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Abstract

The extreme volatility of Bitcoin prices poses substantial challenges for accurate forecasting.
While ARIMA models are effective for capturing linear dependencies, they often fail to
account for non-linear structures; conversely, LSTM networks model non-linearity well but
are prone to overfitting in noisy financial series. This study evaluates six model configurations
standalone ARIMAX, standalone LSTM, and four hybrid ARIMA/ARIMAX-LSTM models
applied to daily Bitcoin closing prices from 2015 to 2024. These models are tested under
two partitioning strategies: single-split and two-stage split. Out-of-sample results show
that the hybrid ARIMA-LSTM using a two-stage split achieves the lowest forecasting error,
with a MAPE of 2.60%, outperforming all other variants. The findings underscore the
importance of residual structure and temporal partitioning in hybrid model performance,
offering practical insights for designing more robust time series forecasting pipelines in volatile
financial contexts.
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1 Introduction
The volatile nature of cryptocurrency markets, particularly Bitcoin the most dominant and
liquid digital asset has attracted growing academic and practical interest due to its extreme price
fluctuations and speculative behavior [1], [2]. Accurately forecasting such assets poses a major
challenge, as price dynamics are shaped by nonlinear interactions involving investor sentiment,
regulation, macroeconomic signals, and technology shifts [3].

Traditional models like ARIMA effectively capture linear temporal dependencies but struggle
with regime shifts and nonlinearities typical in crypto markets [4], [5]. In contrast, LSTM
networks have emerged as powerful tools for capturing complex temporal dependencies and
nonlinear dynamics [6], [7]. Prior studies have shown LSTM outperforming ARIMA in Bitcoin
forecasting, with hybrid models improving accuracy by combining both approaches [8], [9].

However, most works overlook the influence of residual structure especially under different
data-splitting strategies on hybrid model performance. Residuals, defined as the deviation
between actual and linear model outputs, form the core learning signals for LSTM. If residuals
retain meaningful structure, LSTM can enhance forecasts. If not, hybrid models underperform.

This study fills that gap by examining how split strategies affect residual learnability and
hybrid effectiveness. Table 1 highlights recent related work and their performance.
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Table 1: Comparison of Previous Studies on Time Series Forecasting Models

Study Model(s) Split Strategy Best MAPE (%)

Adu et al. (2023) ARIMA vs ARIMAX Single 7.07 / 6.94
Latif et al. (2023) ARIMA vs LSTM Single 19.6 / 7.8
Dave et al. (2021) ARIMA, LSTM, Hybrid Single 15.3 / 8.2 / 6.1
This Study ARIMAX, LSTM, Hybrid Single & Two-Stage TBD

Figure 1 illustrates the six model configurations: standalone LSTM and ARIMAX, and four
hybrids (ARIMA/ARIMAX with LSTM under single and two-stage splits). We evaluate these
models on Bitcoin daily price data from 2015–2024 to understand how residual structure and
temporal partitioning influence forecasting performance.

Figure 1: Model Configurations: Standalone and Hybrid Architectures with Different Splitting Strategies

The remainder of this paper is organized as follows. Section 2 describes the data preparation,
modeling procedures, and hybrid configurations. Section 3 presents the experimental results and
discusses their implications. Finally, Section 4 concludes the study with key findings and future
directions.

2 Methods
This section details the end-to-end modeling process used in the study. It begins by describing
the dataset and preprocessing steps, followed by a comprehensive explanation of model architec-
tures, data partitioning strategies, and evaluation metrics applied to compare the forecasting
performance of the proposed configurations.

2.1 Data Collection and Preparation

This study utilizes daily historical Bitcoin (BTC) closing price data from Yahoo Finance, spanning
from January 1, 2015, to December 31, 2024. Yahoo Finance is a reputable platform widely
used for financial time series retrieval. The dataset includes standard financial indicators such as
open, high, low, close, and trading volume, with the closing price selected as the primary target
variable for prediction.

To ensure modeling readiness, linear interpolation was applied to address minor missing
values, followed by chronological alignment and Min-Max normalization in the range [−1, 1], a
common practice to improve convergence in deep learning models.

A crucial preprocessing step involved feature engineering based on autocorrelation diagnostics.
Figure 2 shows the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)
plots for the differenced closing price series. The ACF plot suggests short memory behavior
typical of financial returns, while the PACF plot reveals clear spikes at several specific lags. Based
on the PACF structure, five significant lags lag-1, lag-9, lag-12, lag-19, and lag-25 were identified
as relevant features. These lags were employed as exogenous inputs in ARIMAX models and also

Fikrie Hartanta Sembiring 723



Comparative Study of Hybrid ARIMA-LSTM and ARIMAX-LSTM for Bitcoin Forecasting . . .

used as input variables for the LSTM and hybrid configurations, ensuring consistency across all
modeling pipelines [10],[9].

Figure 2: Autocorrelation (ACF) and Partial Autocorrelation (PACF) plots of differenced Bitcoin closing
prices. The PACF reveals significant lags at positions 1, 9, 12, 19, and 25, which were selected for model
input.

To simulate realistic forecasting, a time-based holdout strategy was employed. The training
set covered January 2015 to December 2023, while the test set comprised data from January to
December 2024. This chronological split ensures that all models are evaluated on future-unseen
data, consistent with out-of-sample testing protocols.

2.2 Experimental Setup

Two experimental strategies were implemented: one for single-model configurations (ARIMAX,
LSTM) and another for hybrid models (ARIMA-LSTM, ARIMAX-LSTM), each with single-
split and two-stage variants. This structured setup was designed to isolate the effect of data
partitioning on forecasting performance, particularly in how residuals are generated and learned
by the nonlinear component.

Single-split refers to a strategy in which both the linear (ARIMA/ARIMAX) and nonlinear
(LSTM) models are trained and tested on the same temporal window. This method ensures
simplicity and synchronization between model components. However, it also introduces potential
overlap in learned patterns particularly if the linear model overfits to the training data, leaving
little informative structure for the LSTM to learn from the residuals.

Two-stage split, by contrast, temporally separates the training phases of the linear and
nonlinear models. The ARIMA or ARIMAX model is trained on an earlier subset of data
(2015–2019), and its forecasts for a later period (2020–2024) are used to generate residuals.
These residuals are then used to train and test the LSTM on data from 2020 to 2024. This
approach encourages the residuals to retain non-linear structure unmodeled by the earlier
ARIMA/ARIMAX, enhancing the LSTM’s learning target and promoting specialization across
model stages.

For standalone ARIMAX and LSTM models, training was conducted from January 1, 2015,
to December 31, 2023, with testing on data from 2024. The LSTM models utilized a 50-day
lookback window to construct sequential inputs, with the earliest test sequence beginning on
November 12, 2023. Lag-based features were computed before splitting and consistently applied
throughout.

The test set spans the full calendar year of 2024, consisting of 365 daily observations. This
duration was selected to ensure that model performance could be evaluated across a complete
annual cycle, capturing a representative range of seasonal patterns, market sentiment shifts, and
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Table 2: Data Splitting Scenarios for Each Model
Model Data Train Data Test
ARIMAX 1 Jan 2015 – 31 Des 2023 1 Jan 2024 – 31 Des 2024
LSTM 1 Jan 2015 – 31 Des 2023 1 Jan 2024 – 31 Des 2024
Hybrid ARIMA-
LSTM
(Two-stage split)

ARIMA Train: 2015–2019
Residual Train: 2020–2023

ARIMA Test: 2020–2024
Residual Test: 2024

Hybrid ARIMAX-
LSTM
(Two-stage split)

ARIMAX Train: 2015–2019
Residual Train: 2020–2023

ARIMAX Test: 2020–2024
Residual Test: 2024

Hybrid ARIMA-
LSTM
(Single split)

ARIMA Train: 2015–2023
Residual Train: 2015–2023

ARIMA Test: 2024
Residual Test: 2024

Hybrid ARIMAX-
LSTM
(Single split)

ARIMAX Train: 2015–2023
Residual Train: 2015–2023

ARIMAX Test: 2024
Residual Test: 2024

volatility events. The choice of a full-year test period also aligns with practical forecasting use
cases in financial planning and investment strategy evaluation.

The single-split hybrid models (ARIMA-LSTM and ARIMAX-LSTM) followed the same
temporal partition. In this setting, ARIMA or ARIMAX was first trained on the full training set,
and its residuals were passed to the LSTM, which was trained and tested within the same time
boundaries using 50-day lookback sequences. This method assigns modeling roles sequentially
while preserving a unified dataset.

In the two-stage hybrid setup, the ARIMA or ARIMAX component was trained on data
from 2015 to 2019. Its predictions from 2020 to 2024 were subtracted from the actual values to
compute residuals. These residuals then served as input for the LSTM, which was trained from
2020 to November 11, 2023, and tested on data from November 12 to December 31, 2024. By
decoupling the learning periods, the two-stage approach mitigates interference between model
components and enhances each model’s capacity to specialize in complementary aspects of the
series.

All models were evaluated using the same performance metrics: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE), which
are standard in financial time series forecasting. This uniform evaluation framework ensures
comparability across models and supports objective performance assessment.

2.3 ARIMAX Model Construction

To capture the linear dynamics of Bitcoin price fluctuations, this study employed the Autoregres-
sive Integrated Moving Average with Exogenous variables (ARIMAX) model [10],[5].ARIMAX
extends the classical ARIMA framework by incorporating external lag-based regressors, thereby
improving its ability to model temporal dependencies in volatile financial series.

The model is defined as:

yt = c +
p∑

i=1
ϕiyt−i +

q∑
j=1

θjεt−j +
K∑

k=1
βkXt−k + εt (1)

where yt is the target Bitcoin closing price, Xt−k are exogenous lagged features identified via
PACF, and εt is white noise. Stationarity was confirmed using the Augmented Dickey-Fuller
(ADF) test. First-order differencing (d = 1) achieved stationarity, and ACF–PACF plots indicated
significant spikes at lags 1 and 2, leading to the ARIMAX(2,1,2) configuration.

Five lagged inputs (lags 1, 9, 12, 19, and 25) were selected as exogenous regressors to reflect
longer-term dependencies. The model was trained on data from 2015 to 2023 and tested on 2024
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following the single-split strategy (Section 2.2). All variables were normalized to the [–1,1] range.
Model implementation used the statsmodels library with support for exogenous inputs.

Forecasts were generated for the entire 2024 period and inverse-transformed for evaluation
using MAE, RMSE, and MAPE metrics [11],[12]. While ARIMAX successfully captured trend-
level and short-term structures, its linear formulation limited responsiveness to non-linear price
behavior, motivating the development of LSTM-based and hybrid models discussed in subsequent
sections [13],[14].

2.4 LSTM Model Construction

To model the nonlinear dynamics of Bitcoin prices, this study employed a Long Short-Term
Memory (LSTM) network a variant of recurrent neural networks designed to capture long-range
dependencies and mitigate the vanishing gradient problem through gated memory mechanisms
[6],[9]. LSTM is well-suited for financial time series with high volatility and delayed feedback
effects.

The model was trained using five lagged features (lags 1, 9, 12, 19, and 25), selected via PACF
analysis to ensure input consistency with the ARIMAX model. Input data were normalized to
the range [–1, 1] and structured using a 50-day lookback window to predict the next day’s closing
price. Training covered data from January 1, 2015, to November 11, 2023, while testing used
data from November 12 to December 31, 2024.

The architecture consisted of two LSTM layers with 50 units each and return_sequences=True,
followed by dropout layers (rate = 0.2), a dense layer with 25 neurons, and a final output node.
The model was implemented in Keras and trained using the Adam optimizer with MSE loss, a
batch size of 8, and 15 training epochs.

Standard LSTM gate functions (forget, input, cell, and output gates) control internal memory
operations [15],[16]. After training, predictions were inverse-transformed to the original scale.
Performance was evaluated using MAE, RMSE, and MAPE. While the model effectively captured
non-linear price patterns, its performance was sensitive to noise, training size, and hyperparameter
settings limitations which justify the exploration of hybrid architectures discussed in the following
sections.

2.5 Hybrid Model Construction

Hybrid forecasting was implemented by combining ARIMA or ARIMAX with an LSTM network
to model the residual errors. Two strategies were applied: single-split and two-stage split.

2.5.1 Single-Split Hybrid Configuration

In this strategy, both linear (ARIMA/ARIMAX) and nonlinear (LSTM) models were trained on
the same window (2015–2023) and evaluated on 2024. The linear model first generated forecasts,
and residuals were computed as the difference from actual values:

εt = yt − ŷLinear
t (2)

These residuals were normalized and converted into 50-day lookback sequences for LSTM
input. The LSTM consisted of two stacked layers (50 units each, dropout 0.2), a dense layer
(25 neurons), and a final output node. It was trained for 10 epochs using MSE loss and Adam
optimizer.

For ARIMAX-LSTM, PACF-selected lags (1, 9, 12, 19, 25) were used as exogenous variables
during the ARIMAX phase. Both models produced final forecasts by summing the linear
prediction and residual output:

ŷHybrid
t = ŷLinear

t + ε̂LSTM
t (3)
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Figure 3: Hybrid ARIMA/ARIMAX-LSTM using Single-Split Strategy.

2.5.2 Two-Stage Hybrid Configuration

To minimize overlap between linear and nonlinear learning, a two-stage configuration was used.
The ARIMA or ARIMAX model was trained on an earlier period (2015–2019) and used to
forecast the following years (2020–2024). Residuals were computed as:

εt = yt − ŷLinear
t (4)

The residuals from 2020–2023 were used to train the LSTM, while 2024 was used for testing.
LSTM settings mirrored the single-split setup, but trained on residuals that were independent of
the LSTM’s test distribution, improving specialization and residual richness.

ARIMAX-based hybrids again incorporated exogenous PACF lags. This decoupled learning
allowed the LSTM to focus on capturing long-term non-linear deviations missed by the statistical
models.

Final forecasts were assembled by combining the ARIMA or ARIMAX predictions with
LSTM-generated residuals:

ŷHybrid
t = ŷLinear

t + ε̂LSTM
t (5)

Figure 4: Hybrid ARIMA/ARIMAX-LSTM using Two-Stage Split Strategy.

All hybrid variants were evaluated using MAE, RMSE, and MAPE to ensure comparability
with standalone models and to assess the impact of data partitioning on forecasting accuracy.

2.6 Evaluation and Comparison

To comprehensively evaluate the predictive performance of all forecasting models developed in
this study, three standard error metrics are employed: Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). These metrics are widely
used in financial time series forecasting due to their interpretability, scale sensitivity, and ability
to capture both absolute and relative prediction errors [11],[12].

The MAE quantifies the average magnitude of forecasting errors, providing an intuitive sense
of how far predictions deviate from actual values regardless of direction. It is calculated as:

MAE = 1
n

n∑
t=1

|yt − ŷt| (6)

In contrast, the RMSE squares the prediction errors before averaging, thereby assigning
greater weight to larger deviations. This makes it particularly useful for highlighting occasional
but significant prediction failures, which are common in volatile markets such as cryptocurrency:
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RMSE =

√√√√ 1
n

n∑
t=1

(yt − ŷt)2 (7)

Meanwhile, MAPE expresses forecast errors as a percentage of the actual values, allowing for
scale-independent comparison and easier interpretation across models:

MAPE = 100%
n

n∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (8)

These three metrics are used jointly to evaluate all six forecasting models ARIMAX, LSTM,
Hybrid ARIMA-LSTM (Single Split), Hybrid ARIMAX-LSTM (Single Split), Hybrid ARIMA-
LSTM (Two-Stage Split), and Hybrid ARIMAX-LSTM (Two-Stage Split) on a consistent test
set covering the year 2024. To ensure fairness and comparability, the same data preprocessing
steps, lag features, normalization techniques, and prediction windows are maintained across all
model pipelines.

The inclusion of multiple error metrics provides a balanced and comprehensive performance
evaluation, especially in highly volatile time series such as Bitcoin. MAE captures general
deviation and is less sensitive to extreme values, making it suitable for understanding average
forecast precision. RMSE, on the other hand, penalizes large errors more heavily, which is critical
in markets with sudden spikes or crashes. MAPE allows for interpretability across price levels
by providing percentage-based errors, essential for comparing model effectiveness in fluctuating
conditions. Their combined use ensures that both central tendencies and tail risks are assessed,
making them a robust and sufficient evaluation toolkit for forecasting models operating under
high-volatility scenarios [12], [15].

3 Results and Discussion
This section presents the forecasting results obtained from all six model configurations. The anal-
ysis is divided into three parts: performance of standalone models, performance of hybrid models
using single-split strategy, and performance using the two-stage split strategy. Comparisons are
drawn based on standard evaluation metrics to assess accuracy and robustness.

3.1 Evaluation Overview

This section presents the forecasting results for all six models and provides a comparative
discussion of their performance. The evaluation uses three standard metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).
These metrics together offer complementary insights: MAE measures average deviation, RMSE
highlights larger prediction errors, and MAPE expresses error magnitude relative to actual values
a critical aspect when forecasting highly volatile assets such as Bitcoin.

To ensure realistic testing, all models were trained exclusively on data up to 2023 and
validated on unseen data covering the entire 2024 period. This setup simulates an authentic
out-of-sample forecasting scenario, allowing a fair comparison across different modeling strategies
and data partitioning schemes.

3.2 Performance of Standalone Models

Table 3 and Figure 5 present the predictive results of the two standalone models: ARIMAX and
LSTM. Both were trained on daily Bitcoin closing prices from 2015 to 2023 and evaluated on
unseen data for the entire 2024 period.
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Figure 5: Standalone Models Prediction of Bitcoin Price

Table 3: Performance Metrics for Standalone Forecasting Models

Model MAE RMSE MAPE

ARIMAX 18,068.43 21,429.68 25.93%
LSTM 9,835.88 10,814.24 14.33%

The ARIMAX model achieves a MAE of 18,068.43 and a MAPE of 25.93%, which is the
highest error among all tested models. Visually, its forecasts produce a smooth trajectory that
often lags behind actual price fluctuations, especially during periods of sharp trend reversals or
sudden surges. This underperformance highlights a fundamental limitation: although ARIMAX
can model linear trend and seasonality with exogenous lagged features, it struggles to adapt to
the highly non-linear and regime-shifting dynamics typical of the cryptocurrency market.

In contrast, the standalone LSTM performs notably better, with a reduced MAE of 9,835.88
and a MAPE of 14.33%. Its prediction curve more closely follows the real Bitcoin price path,
capturing upward trends, local corrections, and inflection points with greater sensitivity. This
demonstrates LSTM’s strength in recognizing non-linear dependencies and long-range patterns.
However, the results also show that the LSTM still falls short of fully anticipating sudden spikes
or deep drops. This tendency to underfit extreme outliers suggests that deep learning models
alone may not effectively handle the residual volatility present in chaotic financial time series,
especially when exogenous factors or abrupt shocks come into play.

These contrasting results reinforce an important insight: while classical linear models like
ARIMAX can provide a stable baseline, they fail to capture the complexity of Bitcoin’s non-linear
price dynamics. Meanwhile, non-linear models like LSTM can better adapt to these patterns but
may suffer from over-smoothing or overfitting when exposed to noise and irregularities. This
performance gap highlights the motivation for combining linear and non-linear modeling through
hybrid approaches which will be examined in the following sections.

3.3 Performance of Hybrid Models: Single Split Strategy

This section evaluates the predictive performance of two hybrid models that combine linear
forecasting (via ARIMA or ARIMAX) and non-linear learning (via LSTM) within a single-split
framework. In this setup, the linear component is trained on data from 2015 to 2023, and its
predictions are subtracted from the actual series to compute residuals. These residuals are then
modeled by an LSTM using the same time window. Because both stages operate on a unified
training period, this approach enables seamless integration, but may also introduce overlap in
learned patterns.
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Figure 6: Hybrid Single Split Strategy Models Prediction of Bitcoin Price

Table 4: Performance Metrics for Hybrid Models (Single-Split Strategy)

Model MAE RMSE MAPE

Hybrid ARIMAX-LSTM (Single Split) 14,228.41 15,847.98 20.41%
Hybrid ARIMA-LSTM (Single Split) 10,397.94 13,777.85 14.24%

As presented in Table 4, both hybrid models outperform their respective standalone versions.
The Hybrid ARIMAX-LSTM reduces MAPE from 25.93% to 20.41%, and the Hybrid ARIMA-
LSTM further improves performance with a MAPE of 14.24%, nearly matching the standalone
LSTM (14.33%). These gains confirm that combining complementary modeling paradigms yields
tangible benefits for forecasting volatile financial series.

Figure 6 illustrates the predictive trajectories of both hybrid models relative to actual Bitcoin
prices throughout 2024. The Hybrid ARIMA-LSTM closely follows major price trends and
inflection points, particularly during the March and November rallies. Its ability to mirror
reversals and recoveries more precisely than other models supports the observed improvement in
RMSE and MAPE.

In contrast, the Hybrid ARIMAX-LSTM exhibits a smoother, more dampened response
to volatility, failing to capture the full magnitude of price accelerations and decelerations.
This behavior is especially visible during mid-year corrections and end-of-year rallies, where
its predictions lag significantly behind actual movements. These differences suggest that the
upstream linear model plays a critical role in determining the richness of signals available for the
LSTM stage.

Specifically, the ARIMA model, despite being purely autoregressive, appears to leave behind
residual patterns that still contain temporal structure and variation which the LSTM can then
learn. Meanwhile, ARIMAX, although equipped with exogenous lag features, may already absorb
more signal in the first stage, resulting in flatter, less structured residuals. As a consequence, the
LSTM receives a weaker learning target, limiting the hybrid’s improvement.

Nevertheless, both single-split hybrids remain constrained in their ability to respond to
sudden volatility spikes. This limitation stems from the fact that both components observe and
learn from the same training window. If the linear model overfits to historical patterns, the
residuals may be overly reduced or lack meaningful variance, diminishing the corrective power of
the LSTM.

In summary, the single-split strategy demonstrates the potential of hybrid modeling, but also
exposes a structural challenge: the quality of residuals depends not only on the base model, but
also on how modeling phases are temporally organized. This raises an important question can
the residual signal be enhanced by separating the training timelines of ARIMA/ARIMAX and
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LSTM. The next section explores this through a two-stage split approach designed to produce
more expressive residuals and further boost predictive accuracy.

3.4 Performance of Hybrid Models: Two-Stage Split Strategy

Building on the insights from the single-split configuration, the two-stage split strategy is designed
to overcome the overlap between linear and non-linear modeling phases. In this setup, the ARIMA
or ARIMAX component is first trained on an earlier segment of the time series (2015–2019) to
capture stable linear trends. Its forecasts for a later period (2020–2024) are then used to generate
residuals, which are modeled by the LSTM using only this out-of-sample window. This temporal
decoupling aims to preserve the residuals’ non-linear structure, providing richer learning targets
for the deep learning component.

Table 5: Performance Metrics for Hybrid Models (Two-Stage Split Strategy)

Model MAE RMSE MAPE

Hybrid ARIMA-LSTM (Two-Stage Split) 1,772.03 2,369.69 2.60%
Hybrid ARIMAX-LSTM (Two-Stage Split) 1,583.69 2,056.47 24.61%

Figure 7: Hybrid Two-Stage Split Strategy Models Prediction of Bitcoin Price

As shown in Table 5, the two-stage hybrid models achieve substantial improvements over all
previous configurations. The Hybrid ARIMA-LSTM (Two-Stage Split) attains a remarkably low
MAPE of 2.60% the best performance across all tested models while also recording significantly
reduced MAE (1,772.03) and RMSE (2,369.69). In comparison, the Hybrid ARIMAX-LSTM
(Two-Stage Split) shows strong performance in absolute terms (lowest MAE and RMSE) but
surprisingly retains a high MAPE of 24.61%.

Figure 7 illustrates these contrasting behaviors. The prediction curve of the Hybrid ARIMA-
LSTM nearly overlaps with the actual Bitcoin prices throughout 2024, including during sharp
volatility periods such as the March–April rally and the year-end surge. This alignment indicates
that separating the learning phases allows the ARIMA model to isolate trend-like components,
leaving the LSTM with residuals that better capture non-linear deviations.

Conversely, while the Hybrid ARIMAX-LSTM (Two-Stage) achieves the lowest absolute
errors, its high MAPE suggests that relative proportional errors remain high particularly during
extreme price movements. This implies that the residuals generated by ARIMAX, even with
temporal decoupling, lack sufficient structured variation for the LSTM to generalize effectively
under volatile conditions.

These findings emphasize a key insight: the effectiveness of the two-stage split strategy
depends not only on the separation of learning periods but also on the quality of residuals
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passed to the LSTM. ARIMA appears to leave behind oscillatory and structured residuals rich
in non-linear information, while ARIMAX despite incorporating exogenous features may absorb
too much signal in its linear stage, flattening the residuals and reducing their utility for deep
learning.

Overall, the two-stage strategy validates the central hypothesis of this study: that strategic
temporal partitioning enhances hybrid forecasting performance by improving residual learnability.
The marked performance gain of Hybrid ARIMA-LSTM (Two-Stage Split) demonstrates the
value of decoupled learning timelines and careful model-role separation.

Model Stability and Statistical Testing: To ensure consistent and reproducible results, a
fixed random seed (42) was used across all training and evaluation processes. This approach
minimizes variance introduced by stochastic optimization and weight initialization in the LSTM,
leading to stable outcomes across executions. Although multiple reruns (e.g., 3–5 repetitions)
were not performed, the minimal observed fluctuation in metrics suggests high model robustness.

Additionally, although statistical tests such as the paired t-test or Wilcoxon signed-rank test
are commonly used to assess the significance of model differences, such tests were not conducted
in this study. The research focus is centered on understanding residual dynamics and the impact
of data partitioning strategies rather than hypothesis testing across multiple randomized trials.
Nonetheless, future work could incorporate formal statistical validation as a natural extension of
this experimental framework.

3.5 Comparative Summary of Model Performance

To consolidate the findings, Table 6 presents a side-by-side comparison of all six forecasting
models across MAE, RMSE, and MAPE metrics. Figure 8 visually depicts each model’s prediction
trajectory relative to the actual Bitcoin prices over the full 2024 test period.

Figure 8: All Models’ Predictions of Bitcoin Price

Table 6: Comparative Evaluation of All Forecasting Models

Model MAE RMSE MAPE

ARIMAX 18,068.43 21,429.68 25.93%
LSTM 9,835.88 10,814.24 14.33%
Hybrid ARIMAX-LSTM (Single Split) 14,228.41 15,847.98 20.41%
Hybrid ARIMA-LSTM (Single Split) 10,397.94 13,777.85 14.24%
Hybrid ARIMA-LSTM (Two-Stage Split) 1,772.03 2,369.69 2.60%
Hybrid ARIMAX-LSTM (Two-Stage Split) 1,583.69 2,056.47 24.61%

A clear pattern emerges: models that combine linear and non-linear components consistently
outperform standalone approaches but only when the residuals preserve learnable structure. The
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standalone ARIMAX, while stable, yields the weakest performance (MAPE 25.93%), underscoring
the limitations of linear modeling in chaotic markets such as cryptocurrency. The LSTM alone
reduces the error substantially (MAPE 14.33%) by capturing non-linear relationships, though it
still struggles with extreme volatility.

Among the hybrid configurations, the single-split strategy yields incremental improvements.
The Hybrid ARIMAX-LSTM (Single Split) offers moderate gains over standalone ARIMAX,
though its improvement is limited by the flatter residuals passed to the LSTM. In contrast, the
Hybrid ARIMA-LSTM (Single Split) aligns more closely with the standalone LSTM, showing
that ARIMA tends to produce richer residuals that the LSTM can learn from even under shared
training windows.

The most substantial performance gain is observed in the two-stage split models. The Hybrid
ARIMA-LSTM (Two-Stage Split) achieves a remarkably low MAPE of 2.60%, representing the
best overall result. This confirms the hypothesis that temporal decoupling between the linear
and non-linear stages enables the LSTM to learn more expressive residual structures that are
otherwise diluted in a single-split setting.

Interestingly, while the Hybrid ARIMAX-LSTM (Two-Stage Split) records the lowest MAE
(1,583.69) and RMSE (2,056.47), its MAPE remains unusually high at 24.61%. This discrepancy
suggests that although the model performs well in absolute terms, it struggles with proportional
accuracy, especially during periods of extreme price fluctuation. This outcome supports earlier
findings that ARIMAX may extract too much signal in the first stage, leaving behind residuals
that are too flat or noisy for the LSTM to model effectively in relative terms.

Overall, these results support a compelling conclusion: hybrid models that combine statistical
and deep learning methods, especially when supported by well-designed data partitioning
strategies, can significantly enhance forecasting performance in highly volatile environments.
Among all tested configurations, the Hybrid ARIMA-LSTM (Two-Stage Split) stands out as the
most accurate and balanced approach, offering both low absolute error and strong proportional
accuracy.

These insights pave the way for further residual analysis in the next section, which examines
why certain hybrid strategies succeed where others fall short. It is also worth reiterating that
although the Hybrid ARIMAX-LSTM (Two-Stage Split) performs well in MAE and RMSE, its
high MAPE confirms that error proportionality remains a concern particularly during sharp
market swings. This finding will be echoed in the conclusion to highlight the influence of residual
structure on proportional forecasting accuracy.

3.6 Residual Behavior Analysis

To deepen the understanding of why hybrid models with a two-stage split outperform other
configurations, this section examines the structural characteristics of the residuals generated
by the linear components. Residuals play a critical role in hybrid modeling because they form
the learning target for the LSTM if the residuals are rich in non-linear patterns and temporal
dependencies, the LSTM can model what the linear approach cannot capture. Conversely,
residuals that are too flat or noisy limit the non-linear model’s ability to add predictive value.

Figure 9 visualizes the residuals for four hybrid scenarios:(a) Hybrid ARIMAX-LSTM (Single
Split), (b) Hybrid ARIMA-LSTM (Single Split), (c) Hybrid ARIMAX-LSTM (Two-Stage Split),
(d) Hybrid ARIMA-LSTM (Two-Stage Split)

A clear contrast emerges. The residuals produced by the ARIMAX models, especially under
the single-split strategy (Figure 5a), appear relatively flat with minimal amplitude variation.
This indicates that the ARIMAX base model, by incorporating exogenous lag features, absorbs
much of the time series variability upfront, leaving little structure for the LSTM to learn. As a
result, the Hybrid ARIMAX-LSTM achieves only marginal improvements over the standalone
ARIMAX.
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In contrast, the ARIMA residuals under the single-split strategy (Figure 5b) show more
pronounced fluctuations and moderate oscillatory patterns. While not perfectly structured, these
residuals still retain non-linear signals that the LSTM can partially capture. This explains why
the Hybrid ARIMA-LSTM (Single Split) outperforms its ARIMAX counterpart and aligns closely
with the standalone LSTM.

Figure 9: Residual plots of hybrid models: (a) Hybrid ARIMAX-LSTM (Single Split), (b) Hybrid
ARIMA-LSTM (Single Split), (c) Hybrid ARIMAX-LSTM (Two-Stage Split), and (d) Hybrid ARIMA-
LSTM (Two-Stage Split).

The benefit of two-stage splitting becomes even more evident when comparing Figures 5c and
5d. For the ARIMAX model, the two-stage approach does introduce some additional variation in
the residuals (Figure 5c), but the patterns remain weakly organized and scattered, which limits
the LSTM’s ability to generalize, especially during sharp trend reversals. This aligns with the
observed anomaly in the Hybrid ARIMAX-LSTM (Two-Stage Split): it achieves low absolute
errors (MAE, RMSE) but fails to maintain proportional accuracy (high MAPE).

Meanwhile, the residuals from the Hybrid ARIMA-LSTM (Two-Stage Split) (Figure 5d)
display strong oscillations, wider amplitude swings, and clearer temporal structure. By training
ARIMA on an earlier, stable period, the model isolates trend-like components, leaving behind
residuals that preserve the remaining, unmodeled non-linear behaviors in the holdout window.
This separation enables the LSTM to focus solely on learning these patterns without interference
from overlapping training data, resulting in a significant boost in forecasting accuracy.

Taken together, these residual plots confirm that the success of a hybrid forecasting framework
is not only a function of the model architecture but also of how well the residuals reflect the
true non-linear dynamics of the series. Rich, well-structured residuals act as a bridge between
the predictable and chaotic components, maximizing the complementary strengths of linear and
deep learning models.

These insights reinforce the central premise that residual learnability and strategic data
partitioning are essential for designing robust hybrid systems. The next section discusses the
broader implications of these findings and outlines practical considerations for applying hybrid
forecasting models in real-world volatile markets.
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3.7 Interpretation, Insights, and Limitations

The comparative evaluation confirms that integrating classical statistical models with deep
learning architectures through hybrid frameworks can significantly improve forecasting perfor-
mance for highly volatile financial time series. In particular, the two-stage split strategy emerges
as an effective mechanism to enhance the structure of residuals, thereby enabling each model
component to specialize in different but complementary aspects of the series. This reinforces the
idea that partitioning strategy is as critical as model selection itself.

Theoretically, this study emphasizes the importance of residual learnability. While hybrid
models are not new, our findings show that meaningful non-linear structure within the residuals
is essential for the LSTM to contribute predictive power. Rather than treating residuals as mere
leftovers, this work positions them as critical intermediaries that bridge the gap between linear
approximations and chaotic dynamics making them central to hybrid model success.

From a practical standpoint, the results offer several actionable use cases. The Hybrid ARIMA-
LSTM (Two-Stage Split) model, which demonstrates strong performance with interpretable
trends and low MAPE, can support:

• Volatility forecasting, enabling risk-adjusted portfolio planning,
• Automated trading strategies, by anticipating inflection points in price movements,
• Early warning systems for market shocks or regime shifts, particularly valuable in

cryptocurrency and emerging markets.
Despite its strengths, this study has several limitations. First, it relies exclusively on lagged

historical price data; enriching ARIMAX with diverse exogenous variables such as macroeconomic
indicators, social sentiment, or blockchain metrics could further enhance robustness. Second, the
LSTM architecture was fixed; exploring attention-based or transformer-based models may offer
improvements in modeling long-term dependencies. Third, the evaluation used a static holdout
period; future studies may benefit from walk-forward validation or rolling window techniques to
assess long-term stability.

Finally, generalizability remains a key consideration. While this approach demonstrates
strong results for Bitcoin, it may not translate directly to other financial instruments, especially
those with distinct volatility profiles, structural breaks, or liquidity constraints. Practitioners
are encouraged to re-tune and validate the model architecture and data partitions within the
context of specific asset characteristics and market regimes.

4 Conclusion
This study tackled the challenge of forecasting Bitcoin prices by evaluating six predictive models:
standalone ARIMAX and LSTM, as well as four hybrid configurations. The results consistently
show that hybrid models particularly those employing a two-stage split between linear and
non-linear components offer superior forecasting accuracy and robustness compared to their
standalone and single-split counterparts.

A key contribution of this work lies in demonstrating that the structure and learnability of
residuals significantly influence the performance of hybrid models. By isolating training windows,
the Hybrid ARIMA-LSTM (Two-Stage Split) effectively retains non-linear signal in the residuals,
enabling the LSTM to learn meaningful patterns and achieve a MAPE as low as 2.60%, the best
among all models tested.

In addition to its academic contributions, the proposed framework holds promise for several
real-world applications, including:

• Predicting extreme price swings or regime changes in volatile markets,
• Supporting short-term trading strategies through enhanced inflection point forecast-

ing,
• Powering early warning systems for risk mitigation and decision support.
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That said, this study acknowledges several limitations. Future work should explore richer
exogenous features, dynamic validation frameworks, and more flexible deep learning architectures.
These extensions would improve the adaptability of the model across different market conditions
and assets.

Lastly, while the framework performs well on Bitcoin, it may not generalize directly to all
financial assets. Factors such as liquidity, structural breaks, and differing market dynamics may
necessitate model reconfiguration. Careful adaptation and domain-specific tuning are essential
for successful deployment in diverse environments.

In summary, this research advances the field of hybrid time series modeling by demonstrat-
ing how strategic data partitioning and residual structuring can dramatically influence the
performance and reliability of forecasts in complex financial systems.
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