to an increase in the atmosphere's capacity to hold water vapor. High 
relative humidity plays an important role in cloud formation and rainfall, while low 
humidity levels can inhibit the condensation process and reduce the chance of rain. In 
addition, elevation affects the distribution of rainfall through the orographic rainfall 
mechanism, where higher elevation areas tend to receive more rainfall compared to low-
lying areas. To understand the pattern of the relationship between monthly rainfall and 
these factors, this study uses a spatial model approach that is able to capture variations 
in the pattern of relationships in various locations, so that the results of the analysis can 
provide more accurate insights in water resources planning and disaster mitigation in 
East Java. However, the main challenge in this study is the limited rainfall data. 

Based on this background, we are interested in studying the GWRF model to 
overcome spatial heterogeneity in the case of monthly rainfall in East Java with small 
sample size. The purpose of this study is to apply the GRF model to monthly rainfall, train 
the model, and explore its performance. In addition, we explore the influence of 
geographical scale and unique GWRF results, such as the importance of spatial features of 
the independent variables, to show the impact of the importance of local variables. 

 

METHODS  

The research follows several stages: (1) compiling monthly rainfall and climate-related 
data for East Java, (2) preprocessing and georeferencing the data, (3) building GWRF 
models with varying numbers of decision trees, (4) evaluating model performance using 
RMSE, AIC, and AICc, (5) identifying the most influential variables based on variable 
importance measures. 

Data 

The data used in this study are secondary data obtained from the East Java Meteorology, 
Climatology and Geophysics Agency (BMKG) website in November 2023-April 2024 
which is the rainy season period. The data used contains three variables, namely daily 
rainfall (mm), temperature (℃), and air humidity (%). This study uses 11 observation 
locations as spatial units shown in Figure 1. 
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Figure 1. Study Area 

 

The study area in this research is East Java, which is one of the provinces in 
Indonesia. Astronomically, East Java is located between 111°0' to 114°4' East Longitude 
and 7°12' to 8°48' South Latitude. East Java Province borders the Java Sea to the north, 
the Indian Ocean to the south, the Bali Strait to the east, and Central Java Province to the 
west. This astronomical location gives East Java a tropical climate with weather variations 
influenced by latitude and altitude from sea level. East Java has 11 weather and climate 
observation stations. Weather and climate observation stations have a strategic role in 
providing data that forms the basis for scientific analysis and evidence-based policy 
making. The resulting long-term data is essential for monitoring climate dynamics, 
including rainfall patterns, temperature and humidity, to understand trends in 
environmental change and their impact on ecosystems. 

This study uses three variables, including average total rainfall per month, average 
temperature, and average humidity. Details of the variables used in this study are 
presented in Table 1. 

Table 1. Details of the variables 

No. Variable  Definition Unit 
1 Monthly 

Rainfall (Y) 
Response 
Variable 

The average amount of rainfall each 
month that falls in an area. 

Milimetre (mm) 

2 Temperature 
(0C) 

Predictor Variable A measure of how hot or cold the air 
is at a given time and place. 

Celcius Degree 
(℃) 

3 Humidity (%) Predictor Variable The average percentage of water 
vapor content in the air at a given 
time and place. 

Percent (%) 

4 xy Spatial element Coordinates of spatial data point Degree 

 

Exploratory Analysis 

To examine the overall relationship between monthly rainfall and its influencing 
factors, we utilized statistics descriptive, and spatial distribution maps of the factors. 
Additionally, we computed the Pearson correlation coefficient to quantify the association 
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between monthly rainfall and the factors. The Pearson correlation formula is shown as 
follows [17]: 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

(1) 

with 𝑟 as correlation coefficient which has range [−1,1]. A negative coefficient indicates 
the opposite direction of the relationship, while a positive sign indicates a unidirectional 
relationship. Between two variables 𝑥 and 𝑦 with 𝑛 observations. The strength of the 
correlation between two variables is categorized as follows Table 2 [17]. 

Table 2. Categorization of correlation coefficient 

Absolute magnitude of the Observed Correlation 
Coefficient 

Interpretation 

0.00-0.10 Negligible correlation 
0.10-0.39 Weak correlation 
0.40-0.69 Moderate correlation 
0.70-0.89 Strong correlation 
0.90-1.00 Very strong correlation 

Random Forest 

Random Forest (RF) was first introduced by Leo Breiman in 2001 as an ensemble 
method that combines the ideas of bagging (bootstrap aggregating) and random subspace 
selection [18]. It is a collection of decision trees built using the bagging method. In this 
approach, multiple decision trees are trained on different subsets of the data. Each tree 
makes a prediction, and the final result is obtained by aggregating the predictions from 
all trees to improve overall accuracy. The first step in building an RF is performing 
bootstrap sampling, which involves randomly selecting samples with replacement from 
the original dataset. From a dataset with N observations, a sample of ≤N is randomly 
selected, with some data points potentially being selected more than once. Bootstrap 
sampling is performed for each tree to be built, ensuring that each tree receives a slightly 
different dataset. 

After bootstrap sampling, a decision tree is constructed from the data. However, at 
each split in the tree, only a subset of the features is considered to determine the best split, 
a process known as random feature selection, with the Mean Squared Error (MSE) 
criterion typically used [19]. The splitting at each node continues until a stopping 
condition is met, such as the maximum tree depth or a minimum number of data points in 
the leaf node. Each tree provides a prediction, and the final prediction is the aggregation 
of all tree predictions. In regression, this aggregation is the average of all tree predictions, 
typically written in: 

𝑓(𝑥) =
1

𝑇
∑ 𝑓𝑡(𝑥)

𝑇

𝑡=1

(2) 

with 

𝑓𝑡(𝑥) : the prediction in 𝑡 −tree 
𝑇  : Number of tree in forest 

One of the advantages of RF is its ability to calculate variable importance which 
measures how much each feature contributes to forming predictions. The RF regression 
equation is shown in equation below [11]. 
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𝑌𝑖 = 𝑎𝑥𝑖 + 𝑒, 𝑖 = 1, … , 𝑛 (3)  
𝑌𝑖  define as respon variable for 𝑖-th observation and 𝑎𝑥𝑖 define as non linear prediction 
from RF based on all predicor variables 𝑥 with 𝑒 is an error in the model. This equation 
formed using all datset without spatial element.  

Geographically Random Forest 

Spatial modeling is done because the data shows the relationship between variables is 
different depending on the location (spatial heterogeneity). The RF algorithm involving 
spatial elements developed by Georganos et al. (2021) is known as the GRF algorithm. The 
main concept of GRF is similar to GWR [11]. For each location i, a local RF calculation is 
performed which only includes a number of observations in the vicinity. This will result 
in different RF calculations at each sample point which is commonly referred to as the 
GRF local model. In GRF, equation (3) is expanded so that equation (4) becomes the GRF 
global model and equation (5) is the GRF local model.  

𝑌𝑖 = 𝑎1𝑋𝑖1 + 𝑎2𝑋𝑖2 + 𝑒, 𝑖 = 1,2, … , 𝑛 (4) 
𝑌𝑖 = 𝑎𝑖(𝑢𝑖, 𝑣𝑖)𝑥𝑖 + 𝑒, 𝑖 = 1, … , 𝑛 (5)  

Where 𝑎𝑖(𝑢𝑖, 𝑣𝑖)𝑥𝑖 is the calibrated RF model prediction at location 𝑖 where (𝑢𝑖, 𝑣𝑖 ) are 
the coordinate. A sub-model is built for each data location, taking into account only the 
surrounding observations. The area used by the sub-model is called the neighborhood or 
kernel, and the maximum distance between the data points and the kernel is called the 
bandwidth [20]. There are two common types of kernels, namely 'adaptive' and 
'fixed'[21]. The use of adaptive kernels is advantageous when the sample density varies 
across space [22], [23]. The calculation of the gaussian adaptive kernel is obtained by the 
formulas written in equation (6). 

𝑤𝑗(𝑢𝑖, 𝑣𝑖) = exp (− (
𝑑𝑖𝑗

𝑏𝑖(𝑞)
)

2

) (6) 

Where 𝑑𝑖𝑗 = √(𝑢1 − 𝑢𝑗) 2 + (𝑣𝑖 − 𝑣𝑗) 2    

 
𝑑𝑖𝑗  is defined as euclidean distance between 𝑖 and 𝑗 locations. 𝑏𝑖(𝑞) is defined as adaptive 

bandwidth with neares neighbour is symboled by 𝑞. 
GRF modeling is based on the heterogeneity of spatial variation so that each 

location has a different parameter value. The parameter value in GRF is calculated 
through the impurity value using the variance of the target value (Y) at each node before 
and after the split. If node S is divided into two subsets, namely left node (𝑆𝐿) and right 
node (𝑆𝑅), then the variance after separation can be calculated by equation (7). 

𝑉𝑎𝑟𝑠𝑝𝑙𝑖𝑡 =
𝑁𝐿

𝑁
𝑉𝑎𝑟(𝑆𝐿) +  

𝑁𝑅

𝑁
𝑉𝑎𝑟(𝑆𝑅) (7) 

Where 𝑁𝐿 is the number of observations in left node, 𝑁𝑅 is the number of observations in 
rigth node, 𝑣𝑎𝑟(𝑆𝐿) is the variance of left node after split, and 𝑣𝑎𝑟(𝑆𝑅) is tahe variance of 
right node after split. Impurity decrease calculated as variance reduction is written in the 
following equation. 

𝛥𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑆) − 𝑉𝑎𝑟𝑠𝑝𝑙𝑖𝑡 (8) 
The greater variance reduction after splitting, the more effective splitting is in improving 
the homogeneity of smaller nodes. The determination of variable importance is done by 
summing up the entire impurity reduction (𝛥𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦) of each variable across all trees 
in the forest. Thus, the importance value of a variable 𝑋𝑗  is calculated as follows.  
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𝑉𝐼(𝑋𝑗) = ∑ ∑ Δ𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦𝑥𝑗

𝑠𝑝𝑙𝑖𝑡∈𝑡

𝑇

𝑡=1

(9) 

  As an evaluation of the GRF model, there are two approaches that can be used, 
namely Out-of-Bag (OOB) error and non-OOB error. OOB error is useful for measuring 
model accuracy by using data that is not selected in the bootstrap process as a test sample 
without requiring additional validation data. The calculation of OOB error is done with 
equation (10). 

𝑂𝑂𝐵 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑(𝑌𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

(10) 

with 𝑌𝑖  is actual value in 𝑖-th location, 𝑌̂𝑖  as predivcted value without 𝑖-th observation in 
training model, and 𝑁 is number of observation. 

Evaluation Performance 

Root Mean Square Error (RMSE) is a statistical metric used to measure how well a 
model's predictions match actual observations. It calculates the square root of the mean 
squared differences between predicted and actual values [24]. A lower RMSE indicates 
higher model accuracy. Unlike MSE, RMSE is in the same unit as the target variable, 
making it more interpretable [25]. 

Model performance can also be evaluated using the Akaike Information Criterion 
(AIC) and its corrected version (AICc). AIC helps compare models based on parsimony, 
while AICc adjusts for small sample sizes. Their formulas are given as: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑧0 − 𝑧̂0)2

𝑛

𝑖=1

(11) 

𝐴𝐼𝐶 =  −2 ln 𝐿 + 2𝑘 (12) 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
(13) 

 
Where L is the model likelihood, n is the number of observations, and k is the 

number of model parameters. 

RESULTS AND DISCUSSION  

Exploratory Data Analysis 

For our target dataset, the total number of sample data is 11 observations from rain 
station points in East Java. The size of this dataset is relatively small, so we would like to 
extrapolate the performance of RF to overcome spatial heterogeneity in small sample 
sizes.  Descriptive statistics showing an overview of the observed data are shown in Table 
3. 

Table 3. Descriptive Statistics 

Variable Minimum Value Maximum Value Mean 
Monthly Rainfall (mm) 186.35 498.1 283.048 
Temperature (0C) 23.35 29.42 27.60 
Humidity (%) 74.64 87.53 80.27 

 
 The minimum monthly rainfall in East Java during the study period was 186.35 
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mm which occurred at Banyuwangi Meteorological Station. While the maximum monthly 
rainfall of 498.1 mm occurred at Nganjuk Geophysical Station. The minimum temperature 
occurred at Pasuruan Geophysical Station and the maximum temperature occurred at 
Silver I Meteorological Station. The lowest air humidity occurs at Malang Geophysical 
Station and the highest humidity occurs at Pasuruan Geophysical Station. The distribution 
of average monthly rainfall values, average temperature, and average air humidity in East 
Java is visually shown in Figure 2. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Distribution of (a) temperature, (b) humidity, (c) mothly rainfall in East Java 

The spatial distribution of temperature (Figure 2(a)) in the East Java region based on 
data from several observation points. It can be seen that the distribution of temperature 
is not homogeneous, but shows variations between locations indicating spatial 
heterogeneity. Some points in the southwest and northeast parts of the region appear to 
have relatively higher temperature values than other points, while the central to southern 
areas tend to show lower temperature values. This distribution pattern may reflect the 
influence of geographical factors such as altitude, distance from the coast, or land cover 
that differ between regions [26].  

Humidity in the East Java region (Figure (2b)) shows variations between locations, 
indicating spatial inhomogeneity. Some locations in the northern and central parts show 
relatively higher humidity levels, while points in the southern and eastern parts tend to 
have lower humidity. This variation may be influenced by differences in geographical 
conditions, such as altitude, vegetation and proximity to water bodies. This moisture 
distribution pattern is important to analyze further as it can affect other atmospheric 
processes such as cloud formation and rainfall, as well as being one of the important 
factors in spatial rainfall prediction models. 

Figure 3(c) shows the spatial variation of rainfall in East Java, which appears uneven 
between locations. Points in the west tend to have higher rainfall than other regions. This 
pattern reflects spatial heterogeneity, which is important to consider in predictive 
modeling. 
 Each variable in this study was tested for its relationship with the Pearson 
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correlation analysis presented in Table 4. 
 

Table 4. Pearson Correlation Analysis 

 Temperature Humidity Monthly Rainfall 

Temperature 1 -0.5888 -0.5451 

Humidity -0.5888 1 0.4227 

Monthly Rainfall -0.5451 0.4227 1 

  
The results of the Spearman correlation analysis show a significant relationship 

between temperature, humidity and monthly rainfall. There is a negative correlation of -
0.5451 between temperature and monthly rainfall indicating that an increase in 
temperature tends to reduce rainfall. This is likely because higher temperatures increase 
the rate of evaporation, thus reducing the amount of rain that falls in an area. Meanwhile, 
the relationship between humidity and monthly rainfall shows a positive correlation of 
0.4227, meaning that the higher the humidity, the greater the likelihood of increased 
rainfall. High humidity usually indicates more water vapor content in the atmosphere, 
which has the potential to support cloud formation and rainfall. 
 The effect of heterogeneity can be identified by the Breusch Pagan test with 
Breusch Pagan test statistics calculated based on equation (2.1). The results of the test are 
presented in Table 5. 
 

Table 5. Breusch Pagan Test for Spatial Heterogeneity Test 
Statistic  df P-value 

6.2918 2 0.0430 

 Based on the test results in Table 5, it is obtained that the p-value is 0.0430 where 
the value is less than the real level of 0.05. This means that the diversity of rainfall at 11 
rainfall stations in East Java is heterogeneous. 

Evaluation Performance 

The dataset used is 11 examples of observation results from the rainfall station. We 
determine the response variable is mothly rainfall and predictor variables are 
temperature and humidity. All data will be useed as training data. Next, we used GRF 
methods to model the training data using a varying tree numbers in RF algorithm (𝑘 =
10, 50, 100, 500, 750, 𝑎𝑛𝑑 100) as model selection process. The best model of GRF 
determined based on RMSE, AIC, and AICc. The comparison varying tree numbers (𝑘) in 
the GRF model is shown in Table 6. 

 
Table 6. Performance Evaluation of Varying Tree Numbers of GRF Model 

𝒌 
OOB Not OOB 

Time(Second) 
RMSE AIC AICc RMSE AIC AICc 

25 86.32 104.08 107.51 31.10 81.62 85.04 0.9620 

50 90.89 105.21 108.64 37.20 85.56 88.98 0.4451 

100 96.40 106.51 109.54 34.34 83.80 87.23 0.5055 

500 85.98 103.99 107.42 33.06 82.96 86.39 0.5108 

750 85.68 103.91 107.34 33.87 83.50 86.92 0.6344 

1000 86.45 104.11 107.54 33.87 83.50 86.92 1.1043 

2000 86.30 104.07 107.50 30.77 81.39 84.82 1.0976 

5000 86.24 104.06 107.49 30.43 81.15 84.58 1.7564 
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The model evaluation results show that varying the number of trees (K) in GWRF from 
25 to 5000 does not significantly change the RMSE, AIC, or AICc values. The values of these 
performance metrics tend to be stable and within a narrow range, which indicates that 
increasing the complexity of the model through increasing the number of trees does not 
necessarily improve the prediction accuracy. This may be due to several factors, such as 
the limited amount of data, the complexity of the relationships between variables that are 
not too high, or the spatial structure that is not too complex to require a large number of 
trees. In terms of OOB error, the RMSE values range from 85.68 to 96.40, with the lowest 
value at k=750. Both AIC and AICc show a similar pattern, with the lowest AIC occurring 
at k=750 (103.91), and the lowest AICc at k=750 (107.42). For the non-OOB model (Not 
OOB), the RMSE is lower than the OOB model in all scenarios, with the lowest RMSE 
(31.10) found at k=25. This happens because the Not OOB model uses the entire dataset 
for training and evaluation, allowing it to better capture data patterns, while OOB only 
uses a portion of the data for validation to provide a more objective estimate of model 
generalization. In terms of computation time, increasing the number of trees raises 
execution time, with the longest time occurring at k=5000 (1.7564 seconds). Therefore, 
the optimal number of trees based on accuracy and computational efficiency is k=750. 

Feature Importance 

The global GRF model builds one model for the entire study area without 
considering locality differences. The coefficient in the GRF model is the proportion of 
impurity results on variable importance as presented in Table 7. 

Table 7. Global Variable Importance 

Variable Impurity 

Temperature 25015.98 

Humidity 24257.44 

 
 The global feature importance of GRF model places the avaerage of temperature in 
East Java is more important than humidity in monthly rainfall modeling. Besides globally, 
GRF is able to identify locally important features shown in Table 8. 
 The local variable importance results from the GRF model indicate that air 
humidity generally has a greater contribution than average temperature in predicting 
monthly rainfall in East Java. This is evident from the higher average importance values 
for air humidity at most locations. For example, at the Geophysical Station in Nganjuk, the 
average temperature variable has the highest importance value, while at the Trunojoyo 
Meteorological Station, its contribution is very low (6242.076). This suggests that 
temperature may be more relevant in certain areas but less influential in others. 
Meanwhile, air humidity tends to have more stable importance values, with the highest at 
the Geophysical Station in Nganjuk (30630.388) and the lowest at the Trunojoyo 
Meteorological Station (8920.223). 
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Table 8. Local variable Importance 

𝒊 Station 
Feature Importance Value 
Temperature Humidity 

1 Geophysics Malang 26800.056 27374.475 
2 Climatology Malang 21483.331 25976.092 
3 Geophysics Nganjuk 29135.592 30630.388 
4 Geophysics Pasuruan 21380.199 21122.283 
5 Meteorology Banyuwangi 9483.96 12994.019 
6 Meteorology Dhoho 30043.275 25685.635 
7 Meteorology Juanda 15881.001 17809.18 
8 Meteorology Perak I 15994.245 18104.771 
9 Meteorology Sangkapura 16988.595 12322.308 

10 Meteorology Trunojoyo 6242.076 8920.223 
11 Meteorology Tuban 24950.421 22031.922 

The importance values indicate the order of importance between the independent 
variables. Thus, the GRF local model can be written in equation (14). 

𝑌𝑖 = 𝑎(𝑢𝑖, 𝑣𝑖)𝑋𝑖𝑝 + 𝜖𝑖 , 𝑖 = 1, … ,11, 𝑝 = 1,2 (14)

where, 

𝑌𝑖   : response variable at 𝑖 location 
𝑌̂𝑖   : predicted value 
𝑋𝑖𝑝  : 𝑝-th predictor variable in 𝑖 location  

𝑎(𝑢𝑖, 𝑣𝑖)𝑿𝑖 : predictive function of GRF model 
𝜖𝑖   : residual of GRF model 

 The results of GRF modeling produce a fitted value which is the prediction result 
at the sample point along with the residuals shown in Table 9. 

Table 9. The Results of GRF Model 

𝒊 Station Actual Value (𝒀𝒊) Fitted Value  (𝒀𝒊̂) Residual (𝜺𝒊) 

1 Geophysics Malang 216.91 230.86 13.95 

2 Climatology Malang 316.07 328.80 12.73 

3 Geophysics Nganjuk 498.10 464.57 -33.53 

4 Geophysics Pasuruan 283.25 315.66 32.41 

5 Meteorology Banyuwangi 186.35 193.03 6.68 

6 Meteorology Dhoho 334.89 320.80 -14.10 

7 Meteorology Juanda 284.84 276.75 -8.11 

8 Meteorology Perak I 206.53 222.12 15.58 

9 Meteorology Sangkapura 303.27 309.88 6.61 

10 Meteorology Trunojoyo 238.51 252.51 13.99 

11 Meteorology Tuban 294.82 291.95 -2.87 

 The highest residuals occur at Nganjuk Geophysical and Pasuruan Geophysical 
stations which are areas with the highest monthly rainfall. This indicates that the fitted 
value of the GRF model has not been able to identify extreme values in the data. 
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Disccussion 

 This study applies GWRF modeling to monthly rainfall data in East Java with only 
11 observations. The monthly rainfall in East Java exhibits spatial heterogeneity, as 
indicated by a significant Breusch-Pagan test. The presence of spatial heterogeneity 
implies that the influence of temperature and humidity varies across different regions, 
necessitating a localized modeling approach. Previous studies discussed in the 
introduction section have applied the GWRF model to relatively large sample sizes (>500). 
This presents a challenge when applying GWRF to small-sample rainfall data [27]. 

The best GWRF model selection is based on a model selection process with varying 
numbers of trees. The analysis results show that RMSE, AIC, and AICc decrease as the 
number of trees increases up to k = 750, after which they increase again at k = 1000. The 
determination of the optimal number of trees in the RF algorithm cannot be generalized 
for all cases, as highlighted by Oshiro (2012), who suggested that there may be a threshold 
where adding more trees leads to diminishing performance while increasing 
computational costs [28]. The results with different numbers of trees in GRF show that, 
overall, models using OOB error perform worse than those using Non-OOB error. This 
indicates that using OOB data for evaluation produces higher error estimates, suggesting 
that the model struggles to capture patterns in the data. The overestimation of OOB error 
in the GWRF model may be due to the small sample size, as discussed in study on the 
overestimation of Random Forest’s OOB error [29]. The GWRF model is also capable of 
identifying variable importance at each location. Based on the variable importance 
analysis, seven out of the 11 observation sites indicate that humidity is the most 
important factor in modeling monthly rainfall. 

The GWRF model does not require specific distribution assumptions and is able to 
adjust local weights at each observation location, making it particularly suitable for 
spatial data with high heterogeneity. For rainfall prediction, such heterogeneity reflects 
local variations in climate controlling factors that are difficult to capture by global models. 
Our findings align with previous research that compared spatially weighted approaches 
to non-spatial methods [30], [31], [32].  

CONCLUSIONS 

 Based on the results of the discussion that has been done, several conclusions 
related to monthly rainfall modeling are obtained. The analysis shows that there is a 
spatial heterogeneity effect on monthly rainfall data in East Java which indicates the effect 
of predictor variables on monthly rainfall is different in each location. There are several 
key findings, among others, related to the performance of GRF when applied to monthly 
rainfall data with small sample sizes and how the level of importance of predictor 
variables at each observation location. The analysis results show that the GRF model 
overestimates the OOB error, so it can be said that the GRF modeling results are not 
optimal in small samples. This highlights the need for future studies to incorporate robust 
validation techniques, such as cross-validation or bootstrapping, especially in spatial 
datasets with few observations. Furthermore, residuals from the GRF model should be 
carefully analyzed to detect spatial autocorrelation or non-random patterns that could 
influence model accuracy. Regarding the importance of predictor variables, the analysis 
shows that in most of the observed locations, humidity has a higher importance than 
temperature in predicting monthly rainfall. This finding suggests that rainfall prediction 
models at a regional level, such as in East Java, should consider locally adaptive methods 
rather than relying solely on global models that assume homogeneous relationships. 
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Additionally, improving the interpretability of GWRF models is crucial; in particular, 
future research should focus on developing or adapting methods to statistically test the 
significance of variable importance at local levels. These advancements would not only 
increase the reliability of spatial predictions but also enhance their applicability in 
decision-making processes, such as water resource management and climate adaptation 
planning. 

This study has limitations related to the exploration of residuals from the GRF that 
may be suspected to be the cause of overestimation. Thus, future research is expected to 
be able to handle overestimates in the GRF model by exploring the residuals obtained and 
can add predictor variables that affect monthly rainfall.  In terms of the current GWRF 
model, it still needs to be refined in its practical application, namely calculating the 
significance level of variable importance like the global RF method. 
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