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Abstract

Skew circulant matrices have various applications such as cryptography, signal processing,
and many more. Their structure can potentially simplify their determinant and inverse
computations. This study presents explicit formulas for the determinant and inverse of skew
circulant matrices with entries from the alternating Fibonacci sequence. Elementary row
and column operations are used to derive simple explicit formulas for the determinant and
inverse. Computational tests using Wolfram Mathematica show that the algorithm built from
these explicit formulas performs with much faster execution time than the built-in functions,
especially for large matrix size. The proposed approach offers a practical method for the
numerical computation of the determinant and inverse of these matrices.
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1 Introduction
Circulant and skew circulant matrices have many applications in several fields, such as cryptog-
raphy, differential equations, network engineering, signal processing, and many more. One of the
applications is a new and fast algorithm for optimal design of block digital filters [1]. In another
field, circulant and skew circulant matrices are used to solve the continuous Sylvester equations
[2] and the fractional diffusion-advection equations [3]. In the field of cryptography, modified
public key cryptosystem is built based on circulant matrices [4]. In the field of signal processing,
compressive signal processing is built using circulant sensing matrices [5]. The determinant
and inverse of these matrices can be utilized in their applications. However, the calculation
of their determinant and inverse is inefficient due to the very slow computation time for large
matrices. The characteristics of circulant matrices are square matrices whose entries in each
row are identical to the entries in the previous row shifted one position to the right in the next
row, while skew circulant matrices are circulant matrices whose entries below the main diagonal
are negative of the entries below the main diagonal of the circulant matrices. Based on its
characteristics, the determinant and inverse can be formulated explicitly and efficiently if the
entries also have a simple pattern.

Let (c0, c1, . . . , cn−1) be a sequence of real numbers. A skew circulant matrix of size n×n is
defined as [6]
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SCirc (c0, c1, . . . , cn−1) =



c0 c1 · · · cn−2 cn−1
cn−1 c0 c1 · · · cn−2

cn−2
. . . . . . . . . ...

... · · · cn−1 c0 c1
c1 c2 · · · cn−1 c0


.

If C = SCirc (c0, c1, . . . , cn−1), λk are the eigenvalues and vk are the corresponding eigenvec-
tors of C for k = 0, 1, . . . , n− 1, then λk and vk are well-known formulated as [7]

λk =
n−1∑
j=0

cj(ψωk)j and vk =
(
1, ωk, ω2k, . . . , ω(n−1)k

)
, (1)

where ω = e
2π
n

i = cos
(

2π
n

)
+ i sin

(
2π
n

)
and i =

√
−1 ∈ C. From Eq. 1, it is clear that

det(C) =
n−1∏
k=0

n−1∑
j=0

cj(ψωk)j and C−1 = SCirc (b0, b1, b2, . . . , bn−1) , (2)

where bj = 1
n

∑n−1
k=0 µk(ψωk)−j for j = 0, 1, 2, . . . , n− 1, and µk =

{
0, λk = 0
1

λk
, λk ̸= 0

.

Based on all the formulas above, it can be seen that the calculation of the formula is not
efficient to apply if the matrix size or n is very large. However, if the sequence (c0, c1, . . . , cn−1)
has a simple pattern, then the formulas can be simplified so that better explicit formulas are
obtained. This is expected to make the computation time for calculating the determinant and
inverse of the matrices much faster.

Some researchers have created explicit formulas for determining the determinant and inverse
of circulant and skew circulant matrices with entries of various numbers, such as the determinant
and inverse of circulant matrices with Jacobsthal and Jacobsthal-Lucas numbers [8], complex
Fibonacci numbers [9], Fermat and Mersenne numbers [10], VanderLaan numbers [11], ratio of the
elements of Fibonacci and geometric numbers [12], generalized Tribonacci numbers [13], Gaussian
Pell numbers [14], Gaussian nickel Fibonacci numbers [15], arithmetic numbers [16], alternating
Fibonacci numbers [17], geometric numbers [18], Lucas numbers [19], and the determinant of
circulant matrices with generalized Tetranacci numbers [20].

The determinant and inverse of skew circulant matrices have also been formulated for any
continuous Fibonacci numbers [21], generalized Lucas numbers [22], Tribonacci numbers [23],
geometric numbers [24], sum of Fibonacci and Lucas numbers [25], product of Fibonacci and
Lucas numbers [26], Pell-Lucas numbers [27], product of Pell and Pell-Lucas numbers [28], and
Fibonacci numbers [29].

In this article, we study the explicit formulations of the determinant and inverse of skew
circulant matrices with alternating Fibonacci sequence entries through a series of elementary
row and column operations. This sequence has never been used as the entries of skew circulant
matrices in previous studies to formulate the determinant and inverse explicitly. The explicit
formulas of the determinant and inverse of the skew circulant matrices obtained later are much
simpler than those for the general case without calculating the eigenvalues and can be shown by
the computation time of the algorithm built based on these formulas. An alternating Fibonacci
sequence F = (aj)∞

j=0 is defined recursively by the second-order linear homogeneous recurrence
relation with constant coefficients as [17]

aj = −aj−1 + aj−2 for all j ≥ 2, where a0 = 0, a1 = 1.

This sequence has a solution that can be written in the following explicit formula.
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aj = αj − βj

α− β
,

where α = −1+
√

5
2 and β = −1−

√
5

2 . If (fn)∞
n=0 is a Fibonacci sequence and (an)∞

n=0 is an
alternating Fibonacci sequence. A skew circulant matrix Cn(F) of size n× n with alternating
Fibonacci entries F is defined as follows.

Definition 1. For all integers n ≥ 2, a skew circulant matrix of size n× n with entries in the
first row are F = (aj)n

j=1, is the matrix

Cn(F) = SCirc (a1, a2, a3, . . . , an)

2 Methods

In Subsection 3.1, we give a theorem that the matrix Cn(F) is invertible and its proof is mainly
based on the formula of eigenvalues for a general circulant matrix and the well-known theorem
that a matrix is invertible if and only if all its eigenvalues are nonzero. Then, we derive explicit
formulas of the determinant and inverse of the matrix Cn(F) in Theorem 4. The proof of this
theorem is based on elementary row and column operations on a matrix and their relation to the
determinant of a matrix. Elementary row operations on a matrix are described as [30]

• the ith row is interchanged with the jth row, denoted as Eij , i ̸= j;
• the ith row is multiplied by a constant k ̸= 0, denoted as Ei(k) ; and
• the ith row is added to k times the jth row, denoted as Eij(k), i ̸= j.

Elementary column operations are described the same as elementary row operations, but the
word “row” is replaced with “column” and denoted as Kij , Ki(l) , and Kij(l) [30]. If elementary
row and column operations are applied to a matrix X to obtain a matrix Y , then Y can be
expressed as in the following theorem.

Theorem 1 ([30]). Let X be a matrix, and I be the identity matrix of the same size. If Y is a
matrix obtained by applying the series of elementary row and column operations R1, R2, . . . , Rn

and C1, C2, . . . , Cn on X, then there exist non-singular matrix P and Q such that Y = PXQ,
where P = RnRn−1 . . . R1(I) and P = CnCn−1 . . . C1(I).

The relationship between the determinant of a matrix and the elementary row and column
operations can be stated in the following theorem.

Theorem 2 ([30]). Let X be an n×n matrix and k be a constant. Then, the following statements
hold:

• det (Eij(X)) = −det(X), i ̸= j;
• det

(
Ei(k)(X)

)
= k det(X), k ̸= 0; and

• det
(
Eij(k)(X)

)
= det(X), i ̸= j.

These statements are analogous to elementary column operations.

In Subsection 3.2, we show how to apply the formulas in Theorem 4 and construct an
algorithm for the formula. We also compare the computation time of the algorithm and the
built-in functions from Wolfram Mathematica on the same computer specifications for various
values of n. If the overall computing time of one tends to be faster than the other, then it is
more efficient.
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3 Results and Discussion
In this section, we present the main objectives of this study, including the explicit determinant
and inverse formulas for skew circulant matrices with alternating Fibonacci entries. The results
are derived using elementary row and column operations, and illustrative example of their use is
presented. The computational performance of the formulas is also analyzed.

3.1 The Determinant and Inverse Formulations

This section begins with the invertibility theorem of matrices defined in Definition 1. The proof
of the theorem follows using the eigenvalues formula for general skew circulant matrices.

Theorem 3. Let Cn(F) = SCirc (a1, a2, a3, . . . , an) be the matrix defined in Definition 1 for all
integers n ≥ 2. Then, Cn(F) is invertible.

Proof. According to Eq. 1, the eigenvalues of Cn(F) are

λk =
n∑

j=1
aj(ψωk)j−1,

where ω = e
2πi
n , ψ = e

πi
n , and i =

√
−1 ∈ C for k = 0, 1, 2, . . . , n − 1. Note that aj = αj−βj

α−β ,
where α = −1+

√
5

2 , β = −1−
√

5
2 , and α+ β = −1 = αβ. Then, for k = 0, 1, 2, . . . , n− 1,

λk = 1
α− β

n∑
j=1

(
α(αψωk)j−1 − β(βψωk)j−1

)
.

Since αψωk ̸= 1, βψωk ̸= 1, αψωk ̸= 0, and βψωk ̸= 0, then for k = 0, 1, 2, . . . , n− 1,

λk = 1
α− β

(
α(1− (αψωk)n)

1− αψωk
− β(1− (βψωk)n)

1− βψωk

)
= 1 + an+1 + ψωkan

1 + ψωk − ψ2ω2k
.

Assume to the contrary that λ0 = 0. Then, 1 + an+1 + ψan = 0, and hence it follows that
ψ = −1+an+1

an
is a real number where an ̸= 0 for n ≥ 2. It yields that the imaginary part of

ψ is sin π
n = 0. Therefore, 1/n must be an integer. This contradicts the fact that 1/n is not

an integer for all integers n ≥ 2. Thus, λ0 ̸= 0. Furthermore, assume to the contrary that
λm = 0 where m = 1, 2, . . . , n − 1. Then, 1 + an+1 + ψωman = 0, and hence it follows that
ψωm = −1+an+1

an
is a real number where an ̸= 0 for n ≥ 2. It yields that the imaginary part

of ψωm is sin (2m+1)π
n = 0. Therefore, ψωm = cos (2m+1)π

n = −1 for 0 < (2m+1)π
n < 2π. Then,

1 + an+1 + ψωman ≠ 0, and this contradicts with 1 + an+1 + ψωman = 0 for all integers n ≥ 2.
Thus, λk ̸= 0 for all k = 0, 1, 2, . . . , n− 1. So, A is invertible for n ≥ 2.

We have proven that the matrix defined in Definition 1 is invertible for n ≥ 2. Next, we
formulate the determinant and inverse of the matrix in the following theorem.

Theorem 4. Let Cn(F) = SCirc (a1, a2, a3, . . . , an) be the matrix defined in Definition 1 for all
integers n ≥ 2. Then,

det (Cn(F)) = xn−1
n −

n−2∑
j=0

(−1)jan−1−ja
j
nx

n−2−j
n , (3)

and
C−1

n (F) = 1
det (Cn(F))SCirc (s1, s2, . . . , sn) , (4)

where xn = −an + an−1 + 1, s1 = det(Cn(F))+(−1)n−2an−2
n

xn
, s2 = xn−2

n −det(Cn(F))
an

, and sj =
(−1)j−2aj−3

n xn−j
n for j = 3, 4, . . . , n.
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Proof. For simplicity of writing the proof, let

C−1
n (F) = An =



1 −1 2 · · · an−2 an−1 an

−an 1 −1 · · · an−3 an−2 an−1
−an−1 −an 1 · · · an−4 an−3 an−2

...
...

... . . . ...
...

...
3 −5 8 · · · 1 −1 2
−2 3 −5 · · · −an 1 −1
1 −2 3 · · · −an−1 −an 1


.

Based on Theorem 3, An is invertible for n ≥ 2.
• For the case n = 2, it is clear that

det (A2) = 2 and A−1
2 = 1

2

(
1 1
−1 1

)
,

and each of them satisfies Eq. 3 and Eq. 4, respectively.
• For the case n = 3, it is clear that

det (A3) = 4 and A−1
3 = 1

4

−1 −3 −1
1 −1 −3
3 1 −1

 ,
and each of them satisfies Eq. 3 and Eq. 4, respectively.

• For the case n ≥ 4, let Bj be the matrix resulting from the elementary row and column
operations in the jth step. The proof is described by applying elementary row and column
operations on An in step by step as follows.
(1) The (i+ 1)th row is added to the (i+ 2)th row and subtracted by the (i+ 3)th row,

for i = 1, 2, . . . , n− 3:

B1 = E(n−2)n(−1)E(n−2)(n−1)(1) . . . E35(−1)E34(1)E24(−1)E23(1) (An)

=



1 −1 2 · · · an−1 an

0 xn an · · · 0 0
0 0 xn · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · an 0
−2 3 −5 · · · 1 −1
1 −2 3 · · · −an 1


,

where
xn = 1− an + an−1. (5)

(2) The (n− 1)th row is added to the nth row and the first row:

B2 = E(n−1)1(1)E(n−1)n(1) (B1) =



1 −1 2 · · · an−1 an

0 xn an · · · 0 0
0 0 xn · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · an 0
0 0 0 · · · xn an

1 −2 3 · · · −an 1


.
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(3) The nth row is subtracted by the first row:

B3 = En1(−1) (B2) =



1 −1 2 −3 · · · an−1 an

0 xn an 0 · · · 0 0
0 0 xn an · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · xn an

0 −1 1 −2 · · · −an−2 xn − an−1


.

Based on Theorem 1, there exists a non-singular matrix

P1 = En1(−1)E(n−1)1(1)E(n−1)n(1)E(n−2)n(−1)E(n−2)(n−1)(1) . . . E24(−1)E23(1) (In)

=



1 0 0 0 · · · 0 0
0 1 1 −1 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

... . . . ...
...

1 0 0 0 · · · 1 1
−1 0 0 0 · · · 0 1


,

such that B3 = P1An.
(4) The (j+1)th column is subtracted by aj+1 times the first column, for j = 1, 2, . . . , n−1:

B4 = Kn1(−an) . . .K31(−a3)K21(−a2) (B3) =



1 0 0 0 · · · 0 0
0 xn an 0 · · · 0 0
0 0 xn an · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · xn an

0 −1 1 −2 · · · −an−2 xn − an−1


.

Based on Theorem 1, there exists a non-singular matrix

Q1 = Kn1(−an) . . .K31(−a3)K21(−a2) (In) =



1 −a2 −a3 −a4 · · · −an−1 −an

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1


,

such that B4 = P1AnQ1.
(5) The (i+ 1)th row is multiplied by 1

xn
, for i = 1, 2, . . . , n− 2:

B5 = E(n−1)
(

1
xn

) . . . E3
(

1
xn

)E2
(

1
xn

) (B4) =



1 0 0 0 · · · 0 0
0 1 yn 0 · · · 0 0
0 0 1 yn · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 yn

0 −1 1 −2 · · · −an−2 xn − an−1


,

where
yn = an

xn
. (6)
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Based on Theorem 1, there exists a non-singular matrix

P2 = E(n−1)
(

1
xn

) . . . E3
(

1
xn

)E2
(

1
xn

) (P1) =



1 0 0 0 · · · 0 0
0 1

xn

1
xn
− 1

xn
· · · 0 0

0 0 1
xn

1
xn

· · · 0 0
...

...
...

... . . . ...
...

1
xn

0 0 0 · · · 1
xn

1
xn

−1 0 0 0 · · · 0 1


,

such that B5 = P2AnQ1.
(6) The (j + 2)th column is subtracted by yn times the (j + 1)th column, for j =

1, 2, . . . , n− 2:

B6 = Kn(n−1)(−yn) . . .K34(−yn)K32(−yn) (B5) =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0
0 g1 g2 g3 · · · gn−2 dn


,

where
g1 = −a1 = 1 and gj = −aj − yngj−1 for j = 2, 3, . . . , n− 2, (7)

dn = xn − an−1 − yngn−2 = 1− an − yngn−2. (8)
Therefore, based on Theorem 2, det(An) = xn−2

n dn. Based on Eq. 7, it is obtained
that

g1 = −a1,

g2 = −a2 − yng1 = −a2 − a1(−yn),
g3 = −a3 − yng2 = −a1(−yn)2 − a2(−yn)− a3,

g4 = −a4 − yng3 = −a1(−yn)3 − a2(−yn)2 − a3(−yn)− a4,

and so on, so that it is obtained that

gn−2 =
n−2∑
j=1

(
−aj(−yn)n−2−j

)
.

Thus,

det(An) = xn−2
n

xn − an−1 +
n−2∑
j=1

(
−aj(−yn)n−1−j

) .
Then, by using Eq. 6 and changing the counter variable, it is clear that

det(An) = xn−1
n −

n−2∑
j=0

(−1)jan−1−ja
j
nx

n−2−j
n .

Moreover, based on Theorem 1, there exists a non-singular matrix

Q2 = Kn(n−1)(−yn) . . .K34(−yn)K32(−yn) (Q1)

=



1 h2 h3 h4 · · · hn−1 hn

0 1 −yn (−yn)2 · · · (−yn)n−3 (−yn)n−2

0 0 1 −yn · · · (−yn)n−4 (−yn)n−3

...
...

...
... . . . ...

...
0 0 0 0 · · · 1 −yn

0 0 0 0 · · · 0 1


,
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such that B6 = P2AnQ2, where h2 = −a2 = 1, and for j = 3, 4, . . . , n, hj =
−aj − ynhj−1.

(7) The nth row is subtracted by gi times the (i+ 1)th row, for i = 1, 2, . . . , n− 2:

B7 = En(n−1)(−gn−2) . . . En3(−g2)En2(−g1) (B6) =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 dn


.

Based on Theorem 1, there exists a non-singular matrix

P3 = En(n−1)(−gn−2) . . . En3(−g2)En2(−g1) (P2) = 1
xn



xn 0 0 0 · · · 0 0
0 1 1 −1 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

... . . . ...
...

1 0 0 0 · · · 1 1
z1 z2 z3 z4 · · · zn−1 zn


,

such that B7 = P3AnQ2. Based on Eq. 5, Eq. 6, Eq. 7, and Eq. 8, notice that

z1 = −xn − gn−2 = −an

yn
− gn−2 = dn − 1

yn
= xn

an
(dn − 1), (9)

z2 = 1, (10)
z3 = −g1 − g2 = 1− (1 + yn) = −yn = (−yn)z2, (11)
z4 = g1 − g2 − g3 = y2

n = (−yn)z3, (12)
z5 = g2 − g3 − g4 = −y3

n = (−yn)z4, (13)

and so on, for j = 4, 5, . . . , n− 1, it is obtained that

zj = gj−3 − gj−2 − gj−1 = (−1)j−2yj−2
n = (−yn)zj−1, (14)

where z2 = 1 and z3 = −yn. Then, it is obtained that

zn = gn−3 − gn−2 + xn = dn − ynzn−1 = (−1)n−2yn−2
n + dn. (15)

(8) Since B7 = P3AnQ2, then B−1
7 = (P3AnQ2)−1 = Q−1

2 A−1
n P−1

3 , so that

A−1
n = Q2B

−1
7 P3 =



1 h2 h3 · · · hn−1
hn
dn

0 1 −yn · · · (−yn)n−3 (−yn)n−2

dn

0 0 1 · · · (−yn)n−4 (−yn)n−3

dn...
...

... . . . ...
...

0 0 0 · · · 1 − yn

dn

0 0 0 · · · 0 1
dn


P3. (16)

Note that A−1
n is also skew circulant based on Eq. 2. Based on Eq. 16, it is obtained

that
A−1

n = 1
dnxn

SCirc(zn,−z1,−z2, . . . ,−zn−2,−zn−1)

⇔ A−1
n = xn−3

n

det(An)SCirc(zn,−z1,−z2, . . . ,−zn−2,−zn−1). (17)
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For simplification, Eq. 17 can be rewritten as

A−1
n = 1

det(An)SCirc(s1, s2, . . . , sn−1, sn),

where

s1 = xn−3
n zn = det(An) + (−1)n−2an−2

n

xn
,

s2 = −xn−3
n z1 = −xn−3

n

(
xn(dn − 1)

an

)
= xn−2

n − det(An)
an

,

s3 = −xn−3
n z2 = −xn−3

n ,

and for j = 4, 5, . . . , n, it applies that

sj = −xn−3
n zj−1 = −xn−3

n

(
(−1)j−3yj−3

n

)
= (−1)j−2aj−3

n xn−j
n ,

based on Eq. 6 and Eq. 9 – Eq. 15.

To clarify the method used in the proof of Theorem Theorem 4, we provide an illustrative
example using elementary row and column operations with a small matrix size. The example
below shows the steps for obtaining the determinant and inverse of the skew circulant matrix
with alternating Fibonacci entries using this method.

Example 1. Let

A4 = SCirc(1,−1, 2,−3) =


1 −1 2 −3
3 1 −1 2
−2 3 1 −1
1 −2 3 1

 .
(1) The second row is added to the third row and subtracted by the fourth row:

B1 = E24(−1)E23(1)(A4) =


1 −1 2 −3
0 6 −3 0
−2 3 1 −1
1 −2 3 1

 .
(2) The third row is added to the fourth row and the first row:

B2 = E31(1)E34(1)(B1) =


1 −1 2 −3
0 6 −3 0
0 0 6 −3
1 −2 3 1

 .
(3) The fourth row is subtracted by the first row:

B3 = E41(−1)(B2) =


1 −1 2 −3
0 6 −3 0
0 0 6 −3
0 −1 1 4

 .
Based on 1, there exists a non-singular matrix

P1 = E41(−1)E31(1)E34(1)E24(−1)E23(1)(I4) =


1 0 0 0
0 1 1 −1
1 0 1 1
−1 0 0 1

 ,
such that B3 = P1A4.
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(4) The (j + 1)th column is subtracted by aj+1 times the first column, for j = 1, 2, 3:

B4 = K41(−a4)K31(−a3)K21(−a2)(B3) =


1 0 0 0
0 6 −3 0
0 0 6 −3
0 −1 1 4

 .
Based on 1, there exists a non-singular matrix

Q1 = K41(−a4)K31(−a3)K21(−a2)(I4) =


1 1 −2 3
0 1 0 0
0 0 1 0
0 0 0 1

 ,
such that B4 = P1A4Q1.

(5) The (i+ 1)th row is multiplied by 1
6 , for i = 1, 2:

B5 = E3( 1
6 )E2( 1

6 )(B4) =


1 0 0 0
0 1 −1

2 0
0 0 1 −1

2
0 −1 1 4

 .
Based on 1, there exists a non-singular matrix

P2 = E3( 1
6 )E2( 1

6 )(P1) =


1 0 0 0
0 1

6
1
6 −1

6
1
6 0 1

6
1
6

−1 0 0 1

 ,
such that B5 = P2A4Q1.

(6) The third column is subtracted by −1
2 times the second column, then the fourth column is

subtracted by −1
2 times the new third column:

B6 = K43( 1
2 )K32( 1

2 )(B5) =


1 0 0 0
0 1 0 0
0 0 1 0
0 −1 1

2
17
4

 .
Based on Theorem 2, we obtain that

det(A4) = 62 det(B4) = 36 · 17
4 = 153.

Moreover, based on Theorem 1, there exists a non-singular matrix

Q2 = K43( 1
2 )K32( 1

2 )(Q1) =


1 1 −3

2
9
4

0 1 1
2

1
4

0 0 1 1
2

0 0 0 1

 ,
such that B6 = P2A4Q2.

(7) The fourth row is subtracted by −1 times the second row and subtracted by 1
2 times the third

row:

B7 = E43(− 1
2 )E42(1)(B6) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 17

4

 .
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Based on Theorem 1, there exists a non-singular matrix

P3 = E43(− 1
2 )E42(1)(P2) =


1 0 0 0
0 1

6
1
6 −1

6
1
6 0 1

6
1
6

−13
12

1
6

1
12

9
12

 ,
such that B7 = P3A4Q2.

(8) Since B7 = P3A4Q2, then B−1
7 = (P3A4Q2)−1 = Q−1

2 A−1
4 P−1

3 , so that

A−1
4 = Q2B

−1
7 P3 =


1 1 −3

2
9
4

0 1 1
2

1
4

0 0 1 1
2

0 0 0 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4

17




1 0 0 0
0 1

6
1
6 −1

6
1
6 0 1

6
1
6

−13
12

1
6

1
12

9
12



⇔ A−1
4 = 1

153


27 39 −6 −3
3 27 39 −6
6 3 27 39
−39 6 3 27

 .
The explicit determinant and inverse formulas derived above allow for efficient computation.

To demonstrate this, we next evaluate their computational time and compare them with built-in
functions from Wolfram Mathematica.

3.2 Computational Performance

We present a simple illustration first to show how to apply the formula in Theorem 4. Then, by
considering the illustration, we construct an algorithm.

Example 2. Let

A5 = SCirc(1,−1, 2,−3, 5) =


1 −1 2 −3 5
−5 1 −1 2 −3
3 −5 1 −1 2
−2 3 −5 1 −1
1 −2 3 −5 1

 .

Then, by using Theorem 4, we obtain that x5 = 1 − a5 + a4 = −7, and the determinant and
inverse are

det(A5) = (−7)4 − (−3 · (−7)3 − 2 · 5 · (−7)2 − 52 · (−7)− 53) = 1812,

A−1
5 = 1

1812SCirc
(

1812 + (−1)3 · 53

−7 ,
(−7)3 − 1812

5 ,−(−7)2, 5 · (−7),−52
)

= 1
1812SCirc(−241,−431,−49,−35,−25)

⇔ A−1
5 = 1

1812


−241 −431 −49 −35 −25

25 −241 −431 −49 −35
35 25 −241 −431 −49
49 35 25 −241 −431
431 49 35 25 −241

 .

From the above illustration, the iteration process in computing the determinant stores
information that can be reused in computing the inverse. Thus, an algorithm can be constructed
to compute both efficiently.
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Algorithm 1 Determinant and inverse of skew circulant matrices with alternating Fibonacci
Require: An = SCirc(a1, a2, . . . , an) with alternating Fibonacci entries F = (aj)n

j=1 for n ≥ 2
1: xn ← 1− an + an−1; w ← xn−2

n ; v ← 1; ∆← w(xn− an−1); s1 ← 1; s2 ← w; {Store variables
for the iteration process}

2: for j = 1 to n− 2 do
3: w ← w

xn
;

4: s1 ← −s1; sj+2 ← s1vw; {Compute sj for the inverse using xn and an}
5: v ← van; δ ← s1an−1−jvw; ∆← ∆− δ; {Compute determinant using xn and an}
6: end for
7: s1 ← ∆+s1v

xn
; s2 ← s2−∆

an
; {Finalize s1 and s2 for the inverse using ∆, xn, and an}

8: return
(
∆, A−1

n

)
Algorithm 1 is implemented using Wolfram Mathematica. Both are run for various values

of n once each and the running time is compared with the built-in functions from Wolfram
Mathematica on the same computer specifications. The running time is shown in Table 1 below.

Table 1: Running time of Algorithm 1 and built-in functions from Wolfram Mathematica

n
Running time (second)

Algorithm 1 Built-in Functions for Determinant and Inverse

100 0.0124702 6.59187
110 0.0164727 11.57160
120 0.0245279 19.74890
130 0.0362658 33.33000
140 0.0429187 53.04420
150 0.0619016 79.21960

According to Table 1, the running time of Algorithm 1 and the built-in functions from
Wolfram Mathematica to calculate the determinant and inverse of the matrices tends to increase
as the matrix size increases. However, Algorithm 1 is able to calculate the determinant and
inverse much faster than the built-in functions. In fact, Algorithm 1 can work 1,280 times faster
than the built-in functions when n = 150. This can indicate that the explicit formulas of the
determinant and inverse in Theorem 4 are computationally efficient formulas and are robust to
the size of the matrix used.

Numerical instability may arise due to the accumulation of floating-point rounding errors for
large matrix size or large n, particularly in computing powers of xn and repeated multiplications
in the iteration process. Further work may involve error analysis to formally assess the stability.

4 Conclusion
The determinant and inverse of the skew circulant matrices with alternating Fibonacci entries are
formulated explicitly through a series of elementary row and column operations. The formulas
have a simpler expression than the general formulas known previously. Then, the algorithm built
to calculate the determinant and inverse can perform much faster than the built-in functions
from Wolfram Mathematica. However, the method assumes exact arithmetic and rounding errors
may occur when the matrix size becomes very large. The methods used in this article are limited
to matrices whose entries have certain simple patterns. Future work may include applying this
method to other recursive sequence such as complex Fibonacci, harmonic, or Pell-Lucas, and to
other matrices such as Toeplitz or Foeplitz matrices. Furthermore, numerical stability analysis
and implementation in other software such as Python, Julia, or Maple, could be future research
directions.
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