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Abstract

This work studies how well different deep learning architectures approximate the mapping
from past multivariate observations to next-day stock prices. We compare a Multilayer
Perceptron (MLP), a one-dimensional Convolutional Neural Network (1D-CNN), and a Long
Short-Term Memory (LSTM) network against a Vector Autoregression (VAR) baseline using
daily Apple Inc. stock prices (low, high, and close). The forecasting task is framed as learning
from sliding windows of past prices with lengths of 5, 10, 30, 180, and 360 days, representing
short, medium, and long horizons. All models are trained on the same normalized data and
evaluated using multivariate mean squared error, root mean squared error, mean absolute
error, and mean absolute percentage error, complemented by residual and box-plot analyses.
The results show that MLP provides the most accurate and stable approximation for short
and medium windows, while LSTM clearly dominates for long windows. CNN occupies an
intermediate position, and VAR consistently underperforms. These findings highlight that
approximation capability is strongly horizon-dependent and offer practical guidance for model
selection in multivariate financial time series.
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1 Introduction
Time series forecasting plays a central role in finance, energy, healthcare, and meteorology, where
accurate predictions support decision-making, risk management, and planning [1], [2], [3]. In
financial markets, the ability to forecast stock prices based on historical data is particularly
important for portfolio allocation and trading strategies [4], [5]. In this paper, we consider the
daily stock prices of Apple Inc. (AAPL) as a multivariate time series, focusing on the joint
forecasting of three variables: the lowest price (low), the highest price (high), and the closing
price (close). The data are obtained from Yahoo Finance and cover the period from January
2020 to November 2024.
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Approximation Capabilities of Deep Neural Networks

Classical time series models such as Autoregressive Integrated Moving Average (ARIMA),
Exponential Smoothing (ETS), and Vector Autoregression (VAR) have long been used for
forecasting [6]. However, these models are fundamentally linear and can struggle with nonlinear
dynamics, complex cross-variable interactions, and long-term temporal dependencies [7]. This is
particularly relevant for multivariate financial series, where nonlinear effects and interactions
between variables are common. In such cases, models with richer approximation capabilities are
needed to capture the underlying dynamics more accurately.

Deep learning models, including Multilayer Perceptrons (MLP), Convolutional Neural Net-
works (CNN), and Recurrent Neural Networks such as Long Short-Term Memory (LSTM),
provide flexible nonlinear function approximators [8], [9], [10]. In the time series setting, these
architectures can be viewed as learning an unknown mapping from a window of past multi-
variate observations to the next multivariate value. MLPs approximate this mapping through
fully connected layers, CNNs capture local patterns via convolutional filters [11], and LSTMs
introduce memory cells designed to capture long-term temporal dependencies [12], [13]. From an
approximation-theoretic perspective, such architectures can be related to universal approximation
results for neural networks [14], [15].

Formally, forecasting a multivariate time series can be formulated as learning a nonlinear
operator

f∗ : Rp×d → Rd,

where d is the number of variables (here d = 3 for low, high, and close prices) and p is the window
length. Deep neural networks provide parametric families fθ that attempt to approximate f∗

on the data domain. The approximation capability of a given architecture is then reflected in
the quality of this approximation under constraints on depth, width, and available data. In this
sense, time series forecasting performance—measured by MSE, RMSE, MAE, and MAPE on a
held-out test set—serves as an empirical proxy for approximation capability.

A large body of work has applied deep learning to financial and stock-price forecasting,
typically emphasizing predictive accuracy for a particular architecture or dataset [5], [13], [16],
[17]. Comprehensive surveys on deep learning for time series and forecasting further document the
rapid growth of this literature [9], [10]. However, many studies treat the models as black boxes and
do not explicitly frame the problem in terms of approximation capabilities across architectures
and horizons. Moreover, most works focus on short or fixed window lengths, providing limited
insight into how well different architectures scale from short to long multivariate histories under
comparable capacity constraints.

In this paper, we adopt an explicit approximation viewpoint and address the following
questions: (i) how do MLP, 1D-CNN, and LSTM differ in their ability to approximate the
multivariate mapping from past AAPL prices (low, high, close) to the next-day prices; (ii) how
does this comparison depend on the input window length, ranging from short (5 days) and
medium (10, 30 days) to long (180, 360 days); and (iii) how do these deep models compare with
a conventional VAR baseline that is restricted to linear dependencies. We combine quantitative
metrics with residual and error-distribution analyses to illuminate not only which model performs
best, but also how approximation errors are structured.

The main contributions of this work are as follows:
• We formulate multivariate stock-price forecasting explicitly as a nonlinear function ap-

proximation problem and interpret deep neural networks and VAR as competing function
approximators with different capacities.

• We perform a systematic empirical study comparing MLP, 1D-CNN, LSTM, and VAR on
a multivariate AAPL stock dataset, across window lengths p ∈ {5, 10, 30, 180, 360}, thereby
probing short-, medium-, and long-horizon approximation regimes.

• We provide detailed methodological specifications for all architectures (including layer
configurations, hyperparameters, and VAR lag order) to ensure reproducibility, and we
clarify how multivariate evaluation metrics are aggregated across variables.
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• We analyze prediction errors using residual plots and box plots, highlighting how approxi-
mation behaviour differs across architectures and horizons and offering practical guidelines
on when to prefer each model.

The remainder of the paper is organized as follows. Section 2 presents the data, problem
formulation, preprocessing, model architectures, and training and evaluation procedures. Section 3
reports the experimental results for different window lengths and discusses the approximation
behaviour of each model, including residual analysis and error distributions. Section 4 concludes
with a summary of findings and directions for future work.

2 Methods
This section describes the dataset, the formal problem formulation as multivariate function
approximation, the preprocessing steps, the deep learning and VAR models, and the training
and evaluation procedures.

2.1 Dataset and Problem Formulation

We consider a multivariate time series constructed from daily AAPL stock prices. For each
trading day t = 1, 2, . . . , T , we observe three variables:

X(t) = [X1(t), X2(t), X3(t)],

where X1(t) is the lowest price (low), X2(t) is the highest price (high), and X3(t) is the closing
price (close). The data span from January 2020 to November 2024 and are obtained from Yahoo
Finance via the yfinance API.

Let d = 3 denote the number of variables. For a given window length p, we define the input
at time t as the stacked window

Xt−p+1:t = [X(t − p + 1), X(t − p + 2), . . . , X(t)] ∈ Rp×d,

and the corresponding target as the next-day vector

Yt = X(t + 1) ∈ Rd.

The forecasting problem is thus to learn a parametric function fθ : Rp×d → Rd that approximates
the unknown mapping f∗ defined by the data-generating process, such that

Ŷt = fθ(Xt−p+1:t)

is close to Yt on a held-out test set. The approximation capability of a model family is reflected
in the generalization error ℓ(Ŷt, Yt) achieved on this test set.

In our experiments, we investigate five window lengths:

p ∈ {5, 10, 30, 180, 360},

corresponding to short (5 days), short-to-medium (10, 30 days), and long (180, 360 days) horizons.

2.2 Data Partitioning and Preprocessing

This subsection describes how the raw AAPL price series is transformed into supervised learning
data suitable for training the deep models and the VAR baseline.
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2.2.1 Train–validation–test split

To ensure a fair and reproducible evaluation, we partition the time series chronologically into
three disjoint subsets:

• 70% of the data for training,
• 15% for validation (hyperparameter tuning and early stopping),
• 15% for testing (final evaluation).

The test set is never used during model selection or training. The same chronological split is
applied consistently to all models, including the VAR baseline.

2.2.2 Handling missing values

Before scaling and windowing, occasional missing values in the raw series are handled by linear
interpolation to preserve temporal continuity. For a missing value Xi(t) between two observed
values Xi(t − 1) and Xi(t + 1), we use the midpoint

Xi(t) = Xi(t − 1) + Xi(t + 1)
2 ,

which is the standard linear interpolation formula. This operation is applied independently to
each variable Xi.

2.2.3 Normalization

Deep neural networks are sensitive to feature scaling. Each variable is therefore normalized to
the range [0, 1] using min–max scaling computed on the training set:

X ′
i(t) = Xi(t) − min(Xi)

max(Xi) − min(Xi)
,

where min(Xi) and max(Xi) denote the minimum and maximum values of Xi over the training
period. The same scaling parameters are applied to the validation and test sets. All models,
including VAR, are trained and evaluated on the normalized data; for interpretability, plots can
be presented either in normalized units or after inverse transformation to the original scale.

2.2.4 Sliding-window construction

After normalization, we transform the series into supervised learning examples using a sliding-
window operator. For a given window length p, each input–target pair is constructed as

Xt−p+1:t =


X(t − p + 1)
X(t − p + 2)

...
X(t)

 ∈ Rp×d, Yt = X(t + 1) ∈ Rd,

for t = p, p + 1, . . . , T − 1. The sliding-window construction is applied separately on the training,
validation, and test segments to avoid information leakage from future observations.

The resulting supervised dataset can be viewed as a matrix of inputs X and a matrix of
targets Y. For illustration, when p = 2 the input and target matrices can be written as

X =


y11 y12 y13 y21 y22 y23
y21 y22 y23 y31 y32 y33
...

...
...

...
...

...
y(m−2)1 y(m−2)2 y(m−2)3 y(m−1)1 y(m−1)2 y(m−1)3

 , Y =


y31 y32 y33
y41 y42 y43
...

...
...

ym1 ym2 ym3

 ,
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where each row corresponds to an input window (two consecutive days of low, high, close) and
its next-day target. A similar representation holds for p = 3. In the experiments, however, we
use the window lengths p ∈ {5, 10, 30, 180, 360}; the generalisation from these illustrative cases is
straightforward.

2.3 Deep Learning Architectures

We implement three deep learning architectures to approximate the mapping from past AAPL
prices (low, high, close) to the next-day prices: a Multilayer Perceptron (MLP), a one-dimensional
Convolutional Neural Network (1D-CNN), and a Long Short-Term Memory (LSTM) network. All
models are implemented using the Keras API of TensorFlow and operate on the same windowed
inputs.

2.3.1 Multilayer Perceptron (MLP)

For a window length p and d = 3 variables, the input Xt−p+1:t ∈ Rp×d is first flattened into
a vector zt ∈ Rpd. The overall architecture of the Multilayer Perceptron used in this study is
summarized in Figure 1: the flattened input zt is propagated through three fully connected
hidden layers with decreasing widths (64, 32, and 16 units), followed by a 3-dimensional linear
output layer producing the forecast Ŷt.

Input layer
zt ∈ Rpd

Hidden layer 1
h(1) ∈ R64

Hidden layer 2
h(2) ∈ R32

Hidden layer 3
h(3) ∈ R16

Output layer
Ŷt ∈ R3
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Figure 1: Schematic illustration of the MLP architecture used in this study. The input vector zt ∈ Rpd

(obtained by flattening the p × 3 window of past prices) is mapped through three hidden layers with 64,
32, and 16 ReLU units, respectively, to a three-dimensional output Ŷt ∈ R3 containing the predicted low,
high, and close prices.

Formally, the transformations implemented by the MLP can be written as

h(1) = σ
(
W(1)zt + b(1)

)
, W(1) ∈ R64×pd,

h(2) = σ
(
W(2)h(1) + b(2)

)
, W(2) ∈ R32×64,

h(3) = σ
(
W(3)h(2) + b(3)

)
, W(3) ∈ R16×32,

Ŷt = W(4)h(3) + b(4), W(4) ∈ R3×16,

where σ denotes the Rectified Linear Unit (ReLU) activation and Ŷt = (ŷt,1, ŷt,2, ŷt,3) collects
the predicted low, high, and close prices for day t + 1. To reduce overfitting, we apply a dropout
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rate of 0.2 after the first and second hidden layers (i.e., between h(1) and h(2), and between h(2)

and h(3)).1
All weights and biases are learned via backpropagation using the Adam optimizer.

2.3.2 One-Dimensional Convolutional Neural Network (1D-CNN)

The 1D-CNN treats each input window as a sequence of length p with d = 3 channels (low, high,
close). Thus, the input tensor has shape (p, 3).

We use the following architecture:
• a first convolutional layer with 64 filters, kernel size 3, stride 1, “same” padding, and ReLU

activation;
• a max-pooling layer with pool size 2;
• a second convolutional layer with 32 filters, kernel size 3, stride 1, “same” padding, and

ReLU activation;
• a global average pooling layer over the time dimension;
• a fully connected layer with 32 units and ReLU activation;
• a linear output layer with 3 units.

Let Xt−p+1:t ∈ Rp×3 denote the input tensor. The output of the first convolutional layer for
filter k is

h(1)
k = σ

(
Xt−p+1:t ∗ W(1,k) + b

(1)
k

)
,

where ∗ denotes convolution along the time axis, W(1,k) is a kernel of size 3 × 3, and b
(1)
k is a

scalar bias. After the second convolutional layer and pooling operations, the resulting feature
maps are aggregated by global average pooling and fed into the fully connected layers to produce
Ŷt.

2.3.3 Long Short-Term Memory (LSTM)
The LSTM model processes each window as a sequence of p time steps, where the input at time
τ is X(τ) ∈ R3. In our implementation, we use two stacked LSTM layers:

• a first LSTM layer with hidden size 64 and return_sequences = True;
• a second LSTM layer with hidden size 32 and return_sequences = False;
• a final linear dense layer with 3 units.

Let h(1)
τ and c(1)

τ denote the hidden and cell states of the first LSTM layer at time τ , and
h(2)

τ , c(2)
τ those of the second layer. The update equations within each layer follow the standard

LSTM formulation with input, forget, and output gates:

iτ = σ
(
Wi[hτ−1; X(τ)] + bi

)
,

fτ = σ
(
Wf [hτ−1; X(τ)] + bf

)
,

oτ = σ
(
Wo[hτ−1; X(τ)] + bo

)
,

c̃τ = tanh
(
Wc[hτ−1; X(τ)] + bc

)
,

cτ = fτ ⊙ cτ−1 + iτ ⊙ c̃τ ,

hτ = oτ ⊙ tanh(cτ ),

where σ denotes the sigmoid activation, ⊙ denotes element-wise multiplication, and Wi, Wf , Wo, Wc

and bi, bf , bo, bc are the trainable parameters of the LSTM layer.
1In Keras notation: Dense(64, relu) – Dense(32, relu) – Dense(16, relu) – Dense(3, linear), with

dropout layers of rate 0.2 inserted after the first and second hidden layers.
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The second LSTM layer takes the full sequence {h(1)
τ }t

τ=t−p+1 as input, and its last hidden
state h(2)

t is mapped to the output via

Ŷt = Wouth(2)
t + bout,

with Wout ∈ R3×32 and bout ∈ R3. A dropout rate of 0.2 is applied to the recurrent outputs
between the two LSTM layers.

All LSTM parameters are learned via backpropagation through time using the Adam optimizer.

2.4 VAR Baseline

As a conventional linear baseline, we fit a Vector Autoregression (VAR) model to the same
normalized multivariate series X(t) = [X1(t), X2(t), X3(t)]. The VAR(pVAR) model is specified
as

X(t) = c +
pVAR∑
k=1

AkX(t − k) + ε(t),

where c ∈ R3 is a constant vector, Ak ∈ R3×3 are coefficient matrices, and ε(t) is a zero-mean
white noise process with covariance matrix Σ.

We estimate the VAR model using ordinary least squares (OLS) as implemented in the
statsmodels VAR class. The lag order pVAR is selected on the training set by minimizing the
Akaike Information Criterion (AIC) over candidate orders pVAR ∈ {1, . . . , 10}. In our experiments,
this procedure selects pVAR = 2, and we report results for this lag order throughout the paper.

Once the VAR(2) model is fitted, we generate one-step-ahead forecasts on the validation
and test sets by rolling the model forward through time. Because VAR operates on its own
autoregressive lag structure rather than on externally specified window lengths p, its performance
is independent of the deep-model window choices. For convenience of comparison, we therefore
report the same VAR metrics in the tables for all window settings.

2.5 Training Setup and Evaluation Metrics

All deep models are trained using the Adam optimizer with learning rate α = 0.001, β1 = 0.9,
and β2 = 0.999. We use a batch size of 32 and a maximum of 200 epochs. Early stopping based
on validation MAPE with a patience of 20 epochs is employed to prevent overfitting. For each
architecture and window length, we train the model once with a fixed random seed; extensions
with multiple runs and confidence intervals are left for future work.

Let Ŷi = (ŷi1, ŷi2, ŷi3) and Yi = (yi1, yi2, yi3) denote the predicted and true vectors for
the i-th test example, respectively, with i = 1, . . . , N . To quantify approximation error in the
multivariate setting, we treat each component (i, j), j = 1, 2, 3, as a single observation and
aggregate errors across both time and variables.

The Mean Squared Error (MSE) is defined as

MSE = 1
3N

N∑
i=1

3∑
j=1

(
ŷij − yij

)2
,

and the Mean Absolute Error (MAE) as

MAE = 1
3N

N∑
i=1

3∑
j=1

∣∣ŷij − yij

∣∣.
The Root Mean Squared Error (RMSE) is

RMSE =
√

MSE.
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The Mean Absolute Percentage Error (MAPE), expressed as a percentage, is computed as

MAPE = 100%
|I|

∑
(i,j)∈I

∣∣∣∣∣ ŷij − yij

yij

∣∣∣∣∣ ,

where I is the set of index pairs (i, j) such that yij ≠ 0 to avoid division by zero. All metrics
reported in Tables 1 and 2 are computed according to these multivariate definitions.

These four metrics together provide a comprehensive view of approximation capability: MSE
and RMSE emphasize large errors, MAE provides a robust measure in the original scale, and
MAPE expresses the average relative error in percentage terms.

3 Results and Discussion

This section reports the empirical approximation performance of the deep models (MLP, 1D-CNN,
LSTM) and the VAR baseline on the multivariate AAPL stock data. Recall that, for each window
length p, the models approximate the mapping f∗ : Rp×3 → R3 from the past p days of (low,
high, close) to the next-day vector. The test-set errors (MSE, MAE, RMSE, MAPE) therefore
provide an empirical measure of how well each architecture approximates f∗ under the given
horizon and model capacity.

We first examine short and medium windows (p = 5, 10, 30), then long windows (p = 180, 360),
and finally analyse residuals and error distributions for the representative case p = 10.

3.1 Short and Medium Windows (p = 5, 10, 30)

Table 1 reports the multivariate MSE, MAE, RMSE, and MAPE for all models at window lengths
p ∈ {5, 10, 30}. Each metric aggregates errors across the three variables (low, high, close) and all
test examples, as defined in Section 2.6.

Table 1: MSE, MAE, RMSE, and MAPE for each model by time window length (short and medium
horizons). Metrics are aggregated across low, high, and close prices.

Window p Model MSE MAE RMSE MAPE (%)

5

MLP 20.28 3.66 4.50 1.76
CNN 34.87 4.69 5.90 2.22

LSTM 41.48 4.84 6.44 2.25
VAR 507.76 20.01 22.53 9.47

10

MLP 0.80 0.67 0.90 1.22
CNN 2.07 1.17 1.44 2.05

LSTM 25.71 3.77 5.07 6.27
VAR 72.71 6.14 8.53 10.03

30

MLP 1.90 1.19 1.38 2.10
CNN 5.11 1.81 2.26 3.02

LSTM 3.54 1.34 1.88 2.28
VAR 84.73 6.77 9.20 10.94

For all three short/medium windows, the MLP attains the lowest empirical approximation
error on every metric. In particular, the 10-day MLP configuration yields an MSE of 0.80, MAE
of 0.67, RMSE of 0.90, and MAPE of 1.22%, indicating that the learned mapping fMLP

θ provides
a very accurate approximation of f∗ when restricted to the recent 10-day history.

The 1D-CNN consistently appears as the second-best deep model in this regime. Its convolu-
tional filters capture local temporal patterns and reduce the approximation error compared to
the linear VAR baseline, but the fully connected MLP achieves lower test error, suggesting that
for windows up to 30 days the complexity of f∗ can already be captured by a relatively shallow
feedforward network acting on the flattened input.
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LSTM exhibits higher errors than MLP and CNN at these window lengths. Although its
recurrent structure is, in principle, capable of approximating complex sequence-to-sequence
mappings, the empirical results indicate that this additional machinery does not translate into
superior approximation quality when only 5–30 past days are available. In this short-to-medium
regime, the mapping from input window to next-day prices seems to be sufficiently low-dimensional
and local that simpler architectures approximate it more effectively.

Across all p ∈ {5, 10, 30}, the VAR baseline exhibits the largest errors by a wide margin.
This behaviour is consistent with its restricted approximation capacity: as a linear model, VAR
cannot represent the nonlinear interactions and regime changes present in the multivariate AAPL
series, leading to large residuals even when only short windows are considered. In approximation
terms, VAR provides only a coarse linear surrogate of f∗.

3.2 Long Windows (p = 180, 360)

We now move to long windows, where the input dimensionality and potential temporal de-
pendencies are substantially larger. Table 2 reports the multivariate errors for p = 180 and
p = 360.

Table 2: Comparison of MSE, MAE, RMSE, and MAPE across models for long windows (p = 180 and
p = 360). VAR results are independent of p and therefore identical across rows.

Window p Model MSE MAE RMSE MAPE (%)

180

MLP 24.21 4.88 4.92 6.85
CNN 78.87 8.86 8.88 12.44

LSTM 3.76 1.69 1.93 2.38
VAR 529.44 22.98 23.00 32.26

360

MLP 19.28 4.34 4.39 6.11
CNN 35.72 5.93 5.97 8.33

LSTM 1.07 0.87 1.03 1.22
VAR 529.44 22.98 23.00 32.26

In contrast to the short-window regime, LSTM now clearly provides the best empirical
approximation of f∗. For p = 180, the LSTM achieves an MSE of 3.76, MAE of 1.69, RMSE
of 1.93, and MAPE of 2.38%, substantially improving on the feedforward MLP and 1D-CNN.
At p = 360, the advantage becomes even more pronounced: the LSTM reaches an MSE of 1.07,
MAE of 0.87, RMSE of 1.03, and MAPE of 1.22%, while the alternative deep models incur
significantly larger errors.

This behaviour is consistent with the approximation-theoretic perspective. When p is large,
the effective domain Rp×3 is high-dimensional, and the mapping f∗ may depend on long-range
temporal patterns that smaller windows cannot express. The LSTM’s recurrent state and gating
mechanisms allow it to compress long histories into an internal representation that better matches
the complexity of f∗, thereby reducing the empirical approximation error compared to static
architectures that process all p inputs in a single feedforward pass.

The MLP remains the second-best model in the long-window regime but with noticeably
higher errors than LSTM. Its fixed-size hidden layers must map a very high-dimensional input
vector to the output, making it harder to approximate f∗ without either increasing capacity or
overfitting. The 1D-CNN performs worst among the deep models for p = 180, and although its
errors decrease at p = 360, it still lags behind both LSTM and MLP. This suggests that local
convolutional filters alone are insufficient to capture the long-range dependencies that become
important when using year-long windows.

The VAR baseline again exhibits the largest errors by a considerable margin, with MAPE
above 30% for both long-window settings. Since a single VAR model with lag order selected by
AIC on the training set is used, its empirical approximation performance is invariant across the
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p values considered here. In other words, VAR approximates f∗ via a fixed-order linear recursion
that cannot be improved simply by feeding longer external windows.

3.3 Approximation Error Structure for a 10-Day Window

To further characterise approximation behaviour in the short-to-medium regime, we analyse
the 10-day window in more detail. In this setting, the input Xt−9:t contains the most recent 10
days of low, high, and close prices, and the models attempt to approximate the mapping to the
next-day prices X(t + 1).

We first inspect how well each model reproduces the observed price trajectories on the test
set. Figure 2 plots the actual and predicted low prices for MLP, 1D-CNN, LSTM, and VAR over
time, allowing a visual comparison of their one-step-ahead forecasts.
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Figure 2: Forecast comparison for low prices on the test set with a 10-day input window.

Figure 3 presents the analogous comparison for the high prices, again overlaying the four
models’ predictions on the realised series.
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Figure 3: Forecast comparison for high prices on the test set with a 10-day input window.

Finally, Figure 4 shows the approximation behaviour for the close prices, completing the
picture across the three components of the multivariate series.

Across all three variables, the MLP predictions closely follow the actual series, with only small
deviations, in line with its low multivariate errors in Table 1. This visual agreement indicates
that fMLP

θ provides an accurate approximation to f∗ when restricted to inputs of length 10. The
1D-CNN also tracks the true series reasonably well, but its prediction curves deviate more visibly
from the observed prices, confirming its slightly higher empirical approximation error in this
regime. LSTM and VAR exhibit larger and more frequent discrepancies, particularly around
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Figure 4: Forecast comparison for close prices on the test set with a 10-day input window.

periods of sharper price movements, highlighting their weaker approximation performance at
p = 10.

To make the approximation errors more explicit, we next examine the residual series, defined
as (actual − predicted) prices. Figure 5 shows the residuals for the low prices for each model,
revealing how the errors evolve over the test period.
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Figure 5: Residuals for low prices on the test set with a 10-day input window.

Figure 6 presents the residuals for the high prices, and Figure 7 provides the corresponding
residual plots for the close prices.
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Figure 6: Residuals for high prices on the test set with a 10-day input window.

For all three variables, the MLP residuals are relatively small in magnitude and oscillate
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Figure 7: Residuals for close prices on the test set with a 10-day input window.

around zero without pronounced bursts, consistent with an accurate and stable approximation of
f∗. CNN residuals are more variable but remain centred near zero. In contrast, LSTM residuals
display larger swings, and VAR residuals are both large and volatile, indicating a substantial
mismatch between the linear approximation and the true nonlinear dynamics that govern the
multivariate AAPL series.

While the residual time series highlight temporal structure, a complementary view is provided
by summarising their distributions. Figures 8, 9, and 10 display box plots of the residuals for
low, high, and close prices, respectively, for all four models.
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Figure 8: Residual box plots for low prices on the test set with a 10-day input window.
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Figure 9: Residual box plots for high prices on the test set with a 10-day input window.
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Figure 10: Residual box plots for close prices on the test set with a 10-day input window.

In all three box-plot panels, the MLP residuals exhibit narrow interquartile ranges and
medians close to zero, indicating concentrated and approximately unbiased approximation errors.
CNN residuals are somewhat more dispersed but still markedly tighter than those of LSTM and
VAR. LSTM residuals show wider boxes and more extreme values, while VAR residuals display
the broadest distributions and many outliers. This ranking of error spreads (MLP < CNN <
LSTM < VAR) mirrors the multivariate metrics in Table 1 and reinforces the conclusion that, at
p = 10, the MLP architecture has the strongest empirical approximation capability among the
models considered. The qualitative pattern is consistent for low, high, and close prices, suggesting
that the relative approximation strengths and weaknesses of the architectures are shared across
all three components of the multivariate series rather than being driven by a single variable.

3.4 Summary of Approximation Capabilities Across Horizons

The numerical results and residual analyses together reveal a coherent picture of how approxima-
tion capabilities depend on both architecture and window length.

For short and medium windows (p = 5, 10, 30), the mapping f∗ from recent multivariate
prices to the next-day vector can be approximated very accurately by a moderately sized MLP.
In this regime, the fully connected model attains the lowest empirical approximation error on all
multivariate metrics and produces residuals that are small, concentrated, and centred around
zero. The forecast and residual plots for the 10-day window (Section 3) visually confirm that
fMLP

θ tracks the true series closely for low, high, and close prices, whereas CNN and LSTM
provide weaker approximations and VAR performs poorly due to its linearity.

For long windows (p = 180, 360), the approximation problem becomes more demanding:
the input is high-dimensional and long-range temporal dependencies are likely to matter. In
this setting, the LSTM architecture exhibits a clear advantage, achieving substantially lower
multivariate errors than MLP, CNN, and VAR. Its recurrent state provides the capacity to
represent complex, long-horizon mappings that static architectures struggle to approximate with
the same number of parameters. MLP remains a reasonable second-best model in this regime,
while CNN and especially VAR show large residual spreads and higher errors.

Overall, the experiments show that approximation capability is not a static property of a
model family, but depends critically on the effective horizon and problem structure. On the
AAPL case study considered here, MLP is the most efficient approximator for short-to-medium
windows, LSTM is the most capable for long windows, CNN occupies an intermediate position,
and VAR consistently underperforms because its linear structure cannot capture the nonlinear
dynamics of the multivariate series.

Mohammad Jamhuri 1413



Approximation Capabilities of Deep Neural Networks

4 Conclusion
In this paper, we examined the approximation capabilities of three deep neural network
architectures—MLP, 1D-CNN, and LSTM—relative to a conventional VAR model for mul-
tivariate time series forecasting of AAPL stock prices (low, high, and close). By framing
forecasting as a nonlinear function approximation problem and systematically varying the input
window length, we characterised how each architecture behaves across short, medium, and long
horizons.

For short and medium windows (p = 5, 10, 30), MLP consistently achieved the lowest MSE,
RMSE, MAE, and MAPE, with the 10-day MLP providing the best overall approximation. In
this regime, the fully connected structure of MLP appears sufficient to capture the relevant
nonlinear relationships in the recent multivariate history. CNN performed as a strong, though
slightly weaker, competitor, while LSTM did not yet realise its full potential, and VAR performed
worst across all metrics. The forecast, residual, and box-plot analyses for the 10-day window
further show that MLP yields the tightest and most nearly unbiased error distributions across
all three price variables.

For long windows (p = 180, 360), the picture changes. LSTM becomes the best-performing
model by a substantial margin, achieving the lowest errors on all metrics. This confirms that
LSTM’s recurrent structure and gating mechanisms provide superior approximation capabilities
when the mapping involves long-term temporal dependencies and high-dimensional input histories.
MLP remains a reasonable second-best model, while CNN and especially VAR struggle in this
long-horizon setting, with broader residual distributions and larger systematic errors.

Taken together, our results provide a nuanced view of approximation capabilities for multi-
variate financial time series: MLP is an effective and relatively simple choice for short-to-medium
windows; LSTM is the preferred architecture for long windows where long-range dependencies
are prominent; CNN can be useful when local temporal patterns dominate; and linear models
such as VAR are inadequate for capturing the nonlinear dynamics in AAPL prices across all
horizons considered.

Future work may extend this analysis in several directions: (i) exploring a wider range
of assets and multivariate configurations (e.g., including volume or technical indicators) to
assess robustness across datasets; (ii) systematically varying model capacity (depth, width) to
study approximation–generalisation trade-offs; (iii) incorporating regularisation techniques and
ensembles; and (iv) complementing the empirical study with more formal approximation-theoretic
results or synthetic benchmarks where the true mapping is known.
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