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Abstract

The Enhanced and Secure RSA Key Generation Scheme (ESRKGS), introduced in 2014,
aimed to improve RSA security by employing a modulus constructed from four prime factors.
However, subsequent studies in 2016 revealed that this structure did not provide additional
security over standard RSA. In response, a modified version of ESRKGS was proposed in 2021,
incorporating dual encoding techniques using a masking parameter γ and double encryption.
This study evaluates the security of the modified ESRKGS by simulating an attack scenario
in which the adversary is assumed to know of ϕ(N), enabling recovery of encrypted messages.
Additionally, we implement Lenstra’s Elliptic Curve Method (ECM) to assess the factorization
resistance of the four-prime modulus when ϕ(N) is not known. Experimental results indicate
that ECM can efficiently factor the modulus into its four constituent primes under practical
time constraints. These findings demonstrate that, despite recent modifications, the ESRKGS
variant remains vulnerable to factorization-based attacks. This highlights the necessity for
more rigorous cryptographic design principles in multiprime RSA systems and calls into
question the long-term viability of ESRKGS-based schemes in high-security applications.
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1 Introduction
Asymmetric cryptography, also referred to as public key cryptography, is a cryptographic system
that utilizes two distinct keys: a public key for encryption and a private key for decryption [1].
Unlike symmetric cryptography, which relies on a single key for both encryption and decryption,
public key cryptography differentiates these processes. In this system, the private key d is kept
confidential and is used exclusively for decryption, while the public key e is openly shared and
used for encryption.

For instance, when an entity Y wishes to send a message m to entity Z, Y uses Z’s public
key and the encryption function E to generate the ciphertext c, such that:

c = Ee(m)

Entity Z then applies its private key to decrypt the ciphertext and retrieve the original plaintext:

m = Dd(c)
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The security of this system fundamentally relies on the computational difficulty of deriving
the private key d from the public exponent e, a problem rooted in well-established mathematical
constructions [1]. While e is openly distributed, its authenticity must be verified to ensure that it
corresponds to the correct private key d and is legitimately associated with the intended recipient
Z. This verification step is crucial in preventing man-in-the-middle or impersonation attacks.
One of the primary advantages of asymmetric cryptography over symmetric cryptography lies in
its ability to eliminate the need for secure key exchange, thereby reducing logistical and security
challenges.

Among various public-key algorithms, the RSA scheme remains one of the most widely
deployed. Proposed in 1977 by Rivest, Shamir, and Adleman [2]–[4], RSA has become a
cornerstone of modern cryptographic systems. The algorithm operates in three fundamental
stages: key generation, encryption, and decryption. Its security is predicated on the difficulty of
factoring a large composite modulus N = p · q into its prime factors p and q. The computational
intractability of this factorization problem underpins the secrecy of the private key.

In practice, increasing the size of N directly enhances security by making factorization expo-
nentially more difficult. However, this improvement comes at the cost of increased computational
effort and resource consumption for both encryption and decryption. As a result, numerous
variants and optimizations of RSA have been proposed, aiming to strike a balance between
cryptographic strength and computational efficiency. These include techniques such as the use of
smaller public exponents, optimizations based on the Chinese Remainder Theorem (CRT), and
multiprime RSA, each addressing different performance-security trade-offs.

RSA security is challenged by various types of attacks, such as those targeting integer
factorization, exploiting quantum computing capabilities, manipulating the RSA function itself,
or exploiting vulnerabilities in its implementation [2], [3], [4], [5]. Although initially developed
for general public key cryptosystems, these attack methods have shown considerable effectiveness
against RSA. In some cases, attacks may also succeed by directly retrieving keys or plaintext,
either through weaknesses in the trapdoor mechanism or independently of it, as demonstrated in
[6], [7], [8], [9], [10], [11].

In 2015, Thangavel et al. proposed a modified RSA scheme designed to increase complexity by
incorporating four prime numbers instead of the two used in the conventional RSA algorithm [12].
This modification, termed the Enhanced and Secured RSA Key Generation Scheme (ESRKGS),
was claimed to provide significantly higher security than traditional RSA. The ESRKGS scheme
generates the modulus N as the product of four prime numbers for key generation. However,
encryption and decryption operations are performed using a modulus derived from only two of
these prime numbers. Thangavel et al. argued that, given N (the public key), an attacker could
naively factorize it to obtain two prime factors (p and q), which are insufficient to deduce the
private key operating under the four-prime modulus.

However, in 2016, Lüy et al. published research that challenged the security claims of the
ESRKGS scheme [13]. Their work demonstrated that the use of four prime numbers did not
provide any substantial improvement in security over conventional RSA. In fact, Lüy et al. proved
that the ESRKGS scheme’s security level was equivalent to that of standard RSA, refuting the
original claims made by Thangavel et al.

In 2021, Azzahra introduced a new modification of the ESRKGS scheme [14]. This updated
scheme altered the encryption and decryption parameters, which were both performed under
a modulus N . Additionally, a new parameter, γ, was introduced as part of the public key,
resulting in encryption and decryption processes being executed twice. Azzahra claimed that
this modification could mitigate previously identified vulnerabilities in the ESRKGS scheme.
Subsequent studies have explored the security and efficiency of the ESRKGS algorithm and its
modifications [15], [16], [17].

Building upon this framework, the present study assesses the security of the ESRKGS modi-
fication proposed by Azzahra. The analysis demonstrates an attack on the scheme through a
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mathematical approach that leverages its structural properties, under the assumption that the
attacker has knowledge of ϕ(N). For cases where ϕ(N) is unknown, an alternative strategy is
introduced, employing the Lenstra elliptic curve algorithm to factorize N . Together, these ap-
proaches provide a unified evaluation of the modified ESRKGS, revealing potential vulnerabilities
that should be addressed before any practical deployment.

The structure of this paper is as follows. Section 1 presents the background of the problem and
outlines the theoretical foundations underlying this study, including a review of relevant literature.
Section 2 describes the experimental procedures employed. Section 3 discusses the results in
detail, emphasizing the most significant findings and their implications for the security of the
analyzed schemes. Finally, Section 4 concludes the paper by summarizing the key contributions
and outlining potential directions for future research.

RSA Algorithm

Until the late 1970s, only symmetric cryptographic systems were known. However, during the
decade from 1970 to 1980, asymmetric cryptographic systems were introduced. One of the most
prominent schemes in asymmetric cryptography is the RSA algorithm, developed in 1977 at
the Massachusetts Institute of Technology (MIT) by Ronald Rivest, Adi Shamir, and Leonard
Adleman [18]. The algorithm was patented in 1983, but the patent expired around 2000, making
it freely available for use today.

Like other cryptographic algorithms, RSA is used for both encryption and decryption.
However, RSA is less efficient when encrypting long messages, so it is more commonly employed
for encrypting short messages [1]. For example, if Bob wants to send a secure message to Alice,
Alice will provide Bob with her public key while keeping her private key confidential.

Algorithm 1 RSA Key Generation
Require: Primes p and q

1: Alice generates two large random (and distinct) primes p and q, each roughly of the same
size.

2: Alice computes N = p · q and ϕ(N) = (p − 1)(q − 1).
3: Alice selects a random integer e, 1 < e < ϕ(N), such that gcd(e, ϕ(N)) = 1.
4: Alice computes the unique integer d, 1 < d < ϕ(N), such that ed ≡ 1 mod ϕ(N).
5: return Alice’s public key, (N, e); and Alice’s private key, d.

Algorithm 2 RSA Encryption
Require: Message M and Alice’s public key (N, e)

1: Bob obtains Alice’s authentic public key (N, e).
2: Bob computes C ≡ M e mod N .
3: return Ciphertext C, which is then sent to Alice.

Algorithm 3 RSA Decryption
Require: Ciphertext C and Alice’s private key, d

1: Alice uses her private key d to recover M from C by computing M ≡ Cd mod N .
2: return Message M .

ESRKGS Algorithm

The security of the RSA algorithm is rooted in the computational difficulty of factoring large
numbers into their prime factors. However, advancements in technology and mathematical
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techniques have led to the development of methods that can solve such factorization problems
more efficiently. The vulnerability of RSA arises from its reliance on N , a product of two prime
numbers. If N is successfully factored, an attacker can easily determine the private keys and
gain access to the encrypted information [19].

To address this weakness, Thangavel et al. proposed the Enhanced and Secured RSA Key
Generation Scheme (ESRKGS) in 2014, aiming to bolster the security of the traditional RSA
algorithm [12]. In this scheme, as with RSA, Alice provides Bob with her public key while
keeping her private key secure.

Algorithm 4 ESRKGS Key Generation
Require: Primes p, q, r, and s

1: Alice generates four large random (and distinct) primes p, q, r and s, each roughly of the
same size.

2: Alice computes n = p · q and m = r · s.
3: Alice computes ϕ(n) = (p − 1)(q − 1) and ϕ(m) = (r − 1)(s − 1), then subsequently computes

ϕ(N) = ϕ(n) · ϕ(m).
4: Alice chooses e1, 1 < e1 < ϕ(n), with gcd(e1, ϕ(n)) = 1; and e2, 1 < e2 < ϕ(m), with

gcd(e2, ϕ(m)) = 1.
5: Alice computes E1 ≡ ee2

1 mod N .
6: Alice chooses a random number E, 1 < E < ϕ(N) · E1 such that gcd(E, ϕ(N) · E1) = 1.
7: Alice then computes D such that D ≡ E−1 mod (ϕ(N) · E1).
8: return Alice’s public key, (N, E); and Alice’s private key, D.

Algorithm 5 ESRKGS Encryption
Require: Plaintext M < N and Alice’s public key (E, N)

1: Bob obtains Alice’s authentic public key (E, N) to encrypt message M .
2: Bob computes C ≡ ME mod N .
3: return Ciphertext C, which is then sent to Alice.

Algorithm 6 ESRKGS Decryption
Require: Ciphertext C and Alice’s private key, D

1: Alice receives ciphertext C and performs decryption using her private key D.
2: Alice computes M ≡ CD mod N .
3: return Message M .

Attack on ESRKGS

In 2016, Lüy et al. published an attack on the ESRKGS algorithm [13]. Their analysis
demonstrated that an attacker could recover the original message M if they could factorize
n = p · q. Once n is factored into its prime components p and q, the attacker can compute ϕ(n) =
(p − 1)(q − 1). Using the public key E, they can exploit the relationship gcd(E, ϕ(N) · E1) = 1.

Here, N is the product of n and another integer m, and ϕ(N) is the product of ϕ(n) and ϕ(m).
It follows that gcd(E, ϕ(N) · E1) = 1, meaning E has an inverse modulo ϕ(N). Let D1 ≡ E−1

mod ϕ(N). For any message M < N , the attacker can compute CD1 ≡ MED1 ≡ M mod (N),
thereby decrypting the message.
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Given the following parameters on ESRKGS:

p = 79, q = 101, r = 109, s = 89
n = 7979, m = 9701, N = 77404279

ϕ(n) = 7800, ϕ(m) = 9504, ϕ(N) = 74131200
e1 = 2761, e2 = 587
E1 = 74034755, E = 442692186722853
D = 4707099085177517

Public key = (442692186722853, 7979)
Private key = (4707099085177517, 7979)

M = 59, C = 2883

If an attacker successfully factors n = 7979 into its prime components p = 79 and q = 101,
they can easily compute ϕ(n) = (p − 1)(q − 1) = 7800. With access to the public key E =
442692186722853, the attacker can determine the private key D1 ≡ E−1 mod ϕ(N) = 3317.
Using this private key, the attacker can decrypt the ciphertext C = 2883 to recover the original
message:

M ≡ CD1 mod ϕ(n) ≡ 28833317 mod 7979 = 59 (1)

Thus, the attacker successfully retrieves the plaintext message.

A Modification on ESRKGS

Azzahra proposed a new cryptographic scheme as a modification of the ESRKGS scheme [14].
The enhancements include changes to the encryption and decryption parameters, both of which
are now computed using a modulus N . Additionally, the author introduced a new parameter, γ,
as part of the public key. The encryption and decryption processes in this modified scheme are
performed twice, with γ playing a key role. The parameter γ is chosen such that gcd(γ, N) = 1,
and its inverse, γ−1, becomes a component of the private key. Azzahra claims that the addition of
the parameter γ in the encryption function increases the difficulty for an attacker to determine the
message M , since the attacker must also be able to find γ−1, which is required in the decryption
process [14].

Furthermore, the key generation process in Azzahra’s proposed scheme incorporates a notable
enhancement through the generation of two distinct key pairs: (E, D) and (g, t). Here, D and t
are the modular inverses of E and g, respectively, with respect to ϕ(N). Both pairs are actively
employed during the encryption and decryption phases, with (E, D) functioning as the primary
RSA-like exponent pair, while (g, t) introduces an additional transformation stage.

The inclusion of this secondary key pair (g, t) is designed to add an extra cryptographic
layer, thereby increasing the complexity of potential attack vectors. This dual-key strategy
directly addresses the vulnerabilities observed in the original ESRKGS scheme, particularly its
deterministic structure and susceptibility to specific cryptanalytic techniques. By diversifying
the encryption process and decoupling key dependencies, the modified scheme aims to improve
resilience against both classical and adaptive attacks. In essence, this modification seeks to
preserve the intended efficiency of ESRKGS while significantly enhancing its robustness in
practical deployment scenarios.

The following section outlines the key generation, encryption, and decryption procedures in
Azzahra’s proposed scheme. Each step is presented to emphasize the essential computational
operations and parameter relationships that define the scheme’s structure and functionality.
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Algorithm 7 Modified ESRKGS Key Generation
Require: Primes p, q, r, and s

1: Choose random primes p, q, r and s.
2: Compute n = p · r, m = q · s, and N = n · m = p · r · q · s.
3: Compute ϕ(n) = (p − 1)(r − 1), ϕ(m) = (q − 1)(s − 1), and ϕ(N) = ϕ(n) · ϕ(m).
4: Choose a random integer e1, ϕ(n)

2 < e1 < ϕ(n), such that gcd(e1, ϕ(n)) = 1.
5: Choose a random integer e2, ϕ(n)

2 < e2 < ϕ(n), such that gcd(e2, ϕ(n)) = 1.
6: Compute E1 ≡ ee2

1 mod N .
7: Compute bb = ϕ(N) × E1.
8: Choose a random integer E, bb

2 < E < bb, such that gcd(E, bb) = 1.
9: Choose a random integer g, bb

2 < g < bb, such that gcd(g, bb) = 1.
10: Compute D ≡ E−1 mod bb.
11: Compute t ≡ g−1 mod bb.
12: Compute n1 = N

n and m1 = N
m .

13: Compute n
(
1 = −1 and m−1

1 such that n1 · n−1
1 ≡ 1 mod n and m1 · m−1

1 ≡ 1 mod m.
14: Choose two primes j1 and j2 then compute j−1

1 dan j−1
2 such that j1 · j−1

1 ≡ 1 mod n and
j2 · j−1

2 ≡ 1 mod m.
15: Compute the encryption parameter γ by using the Chinese Remainder Theorem such that

γ = ((j1 · n1 · n−1
1 ) + (j2 · m1 · m−1

1 )) mod N .
16: Verify if gcd(γ, N) = 1. If gcd(γ, N) ̸= 1, then choose another j1 and j2.
17: Compute γ−1 such that γ · γ−1 ≡ 1 mod N .
18: return Public key (E, γ, g, N); and private key (D, γ−1, t).

Algorithm 8 Modified ESRKGS Encryption
Require: Plaintext M with gcd(M, N) = 1 and public key (E, γ, g, N)

1: Compute C1 ≡ (γ · (ME mod N)) mod N .
2: Compute C2 ≡ Cg

1 mod N .
3: return Ciphertext C2.

Algorithm 9 Modified ESRKGS Decryption
Require: Ciphertext C2 and private key (D, γ−1, t)

1: Compute CT1 ≡ Ct
2 mod N .

2: Compute M ≡ ((CT1 · γ−1) mod N)D mod N .
3: return Message M .

Table 1 presents a comparative overview of three RSA-based cryptographic schemes: Classic
RSA, ESRKGS, and Modified ESRKGS. It illustrates how each variant alters the original RSA
structure, the rationale behind these modifications, and their impact on overall security.

Table 1: Comparison of RSA Variant

Scheme Number of Key Features Known Weakness Security
Primes Assumption

Classic RSA 2 ϕ(N), large e/d ECM, QS, Integer
sub-exp factorization factorization

ESRKGS 4 Split decryption No extra hardness Integer
via CRT from extra primes factorization

Modified ESRKGS 4 γ, double No added security Integer
encryption from ESRKGS factorization
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Classic RSA employs a modulus with two prime factors and relies on the hardness of integer
factorization. However, it remains vulnerable to sub-exponential factorization attacks such as
the Elliptic Curve Method (ECM) and the Quadratic Sieve (QS). ESRKGS attempts to improve
decryption efficiency by using a four-prime modulus and applying the Chinese Remainder Theorem
(CRT), yet this structural change does not enhance its cryptographic strength. The Modified
ESRKGS further introduces a new parameter, γ, along with a double encryption mechanism.
Despite these additions, it similarly fails to provide significant resistance against known attacks.
Ultimately, although ESRKGS and its modified version introduce structural variations, they do
not offer a tangible security advantage over Classic RSA, as all three schemes rely on the same
factorization-based security foundation.

2 Methods
The methods outlined in this section form the basis for the experimental procedures applied when
ϕ(N) is unknown, relying on the Lenstra elliptic curve algorithm to factorize N . By presenting
the parameter selection and algorithmic steps, this section provides the essential background
for understanding the cryptographic constructs and attack models examined in the subsequent
sections.

Lenstra Algorithm

The Lenstra algorithm, introduced by mathematician Hendrik Lenstra in 1987, is a factorization
method designed to decompose large integers into smaller prime factors [20]. For instance, given
a large integer N , the algorithm aims to find prime numbers p and q such that N = p · q. This
algorithm leverages principles from number theory and algebra, with a particular focus on elliptic
curve theory, to accelerate the factorization process.

An elliptic curve is a cubic equation in two variables, resembling those used to calculate the
lengths of curves. The general form of an elliptic curve equation is:

y2 = x3 + ax + b (2)

For the equation above to represent a nonsingular elliptic curve, it must satisfy the condition
4a2 + 27b2 ̸= 0. The unique properties of nonsingular elliptic curves enable the definition of
an addition operation for points on the curve [8]. However, this addition operation differs
fundamentally from the standard addition of integers. Instead, it involves combining two points
on the curve to produce a third point. The process of point addition on an elliptic curve is
classified into three distinct cases:

1. In the first case, two points P = (x1, y1) and Q = (x2, y2) have two distinct x coordinates
(x1 ̸= x2). The formulas for the slope (λ) and the resulting coordinates (x3, y3) of the third
point are given as follows:

λ ≡ (y2 − y1) · (x2 − x1)−1 (mod N)
x3 ≡ λ2 − x1 − x2 (mod N)
y3 ≡ λ(x1 − x3) − y1 (mod N)

If (x2 − x1) does not have an inverse modulo N , then gcd((x2 − x1), N) ̸= 1. In such cases,
N can be factored.

2. In the second case, two points P = (x1, y1) and Q = (x2, y2) are identical (x1 = x2 and y1 =
y2). The formulas for the slope (λ) and the resulting coordinates (x3, y3) of the third point
are are calculated as follows:

λ ≡ (3y1 + a)(2y1)−1 (mod N)
x3 ≡ λ2 − x1 − x2 (mod N)
y3 ≡ λ(x1 − x3) − y1 (mod N)
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If 2y1 does not have an inverse modulo N , then gcd(2y1, N) ̸= 1, and N can be factored.
3. In the third case, two points P = (x1, y1) and Q = (x2, y2) are additive inverses of each

other. The line connecting these points does not intersect the curve at a third point.
Instead, it is said to intersect at the point at infinity, denoted as O. This point O, also
known as the zero point, serves as the identity element of the elliptic curve group.

3 Results and Discussion
To critically evaluate Azzahra’s proposed modification of the ESRKGS algorithm, it is important
to first understand both the intended security enhancements and their cryptographic implications.
The modification introduces additional random parameters within specified ranges and applies the
encryption procedure twice, presumably to strengthen the scheme. However, such adjustments
do not necessarily yield significant improvements in complexity or resistance to attacks, and the
private key construction remains susceptible to derivation from public information.

This section presents a structured analysis of potential vulnerabilities in the modified ES-
RKGS algorithm. We begin by outlining two main attack vectors that exploit the algorithm’s
mathematical properties and public key structure. The first focuses on deriving the decryption
key under certain assumptions, while the second leverages the formulation of the public key to
recover the claimed private key. Following this conceptual analysis, we proceed to a detailed
mathematical derivation demonstrating how an adversary can successfully retrieve the original
message using publicly available parameters and standard number-theoretic techniques.

1. Deriving the Decryption Key
Assume an attacker can determine the value of ϕ(n). The public key E satisfies gcd(E, ϕ(N)·
E1) = 1, where E1 = ee2

1 mod N . Since ϕ(N) ·E1 is the product of ϕ(N) and E1, it follows
gcd(E, ϕ(N)) = 1. This implies that E has an inverse modulo ϕ(N), denoted as D1. As a
result, for any message M < N , CD1 ≡ MED1 ≡ M mod N .

2. Exploiting the Public Key Structure
The public key γ is defined as γ = ((j1 ·n1 ·n−1

1 )+((j2 ·m2 ·m−1
2 )) mod N , where parameters

j1, j2, n1, m1 are generated randomly within certain ranges. However, the claimed private
key γ−1 is computed modulo N . This means that, given sufficient knowledge of the public
key, an attacker can determine γ−1 and compromise the security of the system.

Mathematical Analysis

To substantiate the conceptual attack description, we now present a detailed mathematical analysis
of the modified ESRKGS algorithm. This analysis formalizes the attack steps using number-
theoretic properties and modular arithmetic, showing explicitly how the decryption key can be
derived and how the original plaintext can be recovered from the ciphertext. By systematically
expressing the encryption and decryption processes in algebraic form, the relationships between
the public key parameters, the ciphertext components, and the private key elements become
evident, enabling the complete reconstruction of the message without legitimate authorization.

We begin by defining the key parameters, the ciphertext structure, and the known value
available to the attacker:

Public key = (E, γ, g, N),
Ciphertext = C2 = Cg

1 mod N,

Known value = ϕ(N).

From the ciphertext definition, we can express C2 directly in terms of C1 and subsequently
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expand C1 in terms of M , E, and γ:

C2 ≡ Cg
1 mod N (3)

C2 ≡ ((γ · (ME mod N)) mod N)g mod N. (4)

Rearranging the expression allows us to separate the contribution of γ and M in the expo-
nentiated form:

C2 ≡ (γg · (MEg mod N)) mod N (5)
(γ−1)g ≡ γ−g mod N. (6)

By multiplying Equations (4) and (6), we eliminate the γ factor, leaving only the term involving
M :

C2 · (γ−1)g ≡
(
γg · (MEg mod N)

)
mod N · γ−g mod N (7)

C2 · (γ−1)g ≡ MEg mod N. (8)

Next, we define the modular inverses of E and g with respect to ϕ(N), denoted by D1 and t1
respectively:

D1 ≡ E−1 mod ϕ(N) (9)
t1 ≡ g−1 mod ϕ(N). (10)

Multiplying these inverses yields the inverse of the product Eg modulo ϕ(N):

D1 · t1 ≡
(
E−1 mod ϕ(N)

)
·
(
g−1 mod ϕ(N)

)
(11)

D1 · t1 ≡ (Eg)−1 mod ϕ(N). (12)

Finally, raising Equation (8) to the power of Equation (12) recovers the original message M :

(
C2 · (γ−1)g

)D1·t1 ≡
(
MEg mod N

)(Eg)−1

(13)

(C2 · (γinv)g)D1·t1 ≡ M mod N. (14)

Implementation of Modified ESRKGS

This section presents the implementation of the Modified ESRKGS algorithm, covering the key
generation, encryption, and decryption processes. The modifications are designed to enhance
security without compromising computational efficiency. We detail the underlying mathematical
principles, parameter selection, and procedural steps to demonstrate how the scheme operates
in practice. Furthermore, we examine the security implications of these modifications. All
parameters used in the implementation are generated independently by the authors.

Key Generation

In this phase, Alice generates the core cryptographic parameters and computes the corresponding
public and private keys, which form the foundation of the encryption and decryption processes.

1. Alice chooses four primes: p = 79, q = 101, r = 109, s = 89.
2. Alice computes:

n = p · q = 7979, m = r · s = 9701, N = n · m = 77404279.
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3. Alice computes:

ϕ(n) = (p − 1)(q − 1) = 7800, ϕ(m) = (r − 1)(s − 1) = 9504,

then
ϕ(N) = ϕ(n) · ϕ(m) = 74131200.

4. Alice chooses e1 where ϕ(n)
2 < e1 < ϕ(n) and gcd(e1, ϕ(n)) = 1, with e1 = 2761.

5. Alice chooses e2 where ϕ(m)
2 < e2 < ϕ(m) and gcd(e2, ϕ(m)) = 1, with e2 = 587.

6. Alice computes:
E1 = ee2

1 mod N = 74034755.

7. Alice computes:
bb = ϕ(N) × E1 = 5488285229856000.

8. Alice chooses E where bb
2 < E < bb and gcd(E, bb) = 1, with E = 2744142614928019.

9. Alice chooses g where bb
2 < g < bb and gcd(g, bb) = 1, with g = 3744142614928009.

10. Alice computes:
D ≡ E−1 (mod bb) = 5343856671175579,

11. Alice computes:
t ≡ g−1 (mod bb) = 1088432811336889.

12. Alice computes:
n1 = N

n
= 9701, m1 = N

m
= 7979.

13. Alice computes:

n−1
1 (mod n) = 3313, m−1

1 (mod m) = 5673.

14. Alice chooses two primes j1 = 31 and j2 = 37, then computes:

j−1
1 (mod n) = 4633, j−1

2 (mod m) = 5506.

15. Alice computes:

γ =
(
(j1 · n1 · n−1

1 ) + (j2 · m1 · m−1
1 )

)
mod N = 39376396,

16. Alice computes:
γ−1 (mod N) = 40051234.

17. The public key is:

(2744142614928019, 3744142614928009, 39376396, 77404279).

18. The private key is:

(5343856671175579, 1088432811336889, 40051234, 77404279).

Encryption

Once the keys have been generated, Bob can encrypt his message using Alice’s public key to
produce a secure ciphertext.

1. Bob uses Alice’s authentic public key (E, g, γ, N) to encrypt a message M < n, where
M = 59.
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2. Bob computes:

C1 =
(
γ · (ME mod N)

)
mod N = 50594777

C2 = Cg
1 mod N = 71485117.

Decryption

After receiving the ciphertext, Alice uses her private key to reverse the encryption process and
recover the original plaintext message.

1. Alice receives the ciphertext C and decrypts the message using her private key (D, t, γ−1)
with C2 = 71485117.

2. Alice computes:

CT1 = Ct
2 mod N = 50594777

M =
(
(CT1 · γ−1) mod N

)D
mod N = 59.

Attack Simulation

Using a small-scale mathematical example, the attack is simulated with the following parameters:
1. p = 79, q = 101, r = 109, s = 89
2. n = 7979, m = 9701, N = 77404279
3. ϕ(n) = 7800, ϕ(m) = 9504, ϕ(N) = 74131200
4. e1 = 2761, e2 = 587, E1 = 74034755
5. bb = 5488285229856000
6. E = 2744142614928019, g = 3744142614928009
7. D = 5343856671175579, t = 1088432811336889
8. n1 = 9701, m1 = 7979
9. n−1

1 mod n = 3313, m−1
1 mod m = 5673

10. j1 = 31, j2 = 37
11. j−1

1 mod n = 4633, j−1
2 mod m = 5506

12. γ = 39376396, γ−1 mod N = 40051234
13. Public key: (2744142614928019, 3744142614928009, 39376396, 77404279)
14. Private key: (5343856671175579, 1088432811336889, 40051234, 77404279)
15. Message: M = 59
16. Ciphertext: C2 = 71485117

If an attacker obtains the value of ϕ(N), they can exploit the algorithm to recover the message
M using the ciphertext C2 and the public key (E, g, γ, N). The attack proceeds as follows:

1. Given public key (E, g, γ, N) = (2744142614928019, 3744142614928009, 39376396, 77404279)
and the ciphertext C2 = 71485117.

2. ϕ(N) = 74131200.
3. Compute D1 = E−1 mod ϕ(N) = 72180379,
4. Compute t1 = g−1 mod ϕ(N) = 58844089
5. Compute D1 · t1 = (E · g)−1 mod ϕ(N) = 28457731.
6. Compute γ−1 mod N = 40051234,
7. Compute (γ−1)g mod N = γ−g mod N = 57947710.
8. Recover the message:

M =
(
C2 · (γ−1)g mod N

)D1·t1 mod N = (71485117·57947710)28457731 mod 77404279 = 59.

This demonstrates that an attacker can successfully decrypt the ciphertext, indicating that
the scheme is vulnerable to this attack.
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Analysis of E1 and Security Implications

The value E1 is derived from random values e1 and e2, where gcd(e1, ϕ(n)) = gcd(e2, ϕ(n)) = 1.
However, this does not enhance security because encryption operates modulo N . Once the
attacker determines ϕ(N), they can compute the inverses of E and g. Furthermore, the claimed
security of the private key element γ−1 is unfounded, as it can be directly derived from the public
parameter γ using modular inversion. As a result, the second layer of encryption introduced in
this modification does not enhance the cryptographic strength of the algorithm.

The addition of γ as a public parameter and the use of double encryption do not alter the
underlying algebraic structure of the ciphertext or obscure the relationships among the key
components. Since the decryption process remains algebraically reversible once ϕ(N) is known,
the scheme inherits the same structural vulnerabilities as its predecessor. Moreover, the extra
encryption step introduces greater computational overhead without contributing meaningful
entropy or resistance to known attacks.

It is important to note that the attack based on ϕ(N) assumes that the totient value is
known or can be inferred, which is not typically the case in standard RSA settings. However,
under certain implementation flaws or side-channel leaks, such assumptions may be valid. The
Lenstra-based factorization attack, on the other hand, does not rely on knowledge of ϕ(N) and
is more broadly applicable to poorly sized keys.

Alternative Attack: Factoring N

If the attacker does not have access to ϕ(N), the most practical approach to break the system
is to factor N directly. Various integer factorization algorithms exist; in this case, the Lenstra
Elliptic Curve Factorization Method (ECM) is applied to N = 77404279, which is a composite
number. Using the elliptic curve equation:

y2 = x3 + ax + b (mod q)

where a = 1, b = 1, and q = N = 77404279, we define P = (0, 1) and perform scalar multiplication
until reaching the point at infinity. This choice is arbitrary but valid, as ECM works with randomly
chosen curves and points until a non-trivial factor of N is revealed.

The steps are as follows:
1. We perform scalar multiplications of P on the chosen elliptic curve, following the standard

group law:

2P = (19351070, 67728743),
3P = (72, 611),

20P = (29168093, 46167503),
21P = O.

2. At the 21st multiplication, reaching the point at infinity implies

gcd(x2 − x1, N) ̸= 1 or gcd(2 · y1, N) ̸= 1.

3. Since 21P = 20P + P , where 20P = (29168093, 46167503) and P = (0, 1).
4. Determine the prime factors as follows:

• If x2 ̸= x1, then compute gcd(x2 − x1, N).
• If x2 = x1 and y2 = y1, then compute gcd(2 · y1, N).

5. The given point satisfies the first condition, x2 ̸= x1, such that

gcd(x2 − x1, N) = gcd(29168093, 77404279) = 101.
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6. Update:
N = 77404279

101 = 766379.

7. Repeat the process until four prime factors are obtained:

p = 101, q = 79, r = 89, s = 109.

The diagram in Figure 1 illustrates the core structure of the Modified ESRKGS encryption
scheme, with a specific focus on its vulnerability when the Euler totient function ϕ(N) is known to
an adversary. Although the scheme introduces additional cryptographic layers, such as masking
the plaintext using a parameter γ and applying a secondary exponentiation with base g, its
security ultimately relies on the secrecy of ϕ(N). The diagram demonstrates how an attacker,
equipped with knowledge of ϕ(N), can reverse the encryption process and successfully recover
the original message, exposing a critical weakness in the scheme’s design.

Figure 1: Attack process flow

In the key generation phase, two key pairs are constructed. The public key consists of
(E, γ, g, N), while the private key comprises (D, γ−1, t), where D and t are the modular inverses
of E and g, respectively, with respect to ϕ(N).

Encryption is performed in two steps: first, the message M is masked and exponentiated as

C1 =
(
γ · (ME mod N)

)
mod N, (15)

and then further transformed into
C2 = Cg

1 mod N. (16)
Decryption reverses this process by applying the exponent t, removing the γ masking, and

performing the standard RSA decryption.
However, the lower part of the diagram demonstrates that if an attacker gains knowledge

of ϕ(N), for example, through side-channel analysis, leakage, or factorization of N , they can
reconstruct the private parameters (D1, γ−1, t1). These are functional equivalents of the original
private key components, computed as follows:

D1 = E−1 mod ϕ(N), γinv = γ−1 mod N, t1 = g−1 mod ϕ(N). (17)

Using knowledge of ϕ(N), an attacker can systematically reverse the encryption process
through modular arithmetic. By computing C2 and undoing the layered exponentiation and
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masking steps, the original plaintext M can be fully recovered. As illustrated in the accompanying
diagram, each transformation applied during encryption is algebraically invertible when ϕ(N) is
known.

This exposes a critical weakness in the scheme: despite its structural modifications, such
as double encryption and the use of the parameter γ, the scheme introduces no additional
computational hardness beyond that of classic RSA. If the modulus N can be factored, or if
ϕ(N) is otherwise disclosed, the entire system becomes vulnerable to complete decryption.

In a broader cryptographic context, the Modified ESRKGS remains rooted in the same
security assumption as RSA: the difficulty of factoring large integers. This makes it inherently
insecure in the post-quantum era, where algorithms such as Shor’s [21] can efficiently break
such assumptions. Consequently, the long-term viability of ESRKGS, regardless of internal
enhancements, is fundamentally limited.

Moreover, the scheme’s practical relevance appears minimal. There is no evidence of its
adoption in real-world cryptographic systems, either in its original or modified form. Its
contribution is primarily academic, serving as a case study in the design and analysis of multiprime
RSA variants, rather than as a practical or post-quantum-secure alternative to existing public-key
schemes.

4 Conclusion
This study investigated the ESRKGS modification proposed by Azzahra to evaluate its effect on
computational complexity and cryptographic security. The modification extends the factorization
problem from n = p · q to N = p · q · r · s, thereby increasing the mathematical complexity of the
underlying task.

The analysis reveals that, although the factorization structure becomes more complex, this
change does not result in a substantial improvement in security. In particular, when ϕ(N) is
known, an adversary can efficiently recover the original message M , effectively nullifying the
intended cryptographic enhancement. The scheme does not introduce any fundamentally new
hardness assumptions and remains susceptible to classical factorization-based attacks.

Given these findings, the modified ESRKGS cannot be considered a viable alternative to RSA,
especially in post-quantum scenarios. Future research should focus on developing cryptographic
schemes that incorporate novel hardness assumptions and offer provable resistance against both
classical and quantum attacks.
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