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Abstract

Jakarta is one of the major cities in Indonesia that is vulnerable to the impacts of climate
change, particularly in terms of rainfall and air temperature variability. This study aims
to model time-varying statistical distributions of rainfall and air temperature using the
maximum likelihood estimation (MLE) method and the fminsearch algorithm. Three types
of distributions are evaluated: normal, generalized extreme value (GEV), and lognormal
distributions. The MLE method is applied to stationary models, while fminsearch is used
for both stationary and nonstationary models. Model performance is assessed based on the
Akaike Information Criterion (AIC). The results show that the nonstationary lognormal
distribution is the most suitable for rainfall data, while the nonstationary GEV distribution
is the most appropriate for air temperature data. These findings indicate an increasing
variability in rainfall and a rising average air temperature over time. The results are expected
to contribute to the development of climate change mitigation and adaptation strategies in
Jakarta.
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1 Introduction

Climate change has become a global issue with significant impacts on social, economic, and
environmental systems [1]. Indonesia, as a tropical archipelago, experiences unique weather and
climate characteristics that are not yet fully understood [2]. The two primary variables that define
climate are precipitation and air temperature. Indonesia is a country that is highly vulnerable
to the impacts of climate change [3]. [4] stated that climate change could cause increasingly
severe implications due to increased Earth’s temperature by 1.1°C. In the next two decades,
the rise in Earth’s temperature is expected to reach 1.5°C. The effect of global warming due to
climate change, including rainfall and temperature, can cause hydrometeorological hazards, such
as increasing the frequency of extreme events and their severity over a long period [5].

Rainfall and temperature patterns can be analyzed to predict climate change in a region.
Climate change can often create extreme events that can impact life. Proper risk assessment
of extreme events due to climate change can help develop effective mitigation strategies. One
commonly used method is hydrological frequency analysis based on stationary assumptions, where
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conditions are considered unchanging over time. However, this approach is being questioned with
the actual impacts of climate change, and nonstationary distribution models are now considered
more relevant to anticipate dynamic climate change patterns [6].

Internationally, nonstationary hydrological frequency analysis has become a significant con-
cern as public awareness of climate change impacts increases [7] [8] [9]. In recent years, time-based
approaches have often been used to accommodate changing probability parameters to describe
patterns of extreme hydrometeorological variables in univariate analysis [10] [11] [12] [13] empha-
sized the importance of nonstationary hydrological hazard analysis to address climate change and
population growth, highlighting the need for adaptive risk management strategies. Furthermore,
research by [14] in the Heihe River Basin provides insights into the influence of extreme rainfall on
uncertainty in water resources management, which is increasingly relevant under nonstationary
conditions due to climate change. In addition, [15] researched how temperature and precipitation
fluctuations in China impact water availability. This research focused on the importance of
low-flow frequency analysis in a nonstationary context.

In Indonesia, research on using time-varying hydrological models still needs to be conducted.
The research that has been conducted includes the study by [16], which discusses the analysis
of extreme rainfall using the Extreme Value Theory (EVT) with stationary and nonstationary
approaches in Surabaya and Mojokerto. The results show that the nonstationary method provides
a more accurate return level estimate for data with trend patterns than the stationary method.
The most studies in Indonesia focus on estimating stationary distribution parameters, i.e., the
data pattern is considered unchanging over time. For example, research conducted by [17]
discussed a copula-based joint distribution model to analyze the relationship between climate
conditions and forest fire hotspots in Kalimantan, using rainfall, drought, and ENSO conditions.
In addition, similar studies discuss using stationary distributions, namely research conducted by
[18], which examines the joint distribution analysis between rainfall and burned area in Southern
Sumatra by considering global climate phenomena and applies a stationary distribution approach
in his research.

Before developing a time-varying multivariate analysis, an essential first step is to conduct
a univariate analysis of time-varying climate data. Jakarta, as Indonesia’s capital and most
densely populated urban area, is highly vulnerable to climate-related hazards such as flooding,
extreme rainfall, and rising temperatures. These conditions make Jakarta a strategic case study
for understanding localized climate variability and supporting adaptive urban planning.

Therefore, the author is interested in discussing Jakarta’s distribution analysis of time-
varying climate change patterns in Jakarta using rainfall and air temperature data as the
main variables. The fminsearch algorithm is used to optimize the distribution parameters of
climate change patterns. Parameter estimation of stationary and nonstationary distributions is
performed with this method on several types of distributions, including the normal distribution,
the generalized extreme value (GEV) distribution which models extreme or maximum values, and
the lognormal distribution which is used for positively skewed data. The parameter estimation
results of stationary distributions are compared with other methods, such as maximum likelihood
estimation (MLE). Thus, this study aims to estimate the time-varying distribution parameters of
the normal, generalized extreme value (GEV), and lognormal distributions using the maximum
likelihood estimation method and the fminsearch algorithm on rainfall and air temperature data
in Jakarta, as well as visualize and analyze the best distribution obtained.

This research is expected to provide a more in-depth picture of climate change patterns in
Jakarta as well as the contribution of the nonstationary approach in anticipating and predicting
the impact of climate change in the future. This article is organized systematically to facilitate
readers’ understanding of the research process. The second section provides an explanation of
the data used and the methods applied, including the selection of distribution types, parameter
estimation techniques, and optimization algorithms. The third section presents the results of the
analysis of stationary and non-stationary distributions of rainfall and air temperature data in
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Jakarta, accompanied by a discussion linking the findings to previous studies and the context of
climate change. Finally, the fourth section contains the conclusions of the research results along
with recommendations that can be used as a reference for future research.

2 Methods

This section presents the methodology of the study, starting from data description and univariate
distribution selection, followed by parameter estimation using the maximum likelihood estimation
(MLE) and the fminsearch algorithm. Model performance is then evaluated using the Akaike
Information Criterion (AIC), and the best-fitting distributions are visualized to interpret climate
variability patterns in Jakarta.

2.1 Data

The author used annual maximum data from monthly rainfall (mm) and air temperature (°C) in
Jakarta. The data period covers the years 1864 to 2020. Data from 1864 to 1990 were obtained
from KMNI. Meanwhile, data from 1991 to 2020 were sourced from the Meteorology, Climatology,
and Geophysics Agency (BMKG). These data were used to support analysis and parameter
distribution estimation.

2.2 Univariate Distribution

Distributions are used to describe how values in the rainfall and air temperature datasets
are distributed in a specific pattern. The distributions used in this study include the normal
distribution, the Generalized Extreme Value (GEV) distribution, and the lognormal distribution.
The normal distribution is a continuous variable distribution, so its probability is calculated by
determining the area under the curve. the probability density function of the normal distribution
is as follows [19]

1 (z — p)?
f(zlp, o) = — exp <—M , —oo <z < o0 (1)

The generalized extreme value (GEV) is a distribution developed to study extreme events.
The extreme data used is within the maximum range of a certain period, such as on a daily,
monthly, and annual scale. The probability density function of the GEV distribution is as follows
[19]
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The GEV distribution belongs to the continuous random distribution and is suitable for modeling
extreme data.

The lognormal distribution is used to describe data with a favorable and unsymmetrical
distribution when the logarithm of the data has a normal distribution. Thus, the lognormal
distribution is often used to describe data with exponential properties on a logarithmic scale.
The probability density function of the lognormal distribution is as follows

(log(x) — p)?
202

flzlp,0.8) = (2)

1

f(zlp, o) = WGXP <—

), x, i, o > 0. (3)
T

The distributions whose parameters are estimated consist of stationary and nonstationary
distributions. A stationary distribution is a distribution that does not depend on the time
variable. A nonstationary or time-varying distribution is the probability distribution of a random
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variable in a time series or changes over time. All parameters in the distribution will be given
a time-dependent trend. There are two kinds of location parameter functions plus stationary
situations that can be presented as follows

(4)

] constant, if stationary
e o + pit, if nonstationary

where t denotes time; pg and p; are the new parameters for the time-varying distribution.

2.3 Parameter Estimation

Parameter estimation is used to predict the parameter values of rainfall and air temperature
data. The parameter estimation is conducted through maximum likelihood estimation (MLE)
and the fminsearch algorithm.

2.3.1  Mazimum Likelihood Estimation (MLE)

The parameter values obtained through maximum likelihood estimation (MLE) are stationary
distribution estimates that will be compared accurately with the parameters generated by the
fminsearch algorithm. According to [19], MLE estimates parameters by maximizing the likelihood
function of the probability function of each distribution.
1. Take a random sample size n;x1, 9, ..., Ty
l’iNf(:Ei,e), iZl,Q,...,TL.
2. Formulate the likelihood density function of each distribution as the multiplication of
the likelihood function of each distribution’s likelihood density function as the likelihood
function’s multiplication.

L(O|z1,x2, ..., xp) = Hf(a:l,O) (5)
i=1

3. Maximize the likelihood function. To maximize the likelihood function, derive the likelihood
function equation concerning the parameter 6, then solve the first derivative to zero to get
the estimate of the parameter 6.

dL(0|xy, xa, ..., Tp)
db

If the likelihood function is difficult to derive, then perform a log transformation on the
likelihood function first

=0— 0. (6)

log(L(8|z1,x2, ..., Tn))- (7)
4. Test the maximum of the likelihood function using the second derivative test. 6 maximizes
the likelihood function if its second derivative is less than zero.

d*L(0|z1, z2, ..., Tn)
do?

This step verifies that f is a local maximum and represents the maximum likelihood

< 0. (8)

estimate.

2.3.2  Fminsearch Algorithm

Furthermore, the fminsearch algorithm estimates the parameters of stationary and nonstationary
distributions. This algorithm is a specialized version of the Nelder-Mead Simplex method
implemented in Matlab software. [20] stated that this method is a numerical method used to find
the minimum value of a function with many variables, especially when the function’s derivative is
difficult to find. The fminsearch algorithm iteratively modifies the simplex according to specific
procedures.
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1. Let z; denote the list of points in the current simplex, i =1,2,...,n,n+ 1.

2. Sort the points in the simplex from the lowest function value (f(z1)) to the highest function
f(znt1). At each step in the iteration, the algorithm discards the current worst point z,41
and accepts another point into the simplex.

3. Generates bounce points (z,), which are the values of the side opposite the corner point
with the worst value, z, = 2m — 2,41, with m = % > ieq 7, and calculate the value of f(z;).

4. Comparing the f(z,) value with f(21), f(2n), and f(zn+1)-

a) If f(z1) < f(2r) < f(zn), accept z, as the new simplex and end this iteration. Reflect.

b) If f(z.) < f(z1), calculate the expansion point zs; (zs = m + 2(m — z,41), with
m =13 %), and calculate the value of f(z). If f(zs) < f(z), accept z as the
new simplex and end this iteration. Ezpand. Otherwise, accept z, as the new simplex
and end this iteration. Reflect.

c) If f(zr) > f(zn), a contract between m and z,4+1 or z,, depending on which one
has the lower objective function value. If f(z,) < f(2n41), calculate the value of z,
ze = m + 5™ and calculate f(z.). If f(2:) < f(2;), accept z. as the new simplex

and end the iteration. Contract outside. If f(z,) > f(zn+1), calculate the value of z,

Zee = M+ w, and calculate f(zee). If f(zee) < f(2n+1), accept zq. as the new
simplex and end the iteration. Contract inside. Otherwise, calculate the new points
v; = 21 + #57* and calculate the value of f(v;), i =2,...,n+1. In this case, the next

iteration of the simplex is 21, va, ..., Upy1. Shrink.
5. Checking the domain convergence of the iteration results.

a) If the distance between all pairs of simplex corner points is less than 0.001, then the
simplex is small enough, and it can be said that the simplex is the optimum result of
the fminsearch algorithm.

b) If there is a distance between pairs of simplex corner points of more than 0.001, then
the result is not yet optimum, and the next iteration needs to be done. The next
iteration means taking the values of f(z1), f(zn—1), and f(z,) that are new according
to the results of the previous iteration.

2.3.83 Comparison of Parameter Results and Visualization of the Best Distribution

Akaike Information Criterion (AIC) is used to find the best distribution of parameter estimation
results using the fminsearch algorithm. According to [21], the Akaike Information Criterion
(AIC) method is used to select the best model based on the smallest AIC value, and the value is
calculated using a specific formula.

AIC = —21n(L) + 2k 9)

where
k = number of parameters estimated in the model;
L = likelihood of the model (the most significant likelihood of the model against the data).
The best distribution obtained with the lowest AIC value from rainfall and air temperature
data is visualized using probability density function (pdf) plots of the distribution, along with
quartile and mean graphs of the distribution. The visualization results are analyzed and
interpreted in relation to the rainfall and air temperature data.

3 Results and Discussion

This section presents the analysis results and discussion of rainfall and air temperature patterns,
including descriptive statistics, parameter estimation for stationary and nonstationary distribu-
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tions, and model evaluation using AIC. The findings help explain climate variability in Jakarta
and assess the suitability of various distribution models over time.

3.1 Descriptive Statistics

Descriptive statistics are statistics that analyze data by describing or describing the data that
has been collected without intending to make general conclusions or generalizations. The results
of descriptive statistical analysis of rainfall and air temperature data in Jakarta in 1864-2020
can be seen in Table 1.

Table 1: Descriptive statistics

Variable Minimum Maximum Average Standard Deviation
Rainfall (mm) 173.0000 1068.9000  443.6062 166.5255
Air Temperature (°C) 26.1600 29.9000 27.6955 0.9289

Based on Table 1, the descriptive statistical analysis reveals patterns that reflect the climatic
dynamics in Jakarta over the period 1864-2020. Rainfall exhibits significant variation, ranging
from 173 mm to 1068.9 mm. This wide range of 895.9 mm indicates substantial annual rainfall
fluctuations, which may be influenced by weather phenomena or long-term climate changes. The
average rainfall of 443.61 mm with a standard deviation of 166.53 mm suggests uncertainty in
the annual rainfall pattern. On the other hand, air temperature demonstrates relatively high
stability, with much smaller variations compared to rainfall. The temperature range from the
lowest to the highest is only 3.8°C, spanning from 26.1°C to 29.9°C, with an average of 27.70°C
and a standard deviation of 0.93°C. This stability indicates that, while rainfall varies significantly,
air temperature tends to remain relatively consistent on an annual basis. This initial analysis
provides a comprehensive overview of the fundamental climatic patterns in Jakarta.

3.2 Estimation of Stationary Distribution Parameters

Stationary distribution estimation is performed using maximum likelihood estimation (MLE)
and the fminsearch algorithm. The main point of estimating distribution parameters using
maximum likelihood estimation (MLE) is to maximize the likelihood function, which is the joint
probability function of each distribution of rainfall and air temperature data. The likelihood
function represents the probability of observing the entire dataset given a set of parameters. It is
constructed as the product of the probability density function of each individual observation, which
is formulated as L(0|x1,x2,...,z,) = [[2q f(zi;0). The results of estimating the stationary
distribution parameters using MLE can be seen in Table 2.

Table 2: Parameter estimation results of stationary distribution using MLE

Distribution RainfallA(mm) Air tempe{ature (°C)

F 5 £ i G é

Normal 443.6030 166.5250 - 27.6994 0.9279 -
GEV 366.2170  128.9680 0.0917 27.3010 0.8012 -0.1002

Lognormal 6.0274 0.3697 - 3.3209  0.0333 -

Table 2 shows rainfall has a more significant variation than air temperature in Jakarta. In the
normal distribution, rainfall has a mean of 443.6030 mm with a standard deviation of 166.5250
mm, while air temperature is more stable with a mean of 27.6994°C and a standard deviation
of 0.9279°C. In the GEV distribution, rainfall shows an average of 366.2170 mm with almost
symmetrical distribution tails, while air temperature tends to decrease in extremes with a shape
parameter of -0.1002. The lognormal distribution shows that rainfall is more variable than air
temperature, which remains narrower and more consistent around its mean.
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Estimating stationary distribution parameters using the fminsearch algorithm is done by
finding the optimum value of parameters by minimizing the log-likelihood function of each
distribution on rainfall and air temperature data. The results of stationary distribution parameter
estimation using the fminsearch algorithm can be seen in Table 3.

Table 3: Stationary distribution parameter estimation results using the fminsearch algorithm

Distribution Rainfall (mm) Air temperature (°C)

o £ fi g £

Normal 443.6026  165.9874 - 27.9664 0.9249 -
GEV 366.2174 128.9685 0.0191 27.3009 0.8012 -0.1002

Lognormal 6.0274 0.3685 - 3.3209  0.0332 -

Based on Table 3, parameter estimation using the fminsearch algorithm has results similar
to parameter estimation using MLE. Thus, the results of stationary distribution parameter
estimation using the fminsearch algorithm in Table 3 are compared with the results of stationary
distribution parameter estimation using the MLE method in Table 2 to see the model fit results
of the two methods. The results of the comparison of the stationary distribution parameter
values of each distribution with MLE and the fminsearch algorithm are shown in Table 4.

Table 4: Results of comparison of distribution parameter values

Difference in parameter values

Distribution Rainfall (mm) Air Temperature (°C)
fi g £ fi o £
Normal 0.0004 0.5376 - 0.2670  0.0003 -
GEV 0.0004 0.0005 0.0000 0.0001 0.0000 0.0000
Lognormal  0.0004 0.0012 - 0.0000 0.0001 -

Based on Table 4, the lowest difference in parameter results on rainfall data is 0.0000 mm, and
the highest difference is 0.5376 mm. The lowest difference in parameter results in rainfall data is
0.0000°C, and the highest difference is 0.2670°C. These small differences support the convergence
properties of the Nelder-Mead algorithm. As implemented in the fminsearch function, it has been
shown to converge reliably to a local minimum in low-dimensional smooth optimization problems.
This indicates that the fminsearch algorithm has effectively reached parameter estimates close to
the maximum likelihood estimates.

3.3 Estimation of Nonstationary Distribution Parameters

The fminsearch algorithm is used to estimate the parameters of non-stationary distributions of
normal, GEV, and lognormal distributions by gradually involving time variables in the estimation
process. This approach aims to understand how time variables affect each distribution parameter.
In the first step, time variables are only included in the location parameters, while the scale
and shape parameters remain constant (unaffected by time). This step helps identify if there
are any trends in the data that can be explained by changes in the location of the distribution
over time. In the next step, the time variable is also incorporated into the scale and the location
parameter, while the shape parameter remains unchanged. This stepwise approach allows for
a more in-depth look at how the time variable affects the variability of the data (through the
scale parameter) in addition to shifting the center of the distribution (through the location
parameter). By performing this stepwise estimation, the impact of adding time variables on the
distribution parameters can be seen more clearly. The general form of the time-varying location
and scale parameters is expressed as linear functions of time: pu; = pot + p1, or = oot + o1,
where t represents time, and pg, p1, 09,01 are parameters to be estimated. The nonstationary
parameter estimation results for the rainfall (mm) and air temperature (°C) data are presented
in Table 5.
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Table 5: Estimated values of distribution parameters of rainfall data (mm) and air temperature (°C)

Parameter values of the fminsearch algorithm

Data Distribution A
i 5 é
Normal 0.6800t + 390.5624 163.1750 -
0.5567t 4+ 399.9393  0.3156t¢ + 137.6182 -
Rainfall (mm) GEV 0.4572t 4- 331.8594 127.9178 0.0129
0.4893t + 329.7612  0.1569¢ 4+ 115.8374  0.0067
Loenormal 0.0014¢ + 5.9183 0.3631 -
& 0.0014t + 5.9196 0.0001¢ + 0.3596 -
Normal 0.0187¢ + 26.2382 0.3910 -
0.0186¢ + 26.2473 0.0002¢ + 0.3787 -
Air temperature (°C) GEV 0.0184¢ 4 26.0970 0.3459 —0.1182
0.0181¢ + 26.0987 0.0005¢ 4 0.2958 0.0032
0.0007t 4 3.2683 0.0139 -
Lognormal

0.0007t + 3.2683 0.0000¢ + 0.0139 -

The stationary distribution parameter estimation results obtained using the fminsearch
algorithm in Table 5 will be compared with the stationary distribution parameter estimation
results also calculated using the same algorithm in Table 3. This comparison assesses and
determines the best distribution model between the two results. Once the best model is
determined, the results will be visualized graphically to represent how the best distribution
model reflects the data pattern.

3.4 Comparison of Parameter Results

The estimated distribution parameters calculated using the fminsearch algorithm are evaluated
using the AIC to determine the best model or distribution parameters. The main principle in
this evaluation is that the model with the lowest AIC value is considered the best, as it indicates
that the model has an optimal balance between complexity and fit to the data. The results of
the AIC values of the normal distribution, GEV distribution, and lognormal distribution with
stationary and nonstationary distribution parameters estimated by the fminsearch algorithm on
rainfall (mm) and air temperature (°C) data are shown in Table 6.

Table 6: AIC value on rainfall (mm) and air temperature (°C) data

Parameter type Distribution Number of parameters Rainfall (mm) Air temperature (°C)
Normal 2 2028.6000 419.6600
Stationary GEV 3 2006.2000 411.3600
Lognormal 2 2002.8800 417.5000
Normal 3 2025.2000 154.7600
Normal 4 2024.2000 156.6540
Nonstationary GEV 4 2004.7400 148.1880*
GEV 5 2005.8800 152.1760
Lognormal 3 2000.3400* 149.9900
Lognormal 4 2002.3200 151.9900

*Lowest AIC value

Based on Table 6, the lognormal distribution model with three parameters has the smallest
AIC value (2000.3400) for rainfall data. The GEV distribution model with four parameters
has the smallest AIC value (148.1880) for air temperature data. These results show that the
3-parameter lognormal model is most suitable for rainfall data, and the 4-parameter GEV model
is most appropriate for air temperature data in Jakarta in the 1864-2020 period compared to
other models.
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3.5 Visualization of the Best Distribution

The best distribution model based on the AIC value is visualized through the probability density
function (pdf) graph for rainfall and air temperature data. The pdf graph for rainfall is depicted
with a 3-parameter lognormal model, while for air temperature, it is depicted with a 4-parameter
GEV model. These graphs illustrate the distribution of historical rainfall and air temperature
data in Jakarta in various years, as shown in Figure 1.

(a) Rainfall data (b) Air temperature data
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Figure 1: Pdf distribution graph of (a) rainfall data and (b) air temperature data

Based on Figure 1, the pdf curves show that the lognormal and GEV models can model
rainfall variations from historical years (1870, 1920, 1970) to future predictions (2030). The
rainfall curve shifts to the right, indicating increased rainfall over time. The peak of the rainfall
distribution in 1870 was about 400 mm per year, but the peak became flatter and shifted to
the right in subsequent years. This indicates that extreme rainfall events are becoming more
frequent. The distribution curve on the air temperature graph shows a consistent rightward
shift, with the shape of the graph remaining the same from year to year. This indicates that the
variation is constant, with the annual average temperature continuing to increase.

In addition to the pdf graph, the best distribution model based on the AIC value is also
visualized through quartile and average graphs for rainfall and air temperature data. This graph
displays three trend lines: the average, Q1 and Q3 (lower quartile 25% and upper quartile 25%),
and QO and Q4 (lower limit 9% and upper limit 91% of the data). The quartile and mean graphs
for rainfall use a 3-parameter lognormal model, while that for air temperature uses a 4-parameter
GEV model. This visualization provides a more comprehensive picture of the distribution of
rainfall data in Jakarta from 1864-2030, as shown in Figure 2.

(a) Rainfall data (b) Air temperature data
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Figure 2: Quartile and mean distribution graphs of (a) rainfall data and (b) air temperature data
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Based on Figure 2, the graph shows three trend lines: blue for the average, red for Q1 and
Q3, and green for Q0 and Q4. The rainfall graph shows a slight increase in the average trend,
with the distance between the red and green lines getting wider. This indicates an increase in
rainfall variability over time. The increasing Q4 line indicates an increase in extreme rainfall,
while the QO line remains stable, indicating low rain is still occurring. The average trend in the
air temperature graph is increasing, with an average temperature in 2020 of more than 29°C.
It can be predicted that the average air temperature in the next ten years will be greater than
the average in 2020. The distance between the red and green lines is constant, indicating stable
air temperature variability. Some outlier points on both graphs indicate extreme rainfall and
temperature events in some years.

Thus, the distribution estimation results using the fminsearch algorithm are suitable for
describing the distribution of rainfall and air temperature data in Jakarta from 1864 to 2020
and can be used to predict future rainfall and air temperature in Jakarta. Rainfall and air
temperature in Jakarta in the future, namely until 2030, are expected to experience increased
variations in precipitation and average air temperature. By conducting appropriate adaptation
and mitigation planning in Jakarta, the impacts of extreme climate change from rainfall and air
temperature that occur in the future can be minimized.

These findings align with previous studies such as [13] and [15], which emphasize the
importance of nonstationary modeling for climate extremes. The ability of the lognormal and
GEV distributions to capture the increasing variability and extremity of rainfall and temperature,
respectively, suggests the necessity of adaptive planning. These results can support the formulation
of climate adaptation policies and disaster risk management strategies in Jakarta.

4 Conclusion

The parameter estimation conducted using the fminsearch algorithm yields results for the
stationary distribution parameters that closely align with those derived from the maximum
likelihood estimation (MLE) method. The minimal deviation between the two methods is lower
than 1075, while the most significant observed difference reaches 5.3760. These slight variations
indicate that both fminsearch and MLE approaches offer similar levels of accuracy in estimating
stationary distribution parameters.

The estimates generated using the fminsearch algorithm were leveraged for the nonstationary
distribution parameters to identify the best-fitting distribution based on the Akaike Information
Criterion (AIC). The selection criterion, which favors models with the lowest AIC, revealed that
the optimal distribution for modeling rainfall data is the 3-parameter lognormal distribution,
with an AIC value of 2000.3400. For air temperature data, the best distribution is a 4-parameter
model, resulting in an AIC value of 148.1880.

These results highlight the effectiveness of the fminsearch algorithm in accurately estimating
time-varying distribution parameters and identifying optimal models for climate data. These
results may support the development of adaptive strategies for climate risk management in
Jakarta. Future research may explore multivariate time-varying modeling or the inclusion of
large-scale climate indices to enhance predictive capability.
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