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ABSTRACT 

Rainfall is a crucial component of the hydrological system, playing a significant role in water 
resource management and disaster mitigation, particularly in urban areas such as Jakarta, which 
is prone to flooding. Reliable rainfall prediction is urgently needed to support early warning 
systems and enable more adaptive urban planning. This study proposed a daily rainfall 
prediction model based on a Gated Recurrent Unit (GRU), enhanced with feature selection using 
Random Forest and comprehensive hyperparameter optimization. The model development 
process involved several stages, ranging from data preprocessing to performance evaluation. 
Experimental results showed that the GRU configuration with a batch size of 64 and 128 neurons 
achieved the best performance, yielding an RMSE of 12.2832 and an MAE of 6.524. The model 
demonstrated good capability in capturing daily rainfall patterns, although it still faced 
limitations in predicting extreme events. This approach demonstrated the potential to improve 
the performance of meteorological time series-based prediction. With further testing on data 
from different regions or periods, the model could be further developed and utilized as part of an 
early warning system to support decision-making in flood risk management and short-term 
operational planning in the Jakarta area. 
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INTRODUCTION 

Rainfall is a key weather element that plays an essential role in human life, 
particularly in water resource management, agriculture, and disaster mitigation, such as 
flood prevention. In urban areas like Jakarta, unpredictable rainfall patterns often lead 
to flooding, disrupting infrastructure and daily activities [1]. Therefore, accurate rainfall 
prediction is crucial to support disaster mitigation efforts and enable more effective 
urban planning [2]. Rainfall prediction methods have evolved significantly, ranging from 
conventional statistical approaches to artificial intelligence and machine learning 
techniques. Time series forecasting models such as Recurrent Neural Networks (RNN) 
and their variants have proven effective in capturing complex patterns in meteorological 
data. One increasingly popular model is the Gated Recurrent Unit (GRU), a variant of 
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RNN designed to overcome the vanishing gradient problem while offering lower 
computational cost compared to Long Short-Term Memory (LSTM) networks [3], [4]. 

Previous studies have shown that GRU-based methods can yield more accurate 
rainfall predictions than conventional statistical techniques or other machine learning 
approaches. For instance, a study on rainfall prediction in Sidoarjo comparing 1D-CNN, 
RNN, LSTM, and GRU models found that GRU outperformed the others in both accuracy 
and computational efficiency [5]. With its strength in handling time series data, GRU 
emerges as a promising approach for rainfall prediction, especially in flood-prone 
regions such as Jakarta. 

This study combines Random Forest-based feature selection with 
hyperparameter optimization of the GRU architecture for rainfall prediction. This 
approach offers advantages over prior research, which typically utilized GRU without 
feature selection or comprehensive parameter tuning. Random Forest was employed to 
select the most relevant meteorological variables, thereby improving the quality of 
model input. Subsequently, a thorough exploration of GRU hyperparameters, such as 
batch size and the number of hidden units, was conducted to identify the optimal 
configuration for enhancing prediction accuracy.  

The contributions of this study are threefold: (1) integrating Random Forest-
based feature selection with the GRU model for rainfall prediction, a method not widely 
applied systematically in the context of urban tropical climates; (2) applying 
comprehensive GRU hyperparameter tuning to improve predictive performance; and (3) 
testing the proposed approach specifically on daily rainfall data from Jakarta over the 
period 2015–2024, contributing to the development of early warning systems and data-
driven disaster mitigation policies. By using this approach, the researchers aim to 
develop an optimized and accurate GRU-based rainfall prediction model. The resulting 
model is expected to be utilized as part of an early warning system and support 
decision-making in flood risk management and short-term operational planning in the 
Jakarta region. 

 

METHODS  

The methodology employed in this study consisted of several key stages, each 
designed to ensure the model could effectively learn rainfall patterns and produce 
accurate predictions. The process began with data preprocessing, followed by data 
splitting, feature selection using Random Forest, construction of 30-day sliding 
windows, GRU model training with hyperparameter optimization, and finally, model 
evaluation. The overall workflow of the study is illustrated in Figure 1. 
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Figure 1. Flowchart of the GRU Model 

Data Collection 

This research utilized daily weather data from 2015 to 2024, collected at the 
Kemayoran Meteorological Station in Jakarta and provided by the Meteorology, 
Climatology, and Geophysics Agency of Indonesia (BMKG) [6]. The dataset consisted of 
nine weather-related features, with rainfall as the target variable and the remaining 
eight features serving as predictors for the modelling process. The complete list of 
features used in this study is summarized in Table 1 [6]–[12]: 
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Table 1. Features and Descriptions of Meteorological Variables 
Features Description 

TN Minimum Temperature (°C) 
TX Maximum Temperature (°C) 

TAVG Average Temperature (°C) 
RH_AVG Average Humidity (%) 

SS Sunshine Duration (jam) 
DDD_X Wind Direction at Maximum Speed (°) 
FF_AVG Average Wind Speed (m/s) 

FF_X Maximum Wind Speed (m/s) 
RR Rainfall (mm) 

 

An example of the dataset used in this study is presented in Table 2. 

Table 2. Sample Research Dataset 

No. Tanggal TN TX TAVG RH_AVG SS FF_X DDD_X RR 

1 1/1/2015 24 29.4 26.1 83 0 3 270 25.1 

2 2/1/2015 25 29.8 26.4 85 0 4 290 6.9 

3 3/1/2015 24 29.8 26 87 0.3 5 330 31.6 

... ... ... ... ... ... ... ... ... ... 

3663 29/12/2024 27.8 33 29.7 73 3 3 270 0 

3664 30/12/2024 24.8 32.4 28.4 76 1.8 6 240 1 

3665 31/12/2024 25.2 32.4 28.4 76 2.4 5 270 1.6 

 

Data Interpolation  

The collected data underwent inspection and preprocessing to handle any 
missing values before further analysis. When incomplete records were found, linear 
interpolation was applied to fill the gaps and ensure data completeness. In this dataset, 
symbols such as “-” and the number “8888” were identified, which indicated missing or 
unavailable values in the BMKG records. To address this issue, average interpolation 
was employed, replacing the missing values with the mean of the preceding and 
succeeding values within the same column. This method was chosen to maintain data 
continuity without significantly altering the underlying weather patterns, allowing the 
model to learn more accurately [13]. Afterwards, a backfilling technique was applied to 
handle any remaining missing values following interpolation. Backfill is an imputation 
method that replaces missing values with the next available value in the data sequence 
[14]. 
 

Feature Selection 

This study performed feature selection to identify the most influential 
meteorological features for rainfall prediction. A Random Forest Regressor algorithm 
was employed to calculate feature importance. As an ensemble learning method based 
on decision trees, Random Forest Regressor effectively measured the contribution of 
each feature to the target variable using the Mean Decrease in Impurity (MDI) method. 
In regression tasks, impurity is quantified by the reduction in Mean Squared Error 
(MSE) at each node split. Mathematically, the contribution of a feature 𝒊 in a single tree 
was calculated by summing the MSE reductions (∆MSE) from each split involving that 



Hyperparameter Optimization Approach in GRU Model: A Case Study of Rainfall Prediction in DKI 
Jakarta 

Fidia Raaihatul Mashfia 393 

feature, multiplied by the proportion of samples reaching the corresponding node 
(𝑃(𝑛)). The contribution of feature 𝒊 is formulated in Equation (1) [15]: 

 

∑ 𝑃(𝑛) ∙ ∆𝑀𝑆𝐸𝑛

𝑛∈𝑁𝑖

                                                   (1) 

 
The feature importance values were then averaged across all trees in the ensemble 

and normalized so that the total contribution was summed to one. Features that were 
frequently used and caused significant error reduction were assigned higher importance 
scores and considered more relevant to rainfall prediction. This method was selected 
due to its computational efficiency and clear interpretability regarding the relative 
contribution of each feature [16]. Features with very low importance, less than 10% of 
the total contribution, were removed to simplify the model without sacrificing accuracy. 
Feature selection was completed before model training to ensure only the most relevant 
predictors were used. 

Data Splitting  

To effectively train and evaluate the GRU model, the dataset was divided into three 
parts: 70% for training, 10% for validation, and 20% for testing. This resulted in 2,565 
samples for training, 366 samples for validation, and 733 samples for testing. The 
training set was used to fit the model, while the validation set was employed to monitor 
the model’s generalization ability and to implement early stopping based on the 
validation loss. The test set was used to assess the model’s final performance. This 
approach was applied to reduce the risk of overfitting and to enhance the model’s ability 
to generalize to unseen data.  

Data Normalization 

All input features were normalized to a range of [0,1] using Min-Max Scaling. 
Normalization was necessary to ensure that all features shared a consistent scale, 
enabling the GRU model to perform more effectively. The normalization process 
followed Equation (2) [17]:  

 

𝑥̃𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                                                               (2) 

 

Data Denormalization 

Denormalization was performed to transform the predicted values back to their 
original scale. This step reused the previously stored x_min and x_max values for the 
conversion. The denormalization process followed Equation (3) [5]: 

 
𝑥𝑖 = 𝑥̃𝑖(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) + 𝑥𝑚𝑖𝑛                                                (3) 

 
where: 
𝑥̃𝑖  : Normalized feature value, 
𝑥𝑖  : original feature value, 
𝑥𝑚𝑖𝑛 : minimum value of the feature in the dataset, 
𝑥𝑚𝑎𝑥  : maximum value of the feature in the dataset. 
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By applying denormalization, the model's predictions could be interpreted using the 
same units as the original dataset. 

Windowing 

This study applied a windowing technique to transform the time series data into 
structured input-output pairs suitable for model training. This process used a sliding 
window approach, where the time window advanced one day at a time until the entire 
dataset was processed. This method ensured that the data became structured, allowing 
the model to learn historical patterns and produce more accurate predictions effectively. 
Each data sample consisted of 30 days of historical weather data as input and the rainfall 
value for the following day as the output. 

Gated Recurrent Unit (GRU) 

The GRU is a Recurrent Neural Network (RNN) type designed to overcome the 
vanishing gradient problem when processing sequential data. It consists of two main 
gates: the Update Gate to determine how much past information is retained and THE 
Reset Gate to control the influence of previous states on the current state. The 
mathematical equations of the GRU can be seen in Equations (4) to (7) [5]: 

 
𝑢𝑡 = 𝜎(𝑊𝑢 ∙ [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑢)                                                   (4) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑟)                                                   (5) 

ℎ̃t = tanh(𝑊𝑐 ∙ [𝑟𝑡 ∗ ℎ𝑡−1,  𝑥𝑡] + 𝑏𝑐)                                            (6) 

ℎ𝑡 = 𝑢𝑡 ∗ ℎ̃t + (1 − 𝑢𝑡)  ∗ ℎ𝑡−1                                                 (7) 

di mana: 
𝑢𝑡  : update gate,  
𝑟𝑡 : reset gate,  
ℎ̃t : new candidate state, 
ℎ𝑡  : updated current state, 
𝑊, 𝑏 : learnable weights and biases, 
𝜎  : sigmoid activation function,  
∗ : elementwise multiplication. 

 
GRU was chosen for this study because of its simpler structure than LSTM, allowing 

for faster computation while maintaining high accuracy in time-series rainfall prediction 
[5].  

Evaluation 

Two main metrics are used to evaluate the model's performance in predicting 
rainfall: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). MAE 
measures the average absolute difference between actual and predicted values. The 
smaller the MAE, the more accurate the model is, as it indicates that the model's average 
error is lower. The equation for calculating the Mean Absolute Error (MAE) is provided 
in Equation (8) [18]:  

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

                                                           (8) 
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RMSE is the square root of the average squared differences between actual and 
predicted values. It is more sensitive to significant errors than MAE due to squaring 
them. The smaller the RMSE, the better the model is at minimizing large prediction 
errors. The equation for calculating the RMSE is provided in Equation (8) [17]:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                                   (9) 

 
Where:  
𝑦𝑖  : actual value,   
𝑦̂𝑖  : predicted value,  
𝑛  : number of data points.  
 
By using both MAE and RMSE, the model evaluation becomes more comprehensive in 
assessing error levels and prediction quality. 

RESULTS AND DISCUSSION  

The dataset used in this study consisted of 3,665 daily rainfall time series records. 
Table 3 presents descriptive statistical analysis results to provide a general overview of 
the data characteristics before applying the prediction model. 

 
Table 3. Descriptive Statistics of Meteorological Variables 

 Mean 
Standard 
Deviation 

Minimu
m 

Media
n 

Maximu
m 

Minimum Temperature (TN) 25.84 0.97 23.00 26.00 28.20 

Maximum Temperature (TX) 32.38 1.43 24.80 32.60 36.80 

Average Temperature (TAVG) 28.62 1.02 24.20 28.70 31.80 

Average Humidity (RH_AVG) 75.97 6.16 54.00 76.00 96.00 

Rainfall (RR) 6.84 16.83 0 0 277.50 

Sunshine Duration (SS) 4.42 2.50 0 5.00 9.90 

Maximum Wind Speed (FF_X) 4.61 1.50 0 4.00 15.00 

Wind Direction at Maximum Speed 
(DDD_X) 

252.1
0 

99.95 0 300.00 360.00 

Average Wind Speed (FF_AVG) 1.34 0.61 0 1.00 5.00 

 
Table 3 displays the descriptive statistics of the meteorological variables utilized in 

this study. The average minimum temperature (TN) and maximum temperature (TX) 
were 25.84°C and 32.38°C, respectively, indicating a relatively stable temperature range 
in tropical regions. The average relative humidity (RH_AVG) was recorded at 75.97%, 
reflecting a consistently humid atmospheric condition. Rainfall (RR) had an average of 
6.84 mm, but with a high variance (16.83) and a maximum value reaching 277.50 mm, 
indicating the occurrence of extreme rainfall events. Sunshine duration (SS) ranged from 
0 to 9.90 hours per day, with a median of 5 hours, suggesting frequent cloudy or rainy 
days. These characteristics imply that Jakarta's weather tends to be humid, with high 
variability in rainfall and indications of extreme events that need to be anticipated in 
modelling efforts. 
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Figure 2. Rainfall from 2015 to 2024  

 
Figure 2 illustrates the time series pattern of daily rainfall in Jakarta over the period 

from 2015 to 2024. The data exhibited high fluctuations, dominated by days with no 
rainfall or light rain, interspersed with significant spikes indicating extreme rainfall 
events. These spikes generally occur at the beginning and end of each year, which aligns 
with the seasonal rainfall pattern in tropical regions. Moreover, the relatively consistent 
annual pattern suggested the presence of seasonal cycles, although extreme events 
appeared unevenly distributed across years. These characteristics highlighted the 
necessity for a prediction approach capable of accurately capturing both seasonal 
dynamics and short-term variability. 

To support this requirement, the researchers applied a preprocessing stage to 
ensure the completeness and quality of the input data before modelling. Linear 
interpolation was used as the primary method to handle missing data. When 
interpolation was not applicable due to consecutive missing entries at the beginning or 
end of the series, the backfill method was applied to maintain time series continuity. 
Feature selection was then performed using Random Forest to identify the most 
influential meteorological variables for rainfall prediction, enhancing the model input's 
relevance and efficiency. The results of the feature selection process are shown in Table 
4. 

 
Table 4. Feature Importance 

TN TX TAVG RH_AVG SS FF_X DDD_X FF_AVG 

0.184 0.109 0.128 0.250 0.131 0.065 0.104 0.028 
 

Based on Table 4, the Feature Importance results indicated that average relative 
humidity (RH_AVG), minimum temperature (TN), average temperature (TAVG), 
sunshine duration (SS), maximum temperature (TX), and wind direction (DDD_X) 
contributed most significantly to rainfall prediction, each with a contribution above 
10%. On the other hand, features with a contribution below 10%, such as maximum 
wind speed (FF_X) and average wind speed (FF_AVG), were removed due to their 
relatively low predictive power. The GRU model was expected to operate more 
efficiently and improve prediction accuracy by filtering for more relevant features. 

In this study, the original dataset was first divided into 70% for training, 10% for 
validation, and 20% for testing. Before training, all features were normalized using Min-
Max Scaling to ensure uniform scale across variables and to improve training stability. 
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Since rainfall prediction depends on previous time series patterns, a sliding window 
approach was applied to structure the model input. In this approach, 30 days of 
historical data comprising six weather features were used as input to predict the rainfall 
on the 31st day as output. The choice of a 30-day window length was based on observed 
seasonal rainfall fluctuations (as illustrated in Figure 2), which suggested that the 
predictive model needed to capture short-term variability and detect extreme seasonal 
peaks. By using a relatively short yet informative data span, the training process aimed 
to enable the model to learn monthly seasonal patterns without overfitting caused by 
excessively long historical inputs. 

 

 
Figure 3. 30-Day Windowing Visualization for GRU Model 

 
Figure 3 illustrates the sliding window process applied to the rainfall data, where 

each window consisted of 30 days of input data used to predict rainfall on the 31st day. 
Coloured lines represented three consecutive windows (Windows 1, 2, and 3), while the 
points at the end of each window denoted the target values to be predicted. The input 
data shifted one day at a time so that Window 2 began one day after Window 1, and so 
on. This visualization clarified how the sliding window technique enabled the model to 
learn from short-term historical patterns to improve daily rainfall prediction accuracy. 
The windowing process resulted in 3,636 samples, which were then divided into 2,545 
training samples, 363 validation samples, and 727 testing samples. The validation set, 
separate from the training data, was used during model training to monitor 
generalization performance and to implement early stopping based on validation loss. 
This approach was applied consistently to both the default and tuned GRU models, 
ensuring that all models utilized the validation data to avoid overfitting and maintain 
performance on unseen data.  

With the data preprocessed and structured in a sliding window format, the next 
step was to build a prediction model using the Gated Recurrent Unit (GRU) approach. 
The GRU model was selected due to its capability to capture temporal patterns in time 
series data such as daily rainfall. As a starting point, a baseline GRU model was 
implemented using PyTorch’s default parameters. This model served as a performance 
benchmark before further parameter exploration. The full configuration of the default 
parameters used in the baseline model is presented in Table 5: 
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Table 5. Default Parameters in PyTorch 

Parameters Values 

Hidden Layer 64 

Layer 1 

Dropout rate 0.0 

Optimizer Adam 

Learning rate 0.001 

Batch size 64 

Loss function MSE 

Epoch 50 

 
 

Table 6. Results for Default Parameters 

RMSE MAE Train Loss Val Loss 
12.5792 6.4244 0.0023 0.0021 

 
The evaluation results of the baseline GRU model are presented in Table 6. The 

model demonstrated reasonably good performance, achieving an RMSE of 12.5792 and 
an MAE of 6.4244. Throughout the 50 training epochs, both training and validation loss 
exhibited stable trends without significant fluctuations, with final values of 0.0023 and 
0.0021, respectively. This consistency and balance indicated that the model did not 
suffer from overfitting and was able to generalize well to the validation data. These 
results showed that even with a default configuration, the baseline GRU model was 
capable of effectively capturing daily rainfall patterns, yielding relatively low RMSE and 
MAE values, and thus served as a reference point for comparing performance with tuned 
models. 

Although the baseline GRU model showed promising performance, further 
exploration through hyperparameter tuning was necessary to identify the most optimal 
model configuration. This process involved varying the number of neurons in the hidden 
layer and adjusting the batch size, with the goal of incrementally improving predictive 
accuracy and testing the model’s consistency across different configurations. The tuning 
process employed a single hidden layer, a dropout rate of 0.2, a learning rate of 0.005, 
the Adam optimizer, MSE as the loss function, and a maximum of 50 training epochs. The 
results of the tuning experiments are summarized in Table 7. 

 
Table 7. Hyperparameter Tuning Results for GRU Model 

Batch Size Hidden Neuron Epoch RMSE MAE Loss Val Loss 

32 

32 18 12.4798 7.0412 0.0023 0.0020 
64 16 12.845 6.8996 0.0023 0.0021 

128 24 12.5298 7.3178 0.0022 0.0020 

64 

32 26 12.8982 6.3286 0.0023 0.0022 
64 26 13.5145 7.7608 0.0022 0.0024 

128 17 12.2832 6.524 0.0023 0.0020 

 
The evaluation of the GRU hyperparameter tuning results is shown in Table 7, 

which displays the combinations of batch sizes and the number of neurons in the first 
hidden layer. According to the results, the lowest validation loss of 0.0020 was achieved 
by three configurations: batch size 32 with 32 neurons, batch size 32 with 128 neurons, 
and batch size 64 with 128 neurons. Among these, the configuration with batch sizes 64 
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and 128 neurons demonstrated the best performance, with an RMSE of 12.2832 and an 
MAE of 6.524, the lowest values across all experiments. This indicated that although the 
performance differences among configurations were not substantial, hyperparameter 
tuning could improve predictive performance, particularly by reducing the MAE, which 
reflects the average absolute error. Therefore, the configuration with batch sizes 64 and 
128 neurons was selected as the best-performing model, as it produced more accurate 
and stable daily rainfall predictions compared to other configurations. 

 

 
Figure 4. Training and Validation Loss Curve (Batch Size: 32, Neurons: 128) 

 
Figure 4 shows the training and validation loss curves for the best configuration: 

GRU with a batch size of 64 and 128 neurons. In the early training phase, there was a 
sharp decline in loss, with training loss dropping drastically from approximately 0.008 
to below 0.003 within the first two epochs. Subsequently, the loss curve stabilized with 
minor fluctuations and did not exhibit any increasing trends that would indicate 
overfitting. The validation loss also maintained consistent values and was relatively 
lower than the training loss, ranging between 0.0018 and 0.0023. This pattern indicated 
that the model not only learned effectively from the training data but also generalized 
well to the validation set. The stability of both curves reinforced that this configuration 
provided optimal and balanced performance during the GRU model training process. 

 

 
Figure 5. Plot of Predicted vs Actual Results 
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Figure 5 presents a comparison between actual and predicted rainfall values using 
the GRU model with a configuration of batch size 32 and 128 hidden neurons. In general, 
the model exhibited a good ability to follow the basic trend of daily rainfall, especially 
during dry periods or low-intensity rainfall. This was reflected in predictions 
approaching zero when no rainfall occurred and relatively aligned fluctuations with the 
actual pattern. However, during extreme rainfall events (actual values > 50 mm), the 
model struggled significantly to capture the sudden spikes in intensity. The predictions 
tended to underestimate the peak values, resulting in notable deviations. 

Further analysis of these extreme events revealed that, out of a total of 15 
occurrences in the test data, the model yielded an MAE of 54.74 mm and an RMSE of 
57.37 mm, indicating a limitation in the model's responsiveness to high rainfall events. 
Despite the hyperparameter tuning, performance in extreme cases did not show 
adequate improvement. Therefore, further enhancements such as architectural 
modifications, integration of external weather data, or the application of specialized 
methods to handle data imbalance could be considered. Overall, the GRU model in this 
study successfully captured daily rainfall patterns reasonably well but still required 
improvements in predicting extreme events, which are critical in hydrological 
applications and disaster mitigation efforts. 

As additional context for the performance of the developed model, Table 8 presents 
a numerical comparison with several prior studies that employed various approaches 
for daily rainfall prediction in Indonesian regions with climatic characteristics like those 
of Jakarta, such as Palembang, Sidoarjo, and Lampung. It is important to note that 
although these locations share a tropical monsoon climate comparable to Jakarta, 
differences existed in data periods, data sources, and feature sets used in each study. 
Therefore, this comparison is indicative in nature and aimed at providing a general 
perspective on the model’s relative performance within the relevant literature. 

 
Table 8. Performance Metrics of Rainfall Prediction Models Across Studies 

Method Location RMSE MAE R-square 

GRU (This Study) Jakarta 12.28 6.52 - 

GRU [19] Palembang 9.33 - 0.54 

LSTM [19] Palembang 7.45 - 0.70 

LSTM [20] Lampung 16.81 - - 

GRU [5] Sidoarjo - - 0.79 

 
Table 8 shows that the performance of the GRU model in this study remained 

competitive compared to several previous studies. The model achieved an RMSE of 
12.28 and an MAE of 6.52, which, although higher than the results reported in [19] for 
GRU and LSTM models (with RMSEs of 9.33 and 7.45, respectively), still indicated a 
reasonably robust and reliable performance particularly considering that no external 
features were used. Another study [20] even reported lower performance, with an LSTM 
RMSE of 16.81, highlighting that prediction quality heavily depends on model 
configuration and local data characteristics. Meanwhile, the GRU model in [5] reported 
an R² of 0.79, indicating good explanatory power, although RMSE and MAE values were 
not provided. 

Overall, the tuned GRU model in this study was effective in capturing daily rainfall 
patterns. Differences in performance across studies emphasized the importance of input 
feature selection, data preprocessing, and hyperparameter tuning. Although not the top-
performing model, its results demonstrated strong potential and warranted further 
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development, especially through the integration of climate variables or hybrid modelling 
approaches to enhance performance in predicting extreme rainfall events. 

CONCLUSIONS 

This study successfully developed a daily rainfall prediction model based on GRU, 
incorporating feature selection using Random Forest and comprehensive 
hyperparameter optimization. The baseline GRU model delivered reasonably good initial 
performance, and further tuning produced an optimal configuration with a batch size of 
64 and 128 neurons, yielding an RMSE of 12.2832 and an MAE of 6.524. These results 
indicated that hyperparameter tuning consistently improved the model’s predictive 
performance, even though the gains were not drastic. The model proved effective in 
identifying general daily rainfall patterns but remained limited in accurately predicting 
high-intensity extreme events. 

For future research, it is recommended to explore more complex model architectures 
or implement hybrid approaches such as integrating GRU with attention mechanisms or 
convolutional neural networks (CNNs) and enhancing the model's ability to detect 
extreme rainfall patterns. Bayesian-based approaches may also be considered, either by 
developing Bayesian GRU architectures to account for predictive uncertainty or by 
applying Bayesian Optimization in the hyperparameter tuning process to achieve more 
efficient and adaptive results. Additionally, the incorporation of external supporting 
data, such as climate indices (e.g., ENSO and MJO) or spatial information from satellite 
imagery, could enrich the model inputs. Evaluating model performance by season and 
conducting targeted testing on extreme rainfall events are also essential to ensure the 
model is not only accurate in general but also reliable for disaster risk mitigation 
contexts. Furthermore, it should be noted that evaluation metrics such as MAE and 
RMSE, while commonly used, tend to be less sensitive to large errors associated with 
extreme rainfall. Therefore, future research may consider employing alternative loss 
functions such as Huber loss or quantile loss to improve predictive performance, 
particularly in forecasting high-intensity rainfall events. 
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