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Abstract

We study a linear system of delay differential equations with internal coupling. Analytical
derivation of the characteristic equation and stability range shows that even without external
forcing, delay interaction can cause resonance growth in one variable. This occurs when the
internal feedback frequency equals the system’s natural oscillation. When the two delays
differ slightly, a beat pattern appears because of the small mismatch between their feedback
frequencies. The analytical findings are confirmed through numerical simulation using the
method of steps implemented in Python. The study explains how delay and coupling act as a
self-exciting source of oscillation in linear systems.
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1 Introduction
Resonance is a classical phenomenon in oscillatory systems, most notably observed in second-order
ordinary differential equations (ODEs) subject to periodic external forcing. For example,

x′′(t) + ω2x(t) = sin(ω0t), (1)

exhibits resonance when ω0 = ω, leading to a particular solution of the form t sin(ωt) and linear
amplitude growth over time. When ω0 ̸= ω, a beat phenomenon with modulated amplitude
occurs due to interference between nearby frequencies.

Delay differential equations (DDEs) continue to play a central role in modeling oscillatory and
memory-dependent systems across physics, biology, and control engineering. Classical studies on
scalar linear DDEs established that time delays can generate periodic behavior through Hopf
bifurcations [1], [2], [3]. Building on these foundations, recent works have uncovered diverse
phenomena ranging from delay-induced resonance and beat modulation to multistability and
spectral complexity.

For instance, Ohira and Ohta [4] demonstrated resonant transients in scalar DDEs by tuning
internal delay, while Wang et al. [5] analytically characterized phase and amplitude responses
under harmonic forcing. Closed-form oscillatory solutions in homogeneous linear DDEs were
obtained via Laplace transforms by Kerr et al. [6], and resonance behaviors due to state-dependent
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delay were reported by Calleja et al. [7]. In higher-order systems, oscillation criteria have been
developed for third-order or even-order DDEs [8], [9], [10], and comparison theorems for neutral
and mixed-type delays have been advanced in [11], [12].

Further analytic frameworks include connections between resonance and the Lambert W
function [13], delay-induced vibrational resonance in neuron models [14], and efficient computation
of weakly coupled systems with delay [15]. Inverse problem formulations for impulsive DDEs
were addressed by Ruhil and Malik [16]. On the spectral side, Breda et al. [17] proposed a unified
characterization of stability and bifurcation behavior from the geometry of characteristic root
curves, while Wang et al. [18] studied universal Hopf bifurcations in scalar systems.

At the network and control levels, Zhang et al. [19] analyzed delay-induced multistability in
coupled oscillators, Singh and Rotea [20] investigated resonance via frequency response theory,
and Liu et al. [21] provided a rigorous analytical approach to resonance in feedback control delay
systems. Phase–amplitude response patterns in periodically modulated DDEs have been refined
through harmonic balance analysis in [22].

While these developments reveal rich structures in delay-driven systems, ranging from scalar
to networked, forced, or nonlinear, the specific case of resonance and beat phenomena arising
solely from internal delayed coupling in a linear, homogeneous system remains analytically
underrepresented. In this work, we show that such phenomena can emerge purely through
internal dynamics without external forcing, using exact analytical derivations in a two-dimensional
homogeneous DDE model. Although resonance in DDEs has been studied under external or
parametric forcing, little attention has been given to self-excited resonance arising solely from
internal delay coupling. This paper isolates that mechanism in a minimal two-dimensional linear
system.

Motivated by these developments, we turn our attention to a simple yet illustrative model: a
two-dimensional, linear, and homogeneous delay differential system with internal coupling{

x′
1(t) = a x1(t − T1),

x′
2(t) = a x2(t − T2) + b x1(t − T1).

(2)

This system is fully homogeneous and contains no external input; yet, as we show, it is capable
of reproducing two hallmark behaviors typically associated with externally forced second-order
ODEs: resonance and beat phenomena. To rigorously establish this claim, we begin by revisiting
the stability structure of linear DDEs in the next section.

2 Linear Delay Differential Equation and Its Stability

Consider the simplest scalar case of a delay differential equation (DDE):

x′(t) = −αx(t − T ), for t ≥ 0, (3)

where α > 0 is a constant and T > 0 is the delay. Unlike ordinary differential equations
(ODEs), the initial condition for a DDE is given by a function x(t) = ϕ(t) defined on the interval
t ∈ [−T, 0], commonly referred to as a history function. Although existence, uniqueness, and
even explicit solutions can be studied, we will focus solely on the stability of the zero solution.

To facilitate stability analysis, introduce the scaled variables τ = t/T , β = αT , and define
u(τ) = x(t). Then, equation (3) becomes

du

dτ
= 1

T
· dx

dt
= −αT · u

(
t

T
− 1

)
= −βu(τ − 1). (4)

To examine the stability, we look for exponential solutions of the form u(τ) = Ceλτ with
C ̸= 0. Substituting into (4), we obtain the characteristic equation:

Cλeλτ = −βCeλ(τ−1) ⇐⇒ eλτ (λ + βe−λ) = 0 ⇐⇒ λ = −βe−λ. (5)
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Details of the stability analysis for equation (5) can be found in [3] and [23]. It is established
that the solution is asymptotically stable if and only if all roots λ of the characteristic equation
satisfy ℜ(λ) < 0. This condition is equivalent to β ∈ (0, π/2), because outside this range one or
more roots acquire positive real parts, destabilizing the equilibrium.

A Hopf bifurcation occurs when a pair of complex conjugate characteristic roots of a dynamical
system crosses the imaginary axis, causing the steady state to lose stability and giving rise to
periodic oscillations. In this system, the bifurcation occurs at the critical value β = π/2. At this
point, the characteristic equation admits a pair of purely imaginary simple roots λ = ±iπ/2.
Consequently, the solutions of (4) include oscillatory functions such as

x(t) = sin
(

πt

2T

)
, and x(t) = cos

(
πt

2T

)
.

We now generalize the analysis to a homogeneous linear system of delay differential equations
of the form

x′(t) = Ax(t − T ), (6)

where A is a constant matrix. Using the same time-scaling transformation τ = t/T , and defining
u(τ) = x(t), equation (6) becomes

du
dτ

= Bu(τ − 1), where B = TA. (7)

We nondimensionalize time by the dominant delay T so that the normalized matrix B = TA
fully determines stability independent of absolute delay scale. To analyze the stability of the
system, we again look for exponential solutions of the form u(τ) = eλτ v with v ̸= 0. Substituting
into (7) yields the nonlinear eigenvalue problem

λeλτ v = Beλ(τ−1)v ⇐⇒ Be−λv = λv. (8)

The corresponding characteristic equation is

det
(
λI − Be−λ

)
= 0. (9)

As in the scalar case, the system is asymptotically stable if all characteristic roots λ satisfy
ℜ(λ) < 0. Particular attention is given to the Hopf bifurcation scenario, which occurs when a
pair of complex conjugate roots crosses the imaginary axis.

As an example, reconsider the system given in (2). Applying the same scaling procedure, the

system can be rewritten in the normalized form (7), with B =
[
aT 0
bT aT

]
.

Substituting into the characteristic equation (9), we obtain

0 = det(λI − Be−λ)

= det
([

λ − aTe−λ 0
−bTe−λ λ − aTe−λ

])

=
(
λ − aTe−λ

)2
.

Thus, both eigenvalues satisfy the same scalar transcendental equation:

λ = aTe−λ,

which is identical in form to equation (5).
As previously established, the solution is asymptotically stable if and only if all roots satisfy

ℜ(λ) < 0, which is equivalent to

−π

2 < aT < 0 ⇐⇒ − π

2T
< a < 0. (10)
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3 The Resonance and Beat Phenomena

Consider again the system defined in (2). From the previous section, we know that for a < 0 and
|aT1| = π/2, the solution of the first equation undergoes Hopf bifurcation, and admits a periodic
solution

x1(t) = sin
(

πt

2T1

)
.

This expression will be used as the input to the second equation. We will examine two cases
based on the relation between T1 and T2.

3.1 Case I: Resonance Phenomenon for T1 = T2

Assume T1 = T2 = T , then the equation for x2 becomes

x′
2(t) = a x2(t − T ) + b sin

(
πt

2T

)
.

To find a particular solution, we propose

x2,p(t) = A t cos
(

πt

2T

)
+ B t sin

(
πt

2T

)
,

where A and B are constants. Differentiating this yields

x′
2,p(t) = A cos

(
πt

2T

)
− A

πt

2T
sin
(

πt

2T

)
+ B sin

(
πt

2T

)
+ B

πt

2T
cos

(
πt

2T

)
.

This derivative is substituted back into the original equation to verify that the form matches.
On the right side of the equation, by using trigonometric identites, we obtain

a

[
A(t − T ) sin

(
πt

2T

)
− B(t − T ) cos

(
πt

2T

)]
+ b sin

(
πt

2T

)
.

By collecting each term and defining θ := πt/(2T ) for simplicity, we obtain

aAt sin(θ) − aBt cos(θ) + (b − aAT ) sin(θ) + aBT cos(θ).

By matching each coefficients from two sides, we obtain a system of equation
−Aπ/(2T ) = aA,

Bπ/(2T ) = −aB,

B = b − aAT,

A = aBT.

From the first two equations, for nontrivial A and B, we get a = −π/(2T ), which is exactly the
Hopf threshold that we obtain before. Using aT = −π/2 in the last two equations, we obtain
A = −Bπ/2 and B = πA/2 + b. Solving them yields

B = π

2 ·
(

−π

2 B

)
+ b = 4b

4 + π2 and A = − 2πb

4 + π2 .

Hence, the particular solution

x2,p(t) = 2b

4 + π2 t

(
−π cos

(
πt

2T

)
+ 2 sin

(
πt

2T

))
exhibits linear growth.

The result confirms that the solution grows linearly in amplitude, a signature of resonance,
due to the matching frequency between the homogeneous part and the forcing.
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3.2 Case II: Beat Phenomenon for T1 ̸= T2

Consider the modified system{
x′

1(t) = a1 x1(t − T1),
x′

2(t) = a2 x2(t − T2) + b x1(t − T1).
(11)

Now suppose T1 ̸= T2. The solution of the first equation remains

x1(t) = sin(ω1t) , where ω1 = π

2T1
.

Substituting into the second equation yields

x′
2(t) = a2 x2(t − T2) + b sin(ω1t).

To find a particular solution, we consider the ansatz

x2,p(t) = A cos(ω1t) + B sin(ω1t),

where A and B are constants. Then

x′
2,p(t) = −A ω1 sin(ω1t) + B ω1 cos(ω1t), and

x2,p(t − T2) = A cos(ω1(t − T2)) + B sin(ω1(t − T2)).

Using the trigonometric identities, we substitute and group by cos(ω1t) and sin(ω1t), yielding
the system B ω1 = a2 (A cos(ω1T2) − B sin(ω1T2)) ,

−A ω1 = a2 (A sin(ω1T2) + B cos(ω1T2)) + b.

The solution for this system is

A = − b(ω1 + a2 sin(ω1T2))
(ω1 + a2 sin(ω1T2))2 + (a2 cos(ω1T2))2 and B = − a2b cos(ω1T2)

(ω1 + a2 sin(ω1T2))2 + (a2 cos(ω1T2))2 .

This gives the particular solution

x2,p(t) = −b(ω1 + a2 sin(ω1T2)) cos(ω1t) + a2b cos(ω1T2) sin(ω1t)
(ω1 + a2 sin(ω1T2))2 + (a2 cos(ω1T2))2 .

To interpret these oscillations more clearly, it is useful to recall how the system parameters
relate to the Hopf threshold for purely trigonometric behavior. Consider the second equation in
(11):

x′
2(t) = a2 x2(t − T2).

Its characteristic equation is λ = a2e−λT2 , whose roots become purely imaginary, λ = ±iω2, when

ω2T2 = π

2 , a2 = − π

2T2
.

At this Hopf threshold, the homogeneous solution of x2 is a pure oscillation

x2(t) = A sin
(

πt

2T2

)
+ B cos

(
πt

2T2

)
with no exponential growth or decay. By setting a1 = a2 = −π/(2Ti) for both components, x1
and x2 each oscillate with their own natural frequencies

ω1 = π

2T1
and ω2 = π

2T2
.
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When T1 ̸= T2, these frequencies are slightly different, and the coupling term b x1(t − T1) induces
a superposition of two close oscillations in x2, producing a slow envelope modulation,

x2(t) ≈ 2C cos
(

ω1 − ω2
2 t

)
cos

(
ω1 + ω2

2 t

)
,

which corresponds to the beat phenomenon. If T1 = T2, the two frequencies coincide and the
modulation disappears, giving the resonance case discussed earlier.

The resulting solution x2(t) thus consists of a particular component with frequency ω1 and a
homogeneous component with frequency ω2. Their superposition produces amplitude modulation
when ω1 ̸= ω2, giving rise to the classical beat phenomenon

x2(t) ∼ cos (∆ω t) cos (ω̄ t) , ∆ω = ω1 − ω2
2 , ω̄ = ω1 + ω2

2 .

This beat produces envelope period Tbeat = 2π/|ω1 − ω2|.
Having derived the analytical forms of the resonance and beat responses, we next verify these

results through direct numerical simulation. The next chapter presents the implementation of
the method of steps in Python, the selected parameter sets, and the resulting time-series plots
demonstrating the predicted resonance amplification and beat modulation.

4 Numerical Simulation

4.1 Method

The delay differential system studied in this paper cannot, in general, be solved in closed form
once numerical parameters and distinct delays are introduced. To compute approximate solutions,
we apply the method of steps combined with a fourth–order Runge-Kutta integration scheme.

The method of steps converts a DDE into a sequence of ODEs on consecutive time intervals.
If the delay is τ and a continuous history function x(t) = ϕ(t) is known for t ∈ [−τ, 0], then

1. on the first interval [0, τ ], the delayed term x(t − τ) is known from ϕ(t), so the equation
reduces to an ODE that can be solved numerically,

2. the obtained solution over [0, τ ] becomes the new history function used to compute the
next interval [τ, 2τ ], and so on.

This recursive construction ensures continuity of x(t) and allows the solution to be built step by
step over the integration range [0, Tmax].

Each ODE segment generated by the method of steps is integrated using the classical
fourth–order Runge-Kutta (RK4) method. For an ODE x′ = f(t, x) with time step h, where tn

and xn denote the current time and numerical solution, the classical RK4 update reads

k1 = f(tn, xn),

k2 = f
(
tn + h

2 , xn + h
2 k1

)
,

k3 = f
(
tn + h

2 , xn + h
2 k2

)
,

k4 = f(tn + h, xn + h k3),
xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4) ,

where tn+1 = tn + h and xn+1 denotes the numerical approximation of x(tn+1). For DDEs, the
function f depends on both the current value x(t) and the delayed value x(t − τ). The delayed
term is obtained from the previously computed segment, either by direct lookup or (usually) by
linear interpolation.
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4.2 Simulation Results

Numerical experiments are implemented in Python (version 3.10) in Google Colab using:
• numpy for array operations,
• matplotlib for plotting, and
• scipy.interpolate for linear interpolation of delayed values.

The integration follows the method of steps with a classical RK4 update on each subinterval.
Delayed terms x(t − τ) are obtained from previously computed segments by linear interpolation.

The history on [− max{T1, T2}, 0] is prescribed as

x1(t) = x2(t) = ϕ(t) = sin(t).

We integrate on [0, Tmax] with uniform step size h; tn = nh, n ∈ {0, 1, . . . , ⌊Tmax/h⌋}.
For the parameters, consider two scenarios:

• Resonance case (T1 = T2): b = 0.2, T1 = T2 = 1.
• Beat case (T1 ̸= T2): b = 0.2, T1 = 1, T2 = 1.1.

For both cases, we use h = 10−2, Tmax = 150, a, a1, and a2 are all Hopf threshold, also the
same RK4 scheme and interpolation rule are used. The resulting trajectories x1(t) and x2(t) are
plotted over [0, Tmax].

Fig. 1 shows the numerical trajectories of x1(t) and x2(t) for the resonance case where
T1 = T2 = 1. Both variables oscillate with the same frequency, but the amplitude of x2(t)
increases approximately linearly with time, confirming the predicted resonance amplification due
to constructive feedback between the two delayed components.

Figure 1: Time evolution of x1(t) and x2(t) under the resonance condition T1 = T2 = 1.

Fig. 2 presents the beat case with slightly different delays, T1 = 1 and T2 = 1.05. The small
detuning between the internal feedback frequencies produces slow amplitude modulation: the two
signals alternate between constructive and destructive interference, generating a characteristic
beat envelope.

Robby 1021



A Remark on Resonance and Beat in a Homogeneous Linear Delay System

Figure 2: Time evolution of x1(t) and x2(t) under the beat condition T1 = 1 and T2 = 1.05.

The numerical trajectories in Fig. 1 and Fig. 2 reproduce the behaviors predicted analytically
in Chapter 3. In the resonance case, the in–phase feedback between delayed components causes
the effective forcing to coincide with the system’s natural frequency, producing linear growth in
amplitude. In the beat case, the small mismatch between the two feedback delays introduces
detuning, which manifests as slow modulation of the oscillation envelope. These results confirm
that the derived coefficients and parameter relations accurately capture the transition from
steady oscillation to resonant amplification and beat modulation.

5 Conclusion and Suggestion

5.1 Conclusion

This paper has demonstrated that resonance amplification and beat modulation can arise within
a purely linear and homogeneous delay differential system, without the presence of any external
forcing. Unlike classical forced oscillators, where such phenomena are externally induced, here
they emerge solely through internal delayed coupling and feedback.

These findings highlight a structural insight: time delays, even in the absence of nonlinearity
or external inputs, can fundamentally enrich system dynamics. Aligned delay times induce
resonance, while mismatched delays yield beat patterns, all of which are captured analytically.

Beyond offering a new perspective on delay-induced dynamics, the model provides an analyti-
cally tractable example that may serve as a benchmark for future investigations in delay systems,
both theoretical and applied. This remark, albeit simple, illustrates the subtle dynamical richness
that can arise in delay systems, inviting further exploration beyond classical ODE intuition. The
analysis reveals that even a minimal two-dimensional delay system reproduces key signatures of
classical forced oscillators purely through internal feedback.

5.2 Suggestion

While the system analyzed here is intentionally minimal, it raises several directions for future
investigation. One natural extension is to explore the structural stability of the resonance and
beat phenomena under perturbations, such as small deviations in delay values, parameter changes,
or variations in initial conditions. Another promising direction involves higher-dimensional delay-
coupled systems, where network topology may influence the emergence or suppression of internal
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frequency interactions. Finally, the inclusion of weak nonlinearities could reveal new bifurcation
structures or amplitude saturation mechanisms, providing a richer dynamical landscape beyond
the linear case. Overall, the study highlights delay as a self-contained excitation mechanism
capable of producing complex oscillatory behavior even in linear homogeneous systems.
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