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Abstract

This study discusses a comparison between two optimization methods, Newton–Raphson and Stochas-
tic Gradient Descent (SGD), in binary logistic regression modeling to analyze the severity of traffic
accidents in Malang Regency. Parameter estimation was carried out using both methods to assess
their effectiveness in achieving convergence and producing a well-fitted model. The results show
that the Newton–Raphson method failed to achieve convergence despite its fast iteration speed, while
the SGD method successfully converged, although it required a large number of iterations. Model
evaluation was conducted by examining model fit through log-likelihood values and the Akaike In-
formation Criterion (AIC). The results indicate that the SGD method produced a better-fitting model
compared to Newton–Raphson. Additionally, the regression models from each method identified
different predictor variables as significant, suggesting that the choice of optimization approach can
influence analytical outcomes. These findings highlight the importance of selecting an appropriate
optimization method in logistic regression analysis, particularly for complex and imbalanced acci-
dent data.
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1 Introduction

Transportation plays a crucial role in interregional interaction and underpins regional development [1].
In Indonesia, advances in this sector have paralleled the expansion of road infrastructure and the rise in
motor vehicle ownership. Malang Regency, in particular, has experienced rapid growth in its economy,
tourism, and education sectors, with its population reaching 2,663,862 by 2023 [2]. Such growth has
driven increases in mobility and traffic density, resulting in longer travel times, higher pollution levels,
chronic congestion, and elevated accident risk [3]. High traffic density exacerbates congestion and acci-
dent risk, especially in single-vehicle crashes, which frequently result in fatalities [4]. According to the
Directorate General of Land Transportation, traffic accidents are classified into four severity categories:
fatal, serious injury, minor injury, and property damage only (PDO) [5]. In Malang Regency, the persis-
tently high accident rate underscores the need for improvements in the transportation system. In 2022,
783 traffic accidents were recorded, and in 2023 there were 906 casualties, comprising 182 fatalities, 13
serious injuries, and 1,294 minor injuries [2].
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Previous studies [6] highlight that accident severity is influenced by factors such as traffic density,
driver behavior, and weather conditions that affect visibility and vehicle control. Moreover, [7] point
out that novice drivers’ lack of experience significantly increases crash risk, as they often have not fully
mastered driving techniques or emergency decision-making. To uncover the factors that contribute to
accident occurrence, precise analysis of accurate data is essential. [8] argue that police-reported crash
data form the foundation for understanding accident patterns and injury severity distributions. This study
analyzes traffic accident records from the Malang District Police covering the period 2020–2024. A
widely used approach for modeling such discrete outcome data is the binary logit model, which has
proven effective in crash severity analysis [9]–[11]. For instance, [12] demonstrated that a binary logit
framework can successfully identify relationships between contributing factors and accident risk lev-
els. Accordingly, this research employs a binary logistic regression model to examine the severity of
traffic accidents, enabling the assessment of how various independent variables influence the dependent
variable, accident severity [13].

The accuracy of any logistic model hinges on the parameter estimation technique. A commonly
adopted method is maximum likelihood estimation (MLE), which seeks parameter values that maxi-
mize the likelihood function representing the probability of the observed data under those parameters
[14]. Since the maximization of a likelihood function rarely yields closed-form solutions, numerical op-
timization techniques are required [15]. Two prevalent algorithms are Newton–Raphson and Stochastic
Gradient Descent (SGD). Newton–Raphson leverages both first (gradient) and second (Hessian) deriva-
tives to iteratively approach the likelihood maximum, but can fail to converge if initial parameters are
poorly chosen or if the likelihood surface exhibits plateaus, extreme values, or Hessian singularities.
SGD minimizes the negative log-likelihood through iterative, sample-based gradient updates, offering
scalability at the expense of slower convergence. The convergence rate, the speed at which an algorithm
attains an acceptably accurate solution, is influenced by problem convexity, smoothness, and imposed
constraints [16], [17].

Given the pivotal role of estimation method selection in binary logistic modeling, this research pro-
vides novel contributions by systematically comparing the performance of Newton–Raphson and SGD
algorithms in analyzing traffic accident severity. The study’s originality lies in its empirical evaluation of
these optimization techniques within the context of Indonesia’s rapidly developing transportation land-
scape, particularly in Malang Regency where accident patterns remain understudied. The outcomes are
expected to yield recommendations for the most efficient parameter estimation approach in crash severity
studies and inform more effective traffic safety strategies, while also addressing the methodological gap
in algorithm selection for transportation research in developing regions.

2 Methods

This study employs a binary logistic regression model to examine the factors influencing traffic accidents.
The binary logistic regression framework is chosen because it is well-suited for handling a dichotomous
dependent variable, here coded as (1) for serious injury/fatality and (0) for minor injury. The model links
the probability of an event to the independent variables via the logit function. The general form of the
binary logistic regression equation is given by [18], [12]:

logit(pi) = β0 +β1Xi1 +β2Xi2 + · · ·+βpXip, (1)

where:
• β0: intercept.
• β1,β2, . . . ,βp: regression coefficients for the independent variables.
• Xi1,Xi2,Xi3, . . . ,Xip: variabel independen atau prediktor untuk observasi ke-i.
Next, before computing Eq. 1, all data obtained were encoded via one-hot encoding to transform

categorical predictors into numerical form. From equation Eq. 1, the probability p of an accident event,
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assuming the parameters β0,β1, . . . ,βp = 0, is given by:

Prob(p) =
elogit(pi)

1+ elogit(pi)
. (2)

Once the probability p is obtained, the next step is to estimate the parameter vector β0,β1, . . . ,βp

using the Maximum Likelihood Estimation (MLE) approach. The corresponding log-likelihood function
for n observations is:

L(β ) =
n

∑
i=1

[Yiηi − ln(1+ eηi)] . (3)

With:
• Yi : Binary response variable for observation i.
• ηi : β0 +β1X1i +β2X2i + · · ·+βpXip.
Since Eq. 3 cannot be solved explicitly, optimization methods are used: Newton-Raphson and Stochas-

tic Gradient Descent (SGD).
a. Newton-Raphson. This method utilizes the first and second derivatives of the log-likelihood

function. The first and second derivatives are:
∂L(β )

∂βk
=

n

∑
i=1

Xik(Yi − pi), for k = 0,1, . . . , p (4)

∂ 2L(β )
∂βk∂β j

=−
n

∑
i=1

XikXi j pi(1− pi), for j = 0,1, . . . , p (5)

in matrix form, Eq. 4 and Eq. 5 become:

∂L(β )
∂β

= X⊤(Y −P). (6)

∂ 2L(β )
∂βk∂β j

=−X⊤V X . (7)

Therefore, the parameter update rule is given by:

β̂
(k+1) = β̂

(k)+
(
−X⊤V X

)−1
X⊤(Y −P). (8)

b. Stochastic Gradient Descent (SGD). This method uses only the negative gradient of the log-
likelihood function. Before applying this method, the dataset is shuffled randomly to avoid model
bias from fixed sequences. The parameter update rule is:

β̂
(i+1) = β̂

(i)−α

(
−

n

∑
i=1

Xik(Yi − pi)

)
mini-batch

. (9)

Here, α is the learning rate (set to 0.0001) and the mini-batch size is 64. Iteration stops when
convergence is achieved:

|β̂ (i+1)− β̂
(i)|< ε, where ε = 10−6

After the iteration is completed, several tests will be conducted, namely:
a. Logistic Regression Model Fit Test. The model fit test is used to evaluate whether the model is

appropriate for the data, i.e., whether the observed values obtained are the same or close to the
expected values from the model. In logistic regression, the method for testing model adequacy is
measured using the chi-square value through the Hosmer and Lemeshow test. This test observes
the Goodness of Fit (GoF), which is measured using the chi-square value at α = 5% significance
level. The statistical test used is the chi-square test based on the following equation: [18]

Ĉ =
g

∑
k=1

(Ok −n′kπ̄k)
2

n′kπ̄k(1− π̄k)
. (10)

With:
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Ok : Observed frequency in group k.

π̄k : Average predicted probability in group k.

n′k : Number of observations in group k.

g : Number of groups

Hypotheses:
• H0: The model fits the data well.
• H1: The model does not fit the data well.

Decision Rule:
• If p-value > α = 0.05, accept H0 (model fits well).
• If p-value < α = 0.05, reject H0 (poor fit).

b. McFadden’s Pseudo R2 Test. This test is conducted to determine and predict the extent or im-
portance of the contribution made by the independent variables collectively toward the dependent
variable. The value of the coefficient of determination ranges from 0 to 1. If the value approaches
1, it means the independent variables provide nearly all the information needed to predict the de-
pendent variable. Conversely, if the R² value is low, it means the independent variables’ ability to
explain the dependent variable is quite limited. The statistical test used is: [19]

R2 = 1− LLmodel

LLnull
. (11)

With:

LLmodel : Log-likelihood with predictors.

LLnull : Log-likelihood without predictors.

c. Partial Test for Parameter Significance. Partial Test to Examine the Significance of Each Pa-
rameter in the Model (Wald Test). This test aims to determine whether each independent variable
significantly affects the probability of an event occurring . The commonly used significance level
is α = 5%. The statistical test used is: [19]

W 2 =
β 2

i

SE(βi)2 . (12)

Hypotheses:
• H0: Variable Xi has no significant effect on Y .
• H1: Variable Xi has a significant effect on Y .

Decision Rule:
• If p-value < 0.05, reject H0.
• If p-value ≥ 0.05, accept H0.

d. Coefficient Interpretation Test. Interpretation of Parameter Coefficients. This test aims to under-
stand the effect of predictor variables. If the odds ratio > 1, the likelihood of the event increases
with an increase in variable x. If the odds ratio < 1, the likelihood of the event decreases with a
change in x. The statistical test used is: [20]

OR =
oddsA

oddsB
=

πA/(1−πA)

πB/(1−πB)
. (13)

With:

oddsA : Probability of occurrence when variable = 1.

oddsB : Probability of occurrence when variable = 0.
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e. AIC (Akaike Information Criterion) Test. This comparison aims to evaluate model performance
based on the Akaike Information Criterion (AIC) index using two different optimization methods:
Newton-Raphson and Stochastic Gradient Descent (SGD). A lower AIC value indicates a more
preferred model. In other words, the best model is the one with the smallest AIC value [21]. The
AIC formula is as follows: [22]

AIC = 2k−2ln(L). (14)

Description:
k = Number of parameters in the model.
L = Maximum value of the likelihood function for the model.

This study analyzes traffic accident records obtained from the Malang Regency Police Department
spanning the years 2022 to 2024, encompassing a total of 3,977 documented cases. The investigation
examines multiple factors potentially associated with accident severity, which are categorized and de-
scribed in detail below:

Table 1: Researched variables

Variable Name Scale Description Variable Name Scale Description

Accident Type (Y ) 0 Minor injury Gender (X1) 1 Male
1 Seriously injured or

dead
2 Female

Age (X2) 1 < 18 years Education (X3) 1 Primary School
2 18–30 years 2 Middle School
3 31–50 years 3 High School
4 > 51 years 4 Higher Education
5 Other 5 Other

Jobs (X4) 1 Civil Servant Vehicle Types (X5) 1 2-wheel
2 Soldier 2 3-wheel
3 Police 3 4-wheel
4 Employee 4 > 4-wheel
5 Student Driving Licenses (X6) 1 Do Not Have
6 College Student 2 Have
7 Driver Weather (X7) 1 Rainy
8 Trader 2 Shine
9 Farmer

10 Labor
11 Other

Road Types (X8) 1 Arterial Region Level (X10) 1 National
2 Collector 2 Province
3 Local 3 Cities
4 Toll 4 District
5 Neighborhood 5 Village

Scene (X9) 1 Settlement Day of Incident (X12) 1 Monday
2 Urban 2 Tuesday
3 Market 3 Wednesday
4 Tourist Attraction 4 Thursday
5 Entertainment

Venues
5 Friday

6 Other 6 Saturday
7 Sunday

Time of Incident (X11) 1 1 am–6 am Month of Incident (X13) 1 January
2 6.01 am–12 pm 2 February
3 12.01 pm–6 pm 3 March
4 6.01 pm–12 am 4 April

5 May
6 June
7 July
8 August
9 September
10 October
11 November
12 December
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3 Results and Discussion

The traffic accident data were obtained from the Malang District Police (Polres Kabupaten Malang) cov-
ering the period from 2022 to 2024. The dataset consists of 13 predictor variables and 3,977 respondents.
A portion of the raw data is presented below:

Table 2: Data of traffic accidents from 2022 to 2024
Respondent Gender Age Education Occupation · · · Accident Category

1 Female Other Junior High School Student · · · Minor Injury
2 Male 31–50 Higher Education Police Officer · · · Minor Injury
3 Male > 51 Junior High School Merchant · · · Serious Injury
...

...
...

...
...

. . .
...

3799 Male 18–30 Senior High School Police Officer · · · Serious Injury

The above data were then transformed using one-hot encoding into matrix form. The resulting matrix
X can be represented as:

X =



1 0 1 0 0 1 0 · · · 0
1 1 0 0 1 0 0 · · · 0
1 1 0 0 0 1 0 · · · 0
1 0 1 0 0 0 1 · · · 0
...

...
...

...
...

...
...

. . .
...

1 0 0 0 0 0 0 · · · 0


Each row of matrix X corresponds to a respondent, and each column represents a binary indicator

for a particular category of the predictor variables (e.g., gender, age group, education level, etc.). Next,
parameter estimation is conducted using different optimization techniques.

3.1 Newton-Raphson Optimization Method

Although Eq. 3 cannot be solved explicitly, the Newton-Raphson method is applied by referring to Equa-
tion Eq. 8. The first iteration result is obtained using the Newton-Raphson optimization method, assum-
ing that the initial values of the parameters β0,β1,β2, . . . ,β13 are all set to 0. The result is as follows:

β̂2 =



0
0
0
0
0
0
...
0
0


+



−1.25 1.05 −2.72 0.53 2.72 7.11 −2.86 · · · 5.71
8.28 −1.01 1.34 −0.53 −1.38 −2.45 2.48 · · · 1.13
2.33 −5.16 6.69 −1.98 −6.69 −2.91 1.84 · · · −1.09
−1.85 2.37 −3.79 −4.00 5.24 2.22 −9.08 · · · 0.41
−2.33 5.16 −6.69 1.98 6.69 2.91 −1.84 · · · 1.09
−5.19 6.71 −3.27 2.16 3.27 −1.25 −6.12 · · · −1.71
9.06 −5.55 1.38 0.40 1.78 4.08 2.04 · · · −2.84

...
...

...
...

...
...

...
. . .

...
1.69 −1.38 −2.39 6.53 −4.08 −0.54 −0.27 · · · −5.71





−1451.5
0

−485
0

−584
−321
−353

...
−78.5


=



−1.47363961
−0.01103663
−0.01906851

0.0040346
0.08204725
−0.02644057

0.0508358
...

−0.01664946


The next step involves checking the convergence criterion:

∣∣∣logL(β̂n+1)− logL(β̂n)
∣∣∣ < 10−6. The

resulting value is 2.297784 > 10−6, indicating that the iteration has not yet converged and further iter-
ations are required. In the subsequent iterations, the parameter estimates were computed using Python
software, and the results are as follows:

Table 3 shows that from the 16th iteration onward, the result of
∣∣∣logL(β̂n+1)− logL(β̂n)

∣∣∣ remains

constant at 2.236068, and since 2.236068 > 10−6, this indicates that the Newton-Raphson method did
not achieve convergence.

3.2 Stochastic Gradient Descent (SGD) Optimization Method

Just like the Newton-Raphson method, Eq. 3 cannot be solved explicitly. Therefore, the Stochastic
Gradient Descent (SGD) method is applied by referring to Eq. 9, with a learning rate of α = 0.0001
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Table 3: Newton-Raphson algorithm result

Iteration
∣∣∣logL(β̂n+1)− logL(β̂n)

∣∣∣ Log likelihood

1 2,297784 1.596,043306
2 2,027119 1.546,439964
...

...
...

16 2,236068 1.544,302243
17 2,236068 1.544,302243

and a mini-batch size of 64. Prior to applying the SGD method, the design matrix X must be randomly
shuffled. The shuffled matrix Xrandom shuffle is as follows:

Xrandom shuffle =


1 0 1 · · · 0
1 0 0 · · · 0
1 0 0 · · · 1
...

...
...

. . .
...

1 0 0 · · · 0


The result of the first iteration using the SGD optimization method is as follows:

β̂
(1)
2 =



0
0
0
0
0
...
0


−0.001 ·



2161.7
0

7184.8
8690.8
4666.9

...
2284.4


=



−2.1617
0

−7.1848
−8.6908
−4.6669

...
−2.2844


Next, convergence is evaluated using the condition: | logL(β̂n+1)− logL(β̂n)|< 10−6. The obtained

value is 0.004627 > 10−6, indicating that the algorithm has not yet converged, and further iterations are
required. The subsequent iteration results, obtained using Python software, are presented in the following
table.

Table 4: Stochastic gradient descent algorithm result

Iteration
∣∣∣logL(β̂n+1)− logL(β̂n)

∣∣∣ Log likelihood

1 0,004627 1.597,130753
51 0,001751 1.551,329936

101 0,001684 1.548,934941
151 0,002607 1.547,943000

...
...

...
83.951 0,000048 1.545,498095

The table above shows that convergence was achieved after 83,951 iterations—a relatively large
number of iterations. The value of

∣∣∣logL(β̂n+1)− logL(β̂n)
∣∣∣ = 0.000048 satisfies the convergence cri-

terion, since 0.000048 < 10−6. This indicates that the Stochastic Gradient Descent (SGD) method has
successfully achieved convergence.

3.3 Model Fit Test

The model fit can be evaluated using Eq. 10 , and the results are presented in the following table:
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Table 5: Hosmer and lemeshow test

Method Chi-square df Sig.

NR 15,51 54 0,2722
SGD 15,51 54 0,3488

The table above shows that the p-values of the Hosmer and Lemeshow goodness-of-fit test for both
methods are greater than the significance level α = 0.05. Therefore, the null hypothesis H0 is accepted,
indicating that the model is able to adequately predict the observed values, or in other words, the model
is considered to have a good fit.

Table 5 shows that the p-values of the Hosmer and Lemeshow goodness-of-fit test for both methods
are greater than the significance level α = 0.05. Therefore, the null hypothesis (H0) is accepted, indicat-
ing that the model is capable of adequately predicting the observed values. In other words, the model is
considered to have a good fit.

3.4 Coefficient of Determination Test

The coefficient of determination test was conducted using Eq. 11, and the results are shown in the fol-
lowing table:

Table 6: Coefficient of determination Test

Method LLModel LLnull Pseudo R2

NR -1.544,302 -1.574,2 0,019005
SGD -1.545,498 -1.574,2 0,018246

The Pseudo R2 values in Table 6 indicate that the Newton-Raphson (NR) method yields a value of
0.019, while the Stochastic Gradient Descent (SGD) method produces a value of 0.018. These values
suggest that approximately 1.9% and 1.8% of the variability in the occurrence of accidents (as the de-
pendent variable) can be explained by the independent variables included in each model. In other words,
the predictors used in the models contribute only modestly to the variation in accident occurrences. The
remaining 98.1% to 98.2% of the variability is likely attributable to other factors not accounted for in the
current models.

3.5 t-Test

The results of the significance test of independent variables on the dependent variable using the Newton-
Raphson (NR) method are presented in Table 7.

Based on the results of the t-test in Table 7 , with the NR method, the independent variable that
significantly affects the dependent variable is the occupation variable in the student category, represented
by X4(5), with a significance value of 0,022 < 0,05. Therefore, the null hypothesis H0 is rejected and the
alternative hypothesis H1 is accepted, indicating that occupation significantly influences traffic accidents.
From these results, a binary logistic regression model can be formed as follows:

ln
(

P(y = 1)
1−P(y = 1)

)
NR

= β0 +β4X4(5) =−1,8960−0,5832X4.

Description:
• β0: intercept,
• β4X4(5): variable representing occupation in the student category.
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Table 7: Parameter estimation of the NR and SGD Method

Modifier Category Coefficient Parameter Estimation p-Value

NR SGD NR SGD

Constant - β0 -1.8960 -1.9991 0.000 0.001
Gender 1 - Category as a comparison

2 β1X1(1) -0.0242 -0.0228 0.809 0.820
Age 1 - Category as a comparison

2 β2X2(1) -0.0403 0.0098 0.824 0.957
3 β2X2(2) 0.0087 0.0531 0.964 0.785
4 β2X2(3) 0.1706 0.2128 0.359 0.258
5 β2X2(4) -0.0632 0.0085 0.823 0.976

Education 1 - Category as a comparison
2 β3X3(1) 0.1132 0.1848 0.667 0.408
3 β3X3(2) -0.0250 0.0346 0.910 0.878
4 β3X3(3) -0.3416 -0.2890 0.246 0.332
5 β3X3(4) 0.1350 0.2181 0.712 0.552

Jobs 1 β3X3(1) -0.6888 -0.7982 0.262 0.215
2 β3X3(2) -19.0213 -0.4683 0.999 0.774
3 β3X3(3) 1.2262 10.829 0.106 0.160
4 β3X3(4) -0.0706 0.0665 0.536 0.561
5 - Category as a comparison
6 β4X4(5) -0.5832 -0.5406 0.022 0.032
7 β4X4(6) -28.1361 -0.1003 1.000 0.975
8 β4X4(7) -18.2557 -0.4009 0.999 0.815
9 β4X4(8) -1.5170 -13.002 0.139 0.162
10 β4X4(9) -28.5053 -0.1320 1.000 0.962
11 β4X4(10) -0.0242 -0.0244 0.941 0.941

Vehicle Types 1 - Category as a comparison
2 β5X5(1) 0.0000 0.0000 0.000 0.000
3 β5X5(2) 0.0173 0.0227 0.901 0.870
4 β5X5(3) 0.1188 0.1223 0.532 0.520

Driving Licenses 1 β6X6(1) 0.0376 0.0421 0.743 0.713
2 - Category as a comparison

Weather 1 β7X7(1) -0.0274 -0.0257 0.801 0.814
2 - Category as a comparison

Road Types 1 - Category as a comparison
2 β8X8(1) -0.0274 0.0443 0.670 0.644
3 β8X8(2) 0.1751 0.2025 0.746 0.712
4 β8X8(3) -0.4142 -0.4161 0.227 0.226
5 β8X8(4) -17.8845 -0.2546 0.999 0.902

Scene 1 - Category as a comparison
2 β9X9(1) -0.2329 -0.2483 0.148 0.124
3 β9X9(2) 0.4330 0.3874 0.123 0.171
4 β9X9(3) 0.2463 0.2063 0.753 0.796
5 β9X9(4) 0.0000 0.0000 0.000 0.000
6 β9X9(5) 0.2285 0.2076 0.148 0.322

Region Level 1 - Category as a comparison
2 β10X10(1) 0.2367 0.2646 0.109 0.072
3 β10X10(2) 0.0000 0.0000 0.000 0.000
4 β10X10(3) 0.0412 0.0471 0.697 0.657
5 β10X10(4) 0.0391 0.0518 0.943 0.925
6 β10X10(5) -0.0095 -0.0133 0.944 0.922
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Modifier Category Coefficient Parameter Estimation p-Value

NR SGD NR SGD

Time of Incident 1 β11X11(1) -0.0095 -0.0133 0.944 0.922
2 - Category as a comparison
3 β11X11(2) 0.0225 0.0215 0.854 0.861
4 β11X11(3) -0.1811 -0.1769 0.164 0.174

Day of Incident 1 β12X12(1) 0.2275 0.2218 0.110 0.119
2 β12X12(2) -0.0155 -0.0583 0.744 0.712
3 β12X12(3) 0.1680 0.1660 0.350 0.355
4 β12X12(4) 0.1193 0.1153 0.480 0.495
5 β12X12(5) -0.0708 -0.0843 0.766 0.723
6 - Category as a comparison
7 β12X12(6) 0.1808 0.1724 0.253 0.275

Month of Incident 1 β13X13(1) 0.2000 0.1886 0.434 0.459
2 β13X13(2) 0.0425 0.0320 0.872 0.903
3 β13X13(3) 0.0556 0.0470 0.830 0.856
4 β13X13(4) 0.1585 0.1523 0.529 0.544
5 β13X13(5) 0.2342 0.2347 0.371 0.368
6 β13X13(6) -0.2679 -0.2981 0.312 0.261
7 β13X13(7) 0.1793 0.1710 0.478 0.497
8 β13X13(8) -0.2950 -0.3101 0.250 0.226
9 β13X13(9) -0.0429 -0.0509 0.862 0.836
10 β13X13(10) -0.2875 -0.3098 0.267 0.231
11 β13X13(11) -0.1392 -0.1590 0.604 0.553
12 - Category as a comparison

In the SGD (Stochastic Gradient Descent) method, the variable that significantly affects the depen-
dent variable is the regional level with the province as its category, represented by X10(1), with a signifi-
cance value of 0,072 < 0,05. Thus, the null hypothesis H0 is rejected and the alternative hypothesis H1
is accepted, indicating that the regional level significantly influences traffic accidents. Based on these
results, a binary logistic regression model can be constructed as follows:

ln
(

P(y = 1)
1−P(y = 1)

)
SGD

= β0 +β10X10(1) =−1,9991+0,2646X10.

Description:
• β0: intercept,
• β10X10(1): variable representing the regional level with province as its category.
Parameter estimation in the binary logit model has been conducted using two optimization meth-

ods: Newton-Raphson and Stochastic Gradient Descent (SGD). The analysis indicates that the Newton-
Raphson method failed to converge, although it converges faster in terms of iteration speed. On the other
hand, the SGD method achieved convergence, albeit requiring many more iterations. Based on the AIC
value, SGD provides a better model fit than Newton-Raphson in analyzing traffic accident data in Malang
Regency, although the difference is not substantial.

Therefore, future studies aiming to develop multiclass classification models are encouraged to use
larger and more balanced datasets. Techniques such as oversampling, undersampling, or other resam-
pling methods are recommended to improve the representativeness and accuracy of the results. Addi-
tionally, to enhance the efficiency and accuracy of the SGD optimization method, it is recommended to
incorporate convergence acceleration techniques such as momentum, Nesterov Accelerated Gradient, or
Quasi-Hyperbolic Momentum to speed up the convergence process.
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3.6 Interpretation Test of Parameter Coefficients

Based on the estimation results using the Newton-Raphson (NR) method, the occupation variable with
the student category has a coefficient of β4 = −0.5832, which is negative. This indicates that being a
student reduces the likelihood of being involved in a traffic accident compared to the reference category,
which is "school student". The odds ratio can be calculated as eβ4 = e−0.5832 ≈ 0.558, meaning that
students have a 55.8% chance of being involved in an accident compared to school students, or a 44.2%
lower probability.

Conversely, the estimation result using the Stochastic Gradient Descent (SGD) method shows that
the region level variable with the province category has a coefficient of β10 = 0.2646, which is positive.
This indicates that the likelihood of accidents is higher in provincial regions compared to the national
level as the reference category. The corresponding odds ratio is e0.2646 ≈ 1.303, implying that the acci-
dent probability increases by approximately 30.3% in provincial regions compared to national regions,
assuming other variables are held constant.

3.7 Akaike Information Criterion (AIC) Tests

The parameter estimation results show that the SGD method yields an AIC value of 3198.60 and a log-
likelihood of -1544.30, while the NR method yields an AIC of 3201.93 and a log-likelihood of -1545.97.
Since the AIC value from SGD is lower and the log-likelihood is higher than those from NR, it can be
concluded that the SGD optimization method provides a better model fit in analyzing traffic accidents in
Malang Regency.

4 Conclusion

Parameter estimation in the binary logit model has been conducted using two optimization methods:
Newton-Raphson and Stochastic Gradient Descent (SGD). The analysis indicates that the Newton-Raphson
method failed to converge, although it converges faster in terms of iteration speed. On the other hand,
the SGD method achieved convergence, albeit requiring many more iterations. Based on the AIC value,
SGD provides a better model fit than Newton-Raphson in analyzing traffic accident data in Malang
Regency, although the difference is not substantial. Therefore, future studies aiming to develop multi-
class classification models are encouraged to use larger and more balanced datasets. Techniques such as
oversampling, undersampling, or other resampling methods are recommended to improve the represen-
tativeness and accuracy of the results. Additionally, to enhance the efficiency and accuracy of the SGD
optimization method, it is recommended to incorporate convergence acceleration techniques such as mo-
mentum, Nesterov Accelerated Gradient, or Quasi-Hyperbolic Momentum to speed up the convergence
process.
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