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ABSTRACT  

This study aims at evaluating the performance of Zero Inflated Negative Binomial (ZINB) 
regression analysis using the Maximum Likelihood Estimation (MLE) approach through 
simulation study. The research data used are secondary data and simulations. Secondary data 
was obtained from the Ministry of Health of the Republic of Indonesia in 2023 regarding cases of 
under-five deaths due to pneumonia with a total of 38 samples. The simulation study is 
conducted to analyze the performance of ZINB regression based on various sample sizes and 
proportions of zero values. The results show that the ZINB regression model with the MLE 
approach produces parameter estimates that tend to be more sensitive to sample size, with 
improved performance at large sample sizes. Data with a large proportion of zeros reflects high 
variability as well as the presence of excess zeros, so the ZINB regression model can provide 
more stable and precise parameter estimates than those with a lower proportion of zeros. 
Therefore, the ZINB regression model is effective for data with a high proportion of zeros as it 
fits the characteristics of the data distribution, especially in cases of under-five deaths due to 
pneumonia. 
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INTRODUCTION 

Regression method is used to explain the relationship between response variables 
and predictor variables [1]. One regression technique that can be used to analyze the 
relationship between response variables in the form of discrete data and predictor 
variables, which can be continuous, discrete, or a combination of both, is Poisson 
regression [2]. This model is used to model data with the assumption of equidispersion, 
which is when the mean and variance of the response variable have the same value [3]. 
However, in discrete data there is often overdispersion, which is a condition where the 
variance is greater than the mean. Overdispersion can be caused by several factors, such 
as missing data, the presence of outliers, or a higher-than-expected number of zero 
values. 

Violation of the equidispersion assumption can cause bias in the standard errors of 
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parameter estimates, such that the regression estimation results become inaccurate and 
do not reflect the true conditions [4]. One of the primary causes of overdispersion is the 
presence of excess zeros in the response variable [5]. The number of zeros indicates the 
presence of different mechanisms in the data [6]. In some cases, zero values have 
important meanings that cannot be ignored in the analysis. The greater the proportion 
of zero values in the response variable, the more likely it is that the parameter estimates 
in Poisson regression will deviate from the true values. Therefore, a more flexible 
regression model is needed to handle this condition.  

One model that can overcome these problems is ZINB Regression. This model is a 
mixed distribution between Poisson and Gamma, so it can be applied to model data with 
a high number of zero values and overcome overdispersion, as it does not require 
equality between variance and mean [7]. Additionally, the ZINB model includes a 
dispersion parameter that helps describe the variability of the data. Since ZINB is a non-
linear regression model, the parameter estimation method is an important aspect that 
needs to be studied. One of the commonly used methods in estimating ZINB regression 
parameters is Maximum Likelihood Estimation (MLE) [8]. Based on research conducted 
by Azizah and Novita Sari [9], the ZINB regression model is better used in overcoming 
overdispersion in data that has excess zero values compared to the ZIP regression 
model. 

Simulation is a way of reproducing situation conditions using a model that aims for 
learning, testing or training, as well as evaluating and improving system performance 
[10]. The application of simulation studies to the ZINB regression model presents a 
novelty compared to previous research, which allows for more in-depth analysis of 
count data with excess zeros. Simulation studies can be conducted using various 
scenarios that represent variations in data conditions. Thus, this simulation can produce 
more appropriate predictions and can provide a more robust and data-based basis for 
decision-making [11]. 

The statistical methods can be applied to solve various problems, including in the 
field of health, especially the health of toddlers. Toddlerhood is an important period in 
human life and has a great influence on the level of public health, as it reflects the health 
of population as a whole. One of the health indicators is the under-five mortality rate. 
Pneumonia is the leading cause of under-five deaths in Indonesia, with the under-five 
mortality rate reaching 0.13% by 2023 [12]. World Health Organization (WHO) in 2021, 
revealed that pneumonia caused 740,180 under-five deaths or about 14% of total global 
under-five deaths [12]. It is an acute lung infection that can be caused by bacteria, 
viruses, fungi, chemical exposure, physical damage to the lungs, or indirect effects of 
other diseases. 

Based on the relevance of the research and the high mortality rate of children 
under five due to pneumonia in Indonesia, this study aims at evaluating the performance 
of the Zero Inflated Negative Binomial (ZINB) regression model with the Maximum 
Likelihood Estimation (MLE) approach in estimating discrete data parameters with an 
excess proportion of zeros. This research is expected to contribute to the development 
of more suitable parameter estimation methods for discrete data with excess zero 
values, particularly in the health sector. The following parts include literature review, 
methodology, analysis and results, and the conclusion.  
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METHODS 

Data 

The data used in this study are secondary data and simulations. Secondary data 
was obtained from the Ministry of Health of the Republic of Indonesia in 2023 [12]. The 
data consists of one response variable and 3 predictor variables including the number of 
under-five deaths due to pneumonia (𝑌), under-fives aged 0-59 months with 
malnutrition status (𝑋1), exclusive breastfeeding in infants (𝑋2), and complete basic 
immunization coverage in infants (𝑋3). 

Overdispersion 

A common issue in Poisson regression is overdispersion, where the variance of the 
response variable exceeds the mean [7].  If the Poisson regression model is still used on 
discrete data that experiences overdispersion, then the estimation of the resulting 
regression coefficient parameters remains consistent but inefficient because it has an 
impact on the high standard error value. Overdispersion testing can be done using the 
Chi-Square approach [13]. Mathematically, it can be written in Equation (1). 

𝜒2 =
∑ (𝑦𝑖 − 𝜇̂𝑖)

2𝑛
𝑖=1

𝜇̂𝑖
~𝜒(𝑛−𝑚)

2  
(1) 

where 𝜇̂𝑖 = exp(𝛽̂0 +∑ 𝑥𝑖𝑗𝛽̂𝑗)
𝑘
𝑗=1 , 𝑛 is the number of observations, 𝑚 is the number of 

parameters (𝑝 + 1), 𝑥𝑖𝑗 is the value of the predictor variable at the 𝑗𝑡ℎ  observation to the 

𝑖𝑡ℎ . If the Chi-Square value divided by the degrees of freedom which is greater than 1, it 
indicates that the response variable in the data is overdispersed.  

Excess Zero 

Excess zero is one of the problems that occur in Poisson regression. This condition 
can also cause overdispersion. In response variables with discrete data, the presence of 
zero values is common and has an important meaning, so the data must still be included 
in the analysis. In certain studies, there may be situations where the number of zeros is 
excessively high. A large proportion of zero values can affect the accuracy of calculations 
[14]. By including zeros in appropriate statistical models, such as Zero Inflated Negative 
Binomial, researchers can obtain better and more accurate conclusions. Excess zeros can 
be identified when the proportion of zero values in the response variable exceeds that of 
other discrete data. When the proportion of zeros in the response variable is greater 
than 50%, it certainly leads to overdispersion [15].  

Zero Inflated Negative Binomial (ZINB) Regression 

ZINB regression is a regression model derived from the Poisson Gamma Mixture 
distribution. In the ZINB regression model, the response random variable (𝑦𝑖) is a free 
random variable with 𝑖 = 1,2,… , 𝑛 that can form two states, namely zero state and 
negative binomial state. According to [6], the ZINB distribution function is written in 
Equation (2).  

𝑃(𝑌𝑖 = 𝑦𝑖) =

{
 
 

 
 

𝜋𝑖 + (1 − 𝜋𝑖) (
1

1 + 𝜅𝜇𝑖
)

1

𝜅

;  𝑓𝑜𝑟 𝑦𝑖 = 0

(1 − 𝜋𝑖)
Γ (𝑦𝑖 +

1

𝜅
)

Γ (
1

𝜅
)𝑦i!

(
𝜅𝜇𝑖

1 + 𝜅𝜇𝑖
)
𝑦𝑖

(
1

1 + 𝜅𝜇𝑖
)

1

𝜅

;  𝑓𝑜𝑟 𝑦𝑖 > 0

 (2) 
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where 0 ≤ 𝜋𝑖 ≤ 1, 𝜇𝑖 ≥ 0, 𝜅 is the dispersion parameter with 
1

𝜅
> 0, 𝛤(. ) is the gamma 

function. When 𝜋𝑖 = 0, the random variable 𝑦𝑖  has a negative binomial distribution with 
mean 𝜇𝑖  nd dispersion parameter 𝜅, so 𝑌𝑖  ~ 𝑁𝐵(𝜇𝑖 , 𝜅). It is assumed that 𝜇𝑖  and 𝜋𝑖 
depend on the vector variables 𝑥𝑖 which can be defined in Equation (3) as follows [16]. 

𝜇𝑖 = 𝑒
𝒙𝑖
𝑇𝜷  

𝜋𝑖
1 − 𝜋𝑖

= 𝑒𝒙𝑖
𝑇𝜸 

𝜋𝑖 = 𝑒𝒙𝑖
𝑇𝜸 − 𝜋𝑖𝑒

𝒙𝑖
𝑇𝜸 

 

𝜋𝑖 (1 + 𝑒
𝒙𝑖
𝑇𝜸) = 𝑒𝒙𝑖

𝑇𝜸 

𝜋𝑖 =
𝑒𝒙𝑖
𝑇𝜸

1+𝑒𝒙𝑖
𝑇𝜸

 , so (1 − 𝜋𝑖) =
1

1+𝑒𝒙𝑖
𝑇𝜸

 

(3) 

The ZINB regression model can generally be expressed in Equations (4) and (5). 
Model for negative binomial state 𝜇̂𝑖  

𝑙𝑛  𝜇̂𝑖 = 𝛽̂0 +∑𝛽̂𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 , 𝑖 = 1,2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑝 (4) 

Model for zero inflation 𝜋̂𝑖 

𝑙𝑜𝑔𝑖𝑡 𝜋̂𝑖 = 𝛾0 +∑𝛾𝑗𝑥𝑖𝑗

𝑝

𝑗=1

 , 𝑖 = 1,2,… , 𝑛 𝑎𝑛𝑑 𝑗 = 1,2,… , 𝑝 (5) 

where 𝑝 : number of predictor variables; 𝑛 : number of observations; 𝛽̂ : ZINB regression 
model parameters; 𝛾 : ZINB regression model parameters.  

ZINB Regression with Maximum Likelihood Estimation (MLE) Approach 

Parameter estimation for the ZINB regression model is typically estimated using 
the MLE method, with the EM (Expectation Maximization) algorithm employed to 
maximize the function. This method is applied to estimate a model when the density 
function is already known. Based on the function in Equation (2), Equation (3) is 
substituted so that Equation (6) is obtained as follows. 

𝑃(𝑌𝑖 = 𝑦𝑖) =

{
 
 

 
 𝑒𝒙𝑖

𝑇𝜸

1 + 𝑒𝒙𝑖
𝑇𝜸
+

1

1 + 𝑒𝒙𝑖
𝑇𝜸
(

1

1 + 𝜅𝑒𝒙𝑖
𝑇𝜷
)

1

𝜅
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1

1 + 𝑒𝒙𝑖
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Γ (
1
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)
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(
1
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1

𝜅

;  𝑓𝑜𝑟 𝑦𝑖 > 0

 (6) 

The likelihood function form of the ZINB regression model can be written in Equation 
(7). Furthermore, from Equation (7), the ln likelihood equation will be made and 
Equation (8) is obtained. 
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𝐿(𝜽|𝑦𝑖) =

{
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(8) 

Estimation with MLE is calculated by maximizing the ln likelihood function in 
Equation (8). The summation of the log-likelihood function is not linear so that the 
likelihood function cannot be solved by ordinary numerical methods [17]. The EM 
algorithm is an alternative iterative approach used to maximize the likelihood function 
for data that includes latent variables, which arise from the definition of new variables 
such as the 𝑤𝑖  variables. Suppose the response variable (𝑌) is related to the indicator 
variable (𝑤) as follows. 

𝑤𝑖 = {
1, if 𝑦𝑖  from 𝑧𝑒𝑟𝑜 𝑠𝑡𝑎𝑡𝑒
0, if 𝑦𝑖  from 𝑁𝐵 𝑠𝑡𝑎𝑡𝑒

    (9) 

The EM algorithm consists of two stages, namely the expectation stage and the 
maximization stage. The expectation stage is the calculation stage of the expectation of 
the ln likelihood function, then the maximization stage is the calculation stage to find the 
parameter estimate that maximizes the ln likelihood function resulting from the 
previous expectation stage with the Newton Raphson method [18].  

The first step is the E-Step (expectation stage). In this stage, (𝑚) is used to 
symbolize iteration [19]. 

 

𝑤𝑖
(𝑚) =

{
 
 

 
 
[1 + 𝑒−𝒙𝑖

𝑇𝜸(𝑚)
(

1

1 + 𝜿(𝑚) + 𝑒−𝒙𝑖
𝑇𝜷(𝑚)

)

1

𝜿

(𝑚)

]

−1

0, 𝑗𝑖𝑘𝑎 𝑦𝑖 > 0

, 𝑗𝑖𝑘𝑎 𝑦𝑖 = 0 (10) 

so 
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𝑄(𝜷, 𝜸;𝜷(𝑚), 𝜸(𝑚)) =∑ 𝑙𝑛 𝐿 (𝜸(𝑚)|𝑦𝑖 , 𝑤𝑖
(𝑚)
)

𝑛

𝑖=1
+∑ 𝑙𝑛 𝐿 (𝜷(𝑚)|𝑦𝑖, 𝑤𝑖

(𝑚)
)

𝑛

𝑖=1
 (11) 

 
where 

𝑙𝑛 𝐿 (𝜸(𝑚)|𝑦𝑖, 𝑤𝑖
(𝑚)
) =∑ [𝑤𝑖

(𝑚)
𝒙𝑖
𝑇𝜸 − 𝑙𝑛(1 + 𝑒𝒙𝑖

𝑇𝜸)]
𝑛

𝑖=1
 (12) 

and 

𝑙𝑛 𝐿 (𝜷(𝑚)|𝑦𝑖, 𝑤𝑖
(𝑚)
)

=∑ (1 −𝑤𝑖
(𝑚)
) [
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1

𝜿
)

Γ (
1

𝜿
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(
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1 + 𝑒𝒙𝑖
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)

𝑦𝑖

(
1

1 + 𝜿𝑒𝒙𝑖
𝑇𝜷
)

1

𝜿

]
𝑛

𝑖=1
 

(13) 

 
The next stage is M-Step (maximization stage). The M-Step stage is carried out 

using the Newton Raphson iteration method to maximize 𝜷 and 𝜸 from the results of the 
E-Step stage by calculating 𝜷(𝑚+1) and 𝜸(𝑚+1). 

Simulation Framework 

Simulation is a way of reproducing situation conditions using a model that aims for 
learning, testing or training, as well as evaluating and improving system performance 
[10]. Simulation is a technique used to carry out experiments using a model of a real 
system [20]. Simulation can be used as an approach to solve various problems that are 
uncertain and possibilities that cannot be carefully calculated. According to [11], 
simulation is not only used to design decisions, but also to validate that the decision 
taken is the best decision. 

The simulation data used in this study refers to processed data obtained from 
secondary data. Data generation is done using R version 4.4.2 with various proportions 
of zero values, namely 𝑝 = 0.3, 0.5, 0.8 and various sample sizes, namely 𝑛 =
38, 100, 500. Simulation studies were performed to evaluate the performance of the 
ZINB regression with the MLE approach in handling data containing overdispersion and 
excess zero at various proportions of zero values and various sample sizes.  

Best Model Selection 

According to [21], determining the best model can be done by looking at the AIC 
(Akaike Information Criterion) value. The AIC value is computed based on the maximum 
likelihood value and the number of parameters in the constructed regression model. 
Equation (14) shows the formula for calculating the AIC value.  

𝐴𝐼𝐶 = −2 𝑙𝑛 𝐿(𝜃) + 2𝑝 
 
(14) 

where 𝐿(𝜃) is the likelihood value and 𝑝 is the number of parameters. The optimal 

regression model is the one with the lowest AIC value. 

RESULTS AND DISCUSSION 

Overdispersion 

Testing overdispersion in Poisson regression can be done using the Chi-Square 
value divided by the degree of freedom [22]. Overdispersion conditions occur when the 
Chi-Square value divided by the free degree has a value of more than 1. Based on the test 
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results, the dispersion value is 4.03 >  1. Therefore, it can be concluded that the 
response variable exhibits overdispersion. 

Excess Zero 

The examination of zero inflation is conducted by calculating the proportion of 
zero values in the response variable. The results of the excess zero check for the 
response variable are shown in Table 1 below. 

 
Table 1. Excess Zero Check Result 

Number of under-five deaths due 
to pneumonia 

Frequency Percentage 

0 30 78.95% 

1 4 10.52% 

2 2 5.26% 

9 1 2.63% 

11 1 2.63% 

 
Based on the table above, it is clear that the data has excess zero in the response 

variable because the proportion of zero values is more than 50%, which is 78.95%. Thus, 
it can be concluded that the Poisson regression model is not appropriate for use in 
modeling. 

Zero Inflated Negative Binomial (ZINB) Regression 

The ZINB regression model is a model that can be used to overcome 
overdispersion and excess zero problems [23]. The ZINB regression model was applied 
to cases of under-five deaths due to pneumonia in each province in Indonesia. In this 
modeling, three predictor variables and one response variable were used. 

Simultaneous and partial tests are performed to assess the significance level of the 
parameter estimation results in the ZINB regression model. Simultaneous testing can be 
done using the G test statistic, while partial testing is done using the Wald test statistic. 
The results of parameter estimation for the ZINB regression model, along with the 
simultaneous and partial test results, are shown in Table 2. 
 

Table 2. Parameter Estimation Results of ZINB Regression 

Parameter Estimation Z value Pr(>|z|) 

𝛽̂0 -18.54 -2.89 0.00* 

𝛽̂1 2.80 1.82 0.07 

𝛽̂2 -0.19 -2.54 0.01* 

𝛽̂3 0.32 3.22 0.00* 

𝛾0 -28.25 -1.41 0.16 

𝛾1  8.23 1.31 0.19 

𝛾2 -0.50 -1.51 0.13 

𝛾3 0.58 1.51 0.13 

Pr(>Chisq) = 0.0055* 

*) Significant with 5% significance level 
 

The ZINB regression model is expressed as follows. 
Model for negative binomial state 𝜇̂𝑖  

𝑙𝑛 𝜇̂𝑖 =  −18.54 + 2.80 𝑋1 − 0.19 𝑋2 + 0.32 𝑋3 

𝜇̂𝑖 =  𝑒𝑥𝑝(−18.54 + 2.80 𝑋1 − 0.19 𝑋2 + 0.32 𝑋3) 

 
(15) 
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Model for zero inflation 𝜋̂𝑖 

𝑙𝑜𝑔𝑖𝑡 𝜋̂𝑖 = −28.25 + 8.23 𝑋1 − 0.50 𝑋2 + 0.58 𝑋3 

𝜋̂𝑖 =
𝑒𝑥𝑝(−28.25 + 8.23 𝑋1 − 0.50 𝑋2 + 0.58 𝑋3)

1 + 𝑒𝑥𝑝(−28.25 + 8.23 𝑋1 − 0.50 𝑋2 + 0.58 𝑋3)
 

 
(16) 

Based on the results of the simultaneous significance test for parameter estimates 
in the ZINB regression model, it is evident that the predictor variables 𝑋1, 𝑋2, and 𝑋3 
collectively have a significant effect on the response variable. Meanwhile, the partial 
significance test results indicate that the response variable is significantly influenced by 
𝑋2 and 𝑋3.  

Based on the partial significance results, the ZINB regression model is formulated 
as shown in Equation (17). 

𝜇̂𝑖 =  𝑒𝑥𝑝(−18.54 − 0.19 𝑋2 + 0.32 𝑋3) (17) 

Simulation Results of ZINB Regression 

Simulation studies are used to validate that the decision taken is the best decision 
[11]. Simulation data generation is performed based on the initial ZINB regression 

parameters. The simulation results for estimating parameters 𝛽̂𝑗  and 𝛾𝑗 are presented in 

Figure 1. 
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(e) 

 
(f) 

Figure 1. Plots of Parameter Estimation 𝛽̂𝑗 at Various Sample Sizes and Proportion of Zero 

Values (a) p=0.3 (b) p=0.5 (c) p=0.8 and Parameter  𝛾𝑗 at Various Sample Sizes and Proportion of 

Zero Values (d) p=0.3 (e) p=0.5 (f) p=0.8 

Based on Figure 1, the estimation results of parameters 𝛽̂1, 𝛽̂2, and 𝛽̂3 are relatively 
more stable at sample sizes of 100 and 500. At small sample size (𝑛 = 38), the 

parameter 𝛽̂1 shows large fluctuations, namely 𝛽̂1 = 8.36 for 𝑝 = 0.3 and 𝛽̂1 = 36.34 for 
𝑝 = 0.5. Whereas, at medium (𝑛 = 100) and large (𝑛 = 500) sample sizes, the 

parameter 𝛽̂1 tends to stabilize close to the initial value of the parameter. This can occur 
due to data imbalance in certain scenarios. Parameter estimation results at large sample 
sizes (𝑛 = 500) tend to be more stable across various scenarios 𝑝. This is in line with 
statistical theory stating that larger sample sizes produce more precise parameter 
estimates. Additionally, simulations that are conducted with various proportions of zero 
(𝑝 = 0.3; 0.5; 0.8) show that parameter estimation results tend to be better at a 
proportion of 0.8. This occurs as at a larger proportion, the data satisfies the 
overdispersion and excess zero conditions, which are the main problems addressed by 
the ZINB regression model. 

The parameter estimation results of 𝛾1, 𝛾2, and 𝛾3 show that the sample size (𝑛) 
and the proportion of zero values (𝑝) significantly affect the probability of zero inflation 
and the stability of the parameter estimates. At small (𝑛 = 38) and medium (𝑛 = 100) 
sample sizes, the parameter estimates show larger fluctuations with zero inflation 
probabilities that vary depending on the proportion. A higher proportion of zero values 
(𝑝 = 0.8) may cause the parameter estimates to be more influenced by the number of 
zeros. At smaller sample sizes, the presence of zero inflation becomes more dominant 
and can lead to high fluctuations in parameter estimates. However, this influence 
decreases at larger sample sizes. Overall, it can be concluded that the simulation results 
using the MLE approach require a sufficiently large sample size and an appropriate 
proportion of zero values to produce stable and precise parameter estimates in the ZINB 
regression model. 

Best Model Selection 

Determining the best model between one method and another can be done by the 
AIC (Akaike Information Criterion) value [21]. The optimal model is the one with the 
lowest AIC value. The following presents the AIC value for each method. 

 
 

-20

0

20

40

60

80

100

g1 g2 g3

C
o

ef
fi

ci
en

t

A

Secondary 38 100 500

-50

-40

-30

-20

-10

0

10

20

g1 g2 g3

C
o

ef
fi

ci
en

t

A

Secondary 38 100 500



Zero Inflated Negative Binomial (ZINB) Regression: Application to the Pneumonia Study and 
Simulation under Several Scenarios 

Santi Wahyu Salsabila 466 

Table 3. AIC Results of Each Model 

𝒏 Proportion of Zero Values AIC 

38 

0.3 38.98 

0.5 61.71 

0.8 32.90 

100 

0.3 96.76 

0.5 74.87 

0.8 56.81 

500 

0.3 571.43 

0.5 441.00 

0.8 251.22 

 
Based on Table 3, it is evident that the smallest AIC value occurs at a small sample 

size of 𝑛 = 38. As the sample size increases, the AIC value also increases. This indicates 
that the model is not flexible enough to capture the complexity of data in large samples. 
When viewed at the proportion of zero values, the smallest AIC value occurs at a high 
proportion of zero values, namely 𝑝 = 0.8. The ZINB regression model is suitable for 
data containing a high proportion of zero values and fulfilling overdispersion and excess 
zero conditions because the zero inflation component has a more significant role in 
capturing data patterns.  

CONCLUSIONS 

It can be concluded that the Zero Inflated Negative Binomial (ZINB) regression 
analysis with the Maximum Likelihood Estimation (MLE) approach shows that the 
parameter estimation results tend to be sensitive to the sample size, with performance 
increasing at large sample sizes. However, the MLE method is able to produce accurate 
parameter estimates on data with a large proportion of zero values. Data with a large 
proportion of zeros reflects high variability as well as the presence of excess zeros, so 
the ZINB regression model can provide more stable and precise parameter estimates 
than those with a lower proportion of zeros. Therefore, the ZINB regression model is 
effectively used on data with a high proportion of zeros because it is more in line with 
the characteristics of the data distribution. 

This study has limitations related to the number of sample sizes, the proportion of 
zero values, and the best model selection method. Thus, future research is expected to 
explore simulations using a variety of sample sizes and proportions of zero values as 
well as other best model selection methods. Additionally, adding predictor variables that 
affect under-five mortality due to pneumonia in Indonesia will provide more in-depth 
results. 
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