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Abstract

Tsunami disaster mitigation requires a reliable early warning system to reduce traumatic
impacts and material losses. This study develops a fuzzy logic model for early tsunami detec-
tion by integrating sea surface height (SSH) and estimated tsunami arrival time (ETATSU)
parameters. The model is combined with the TUNAMI F1 simulation, which considers seabed
topography and fluid dynamics. Simulations were conducted on 36 earthquake scenarios
on the southern coast near Yogyakarta International Airport (YIA). The results show that
the model successfully classifies tsunami risks into three categories: alert, standby, and
emergency, with an overall accuracy of 83.3%. Some scenarios show invalid results at high
magnitudes (M,, > 8.5). This research improves the accuracy of tsunami early warning
systems, potentially saving more lives and minimizing the impact of disasters.
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1 Introduction

Tsunami early detection is crucial for disaster mitigation to reduce traumatic impacts and material
losses [1]. The fuzzy logic-based approach offers adaptive capabilities in handling seismic and
oceanographic data uncertainty. Previous studies have used single parameters such as volcanic
eruptions, earthquakes, landslides, or sea surface height. Still, few have integrated two key
parameters, namely sea surface height (SSH) and estimated tsunami arrival time (ETATSU) [2].

The fuzzy logic model consists of three main components: fuzzification, inference system, and
defuzzification [3]. Fuzzification transforms data, such as sea surface height, into categories like
low, medium, or high, while the inference system processes the data based on if-then rules [4].

The defuzzification process produces numerical output that is used for tsunami warnings.
The advantages of this model include flexibility in modifying rules, integration of multi-source
data such as seismic sensors and satellite data, and the ability to provide quick and accurate
warnings [5, 6].
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Simulations using TUNAMI F1, a numerical model that accounts for seabed topography and
fluid dynamics, help predict tsunami wave behavior accurately [7]. Through quick simulations
and high resolution, TUNAMI F1 supports the analysis of tsunami behavior from the epicenter
to the shore [8]. The integration of fuzzy logic with TUNAMI F1 is expected to produce a more
reliable early warning system, saving lives and reducing the impact of disasters [9], [10].

Conventional approaches to early tsunami detection often rely on a single parameter such
as sea surface height, tsunami arrival time, or earthquake characteristics (volcanic eruptions,
landslides). Although these single parameters are helpful, they have limitations in addressing
the complexity of tsunami phenomena. For instance, sea surface height alone is insufficient to
determine risk as it does not account for how quickly the tsunami reaches the shore. On the
other hand, estimated arrival time alone does not reflect the level of damage that may occur.
Such approaches tend to yield less accurate detections or ineffective early warnings, especially in
complex disaster scenarios.

This study provides a new contribution by combining two key parameters, namely sea
surface height or sea surface height (SSH) and estimated tsunami arrival time (ETATSU), into a
fuzzy logic-based model. This integration allows for a more comprehensive risk analysis, where
the relationship between tsunami speed and potential damage can be assessed simultaneously.
Furthermore, using TUNAMI F1 simulations as a supporting tool for the fuzzy logic model
provides a reliable numerical framework for validating results. Through this approach, the
study not only enhances the accuracy of early warning systems but also introduces an adaptive
framework that can be applied to other coastal regions.

To guide the flow of this paper, the remaining sections are organized as follows. Section 2
describes the methodological framework, including the construction of initial water surface
conditions and the numerical simulation setup using the TUNAMI F1 model. Section 3 presents
the simulation outcomes and discusses the performance of the fuzzy logic model in classifying
tsunami risk levels across different earthquake scenarios. Section 4 summarizes the key findings
and outlines recommendations for future development of tsunami early warning systems.

2 Methods

In this section, we outline the methodological framework used to generate tsunami scenarios
and derive the input parameters for the fuzzy logic early warning model. Earthquake source
parameters are first used to construct initial water surface conditions, which are then simulated
with the TUNAMI F1 model to obtain SSH and ETATSU at selected observation and sensor
points. The following subsections describe the setup of these simulations and the resulting data
that support the analysis in Section 3.

2.1 Modeling of Initial Water Surface Conditions

This subsection describes the process of constructing the initial water surface conditions used in
the tsunami simulations. The procedure consists of three main components: (1) defining the
modeling domain, (2) determining the earthquake source parameters based on the Scaling Law,
and (3) generating the initial seafloor deformation that triggers the tsunami waves.

Modeling Domain

All simulations were carried out within a fixed geographic domain covering the southern coastal
region of Yogyakarta International Airport (YIA). The longitudinal and latitudinal boundaries
of this domain are listed in Table 1. This spatial extent forms the computational grid for the
TUNAMI F1 model and ensures that all epicenter scenarios fall within or adjacent to the region
of interest.
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Table 1: Modeling Area Boundaries

Longitude Latitude
103.928734  -6.402655
114.828952  -11.786096

Farthquake Source Parameters

The tsunami scenarios were constructed using earthquake source parameters derived from the
Scaling Law by [11]. Each scenario is characterized by the earthquake magnitude Mw, epicenter
location, focal depth, and fault geometry—defined through strike, dip, and slip angles. The
rupture length L and rupture width W describe the fault-plane dimensions, while the displacement
D represents the maximum seafloor uplift or subsidence. These parameters collectively define
the initial seafloor deformation that initiates the tsunami wave. The complete set of 36 scenarios
used in this study is shown in Table 2.

Table 2: 36 Earthquake Parameter Scenarios [11].
Mw Longitude Latitude Depth (km) Strike Dip Slip L (km) W (km) D (m)

7.0 106.578 -9.017 13.5 2950 7.1 90 41.7 20.4 3.5
7.3 106.578 -9.017 13.8 295.1 7.3 90 58.9 26.0 5.4
7.6 106.578 -9.017 13.6 2042 7.2 90 83.2 33.1 8.6
7.9 106.578 -9.017 13.6 2942 7.1 90 117.5 42.2 13.5
8.2 106.578 -9.017 13.8 2932 7.2 90 166.0 53.7 20.7
8.5 106.578 -9.017 14.3 2917 74 90 234.4 68.4 31.2
7.0 106.904 -8.300 28.3 2955 119 90 41.7 20.4 1.4
7.3 106.904 -8.300 28.3 2955 119 90 58.9 26.0 2.2
7.6 106.904 -8.300 28.3 295.5 120 90 83.2 33.1 3.4
7.9 106.904 -8.300 28.2 295.7 121 90 117.5 42.2 5.4
8.2 106.904 -8.300 28.0 296.5 124 90 166.0 93.7 8.6
8.5 106.904 -8.300 27.8 2979 127 90 234.4 68.4 13.5
7.0 107.967 -9.497 11.7 288.6 5.3 90 41.7 204 4.2
7.3 107.967 -9.497 11.7 288.1 5.3 90 58.8 26.0 6.7
7.6 107.967 -9.497 11.9 2875 5.5 90 83.2 33.1 10.1
7.9 107.967 -9.497 11.8 286.7 5.5 90 117.5 42.2 16.1
8.2 107.967 -9.497 12.0 2854 5.6 90 166.0 53.7 24.8
8.5 107.967 -9.497 12.5 283.7 6.1 90 234.4 68.4 36.8
7.0 109.730 -8.800 37.3 277.8 225 90 41.7 20.4 1.0
7.3 109.730 -8.800 37.3 27179 224 90 58.9 26.0 1.6
7.6 109.730 -8.800 37.5 278.1 224 90 83.2 33.1 24
7.9 109.730 -8.800 37.2 279.1 220 90 117.5 42.2 3.8
8.2 109.730 -8.800 37.2 280.0 21.8 90 166.0 93.7 6.0
8.5 109.730 -8.800 37.2 281.0 214 90 234.4 68.4 9.4
7.0 112.119 -10.256 10.2 2819 5.3 90 41.7 20.4 5.0
7.3 112.119 -10.256 10.3 2819 54 90 58.9 26.0 7.8
7.6 112.119 -10.256 10.0 281.7 5.2 90 83.2 33.1 12.6
7.9 112.119 -10.256 10.4 2824 5.5 90 117.5 42.2 18.9
8.2 112.119 -10.256 10.3 282.6 5.5 90 166.0 53.7 30.0
7.0 112.233 -9.255 314 283.6 18.7 90 41.7 204 1.2
7.3 112.233 -9.255 31.7 283.9 187 90 58.9 26.0 1.9
7.6 112.233 -9.255 30.9 284.2 183 90 83.2 33.1 3.1
7.9 112.233 -9.255 31.9 284.0 187 90 117.5 42.2 4.6
8.2 112.233 -9.255 324 284.2 187 90 166.0 53.7 7.1
8.5 112.233 -9.255 33.3 284.4 188 90 234.4 68.4 10.8
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Epicenter Distribution and Observation—Sensor Configuration

The selected epicenter locations were mapped onto the modeling domain to represent six distinct
source regions. Figure 1 shows the spatial arrangement of these epicenters, while Figure 2
illustrates the positions of observation and sensor points used to compare actual coastal conditions
with offshore detections.
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Figure 1: Modeling Area Boundaries and Earthquake Epicenters
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Figure 2: Observation and Sensor Points Near Yogyakarta International Airport (YTA)

Initial Water Surface Deformation

Using the earthquake parameters from each scenario, the initial seafloor deformation was computed
through the multi-deformation method. This deformation forms the initial condition for the
tsunami simulation in TUNAMI F1. Figure 3 provides examples of initial water surface conditions
for the six epicenter groups.

2.2 TUNAMI F1 Modeling

Numerical modeling using TUNAMI F1 is a linear model simulated for 2 hours or 7200 seconds
with a 30-second interval. The tsunami sea surface height modeling using TUNAMI F1 generates
the maximum water surface height and the wave arrival time at the observation points.
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Figure 3: Initial Water Surface Conditions for the Six Epicenter Groups

The simulation of tsunami wave propagation characteristics with TUNAMI F1 uses several
input data, including bathymetric data, which are converted into a spacing grid of 185 meters
(0.0016667 arc degrees), source data (initial tsunami height values), observation points, and
sensor points with a Geographic coordinate system (Longitude/Latitude). Table 3 shows the
settings for the TUNAMI F1 model simulation.

The mass conservation and momentum equations describe three-dimensional shallow-water
wave propagation. Following [8], the governing equations are given in Equations 1-4.

on  Ou  Ov OJw
ot  Odx Oy 0z (1)
ou ou ou ou 190p 1 <8Tm N OTay n 87962) _0

ot " Mor T Vay T et oae T o \ar T ey T as

ov ov ov Oov 10p 1 (01 0Ty aTyz> B
8t+u8x+v8y+w82+p8y+p<8x * oy + 0z =0 (3)
10p
202 =0 (4)

The variables used in the governing equations are defined as follows. The symbol ¢ denotes
time, while 1 represents the change in water surface elevation and h denotes the water depth. The
quantities u, v, and w correspond to particle velocities in the z, y, and z directions, respectively.
The parameter g is the gravitational acceleration, and 7;; indicates the normal or tangential
stress acting in the i-direction on the plane with orientation j.

The vertical momentum equation, combined with the surface boundary condition where the
pressure is zero (p = 0), leads to the hydrostatic pressure relation p = pg(n — z). To solve the
mass conservation equation, dynamic and kinematic boundary conditions are imposed at both
the free surface and the seabed. At the free surface, the pressure must vanish, as expressed in
Equation 5. The kinematic conditions relate the vertical velocity w to the time rate of change
and horizontal gradients of the free-surface elevation, as shown in Equations 6 and 7.

p=0 atz=n (5)
_On . On 9 _
w_8t+u8a:+v8y at z=mn (6)
_ o, on _
w = ué)_sc+v8_y at z=mn (7)
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The symbols used in these boundary conditions are defined as follows: 7 denotes the water
surface elevation, p is the fluid density, and p represents the hydrostatic pressure.

By integrating the vertical momentum equation from the free surface to the seabed using
Leibniz’s rule, the governing equations reduce to the depth-integrated shallow-water system
expressed in terms of flux (or volume flow). This formulation yields the two-dimensional continuity
and momentum equations shown in Equations 8-10. These equations describe the evolution of the
free-surface elevation and the corresponding mass fluxes M and N in the horizontal directions.

on oM 8_N B

oM 0 [M? d (MN o T M 0*M
E*%(F)*@(T)*gDaﬁ—A(W*a—yz (©)
ON 9 (MN d (N? o 7y O*’N  9°N
E—F@_x(T)Jr@_y(f)JrgDa_ij;_A(W—FB_y? (10)

In these equations, D = h + n denotes the total water depth, while 7, and 7, represent the
bottom friction in the x- and y-directions. The parameter A is the eddy viscosity coefficient,
assumed constant, and wind-induced surface stress is neglected. The flux terms M and N
correspond to depth-integrated discharges in the horizontal directions and are defined as:

M:/_nhudz:u(h—i—n):uD (11)

N:/_nhvdz:v(h—i-n):UD (12)

Based on the earthquake scenarios defined earlier, the TUNAMI F1 model was executed 36
times to generate the corresponding tsunami simulations. Each simulation produced a pair of
output files containing the maximum Sea Surface Height (SSH) and the Estimated Tsunami
Arrival Time (ETATSU), which were compiled as the primary dataset for developing and
validating the fuzzy logic early warning model. The overall simulation workflow is illustrated in
Figure 4, while the numerical configuration of the TUNAMI F1 model—including grid resolution,
spatial spacing, and time-stepping parameters—is summarized in Table 3.

Table 3: TUNAMI F1 Model Simulation Settings
Grid Size Spacing Grid Time Step Total Time Simulation Interval
X Y
655 324 1.0 2.0 7200 60

earthquake
parameter
determination

data
extraction

data TUNAMI F1 fivezgy egte model
model

collection simulation validation
development

Figure 4: Research Method Flowchart
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3 Results and Discussion

The results of running the TUNAMI F1 model 36 times are presented below. This simulation
was designed to test the effectiveness of an early warning system by establishing two different
types of data collection locations:

1. Observation Points: These points represent critical locations on the coast (beach) where
the actual impact or ground truth of the tsunami is measured. The Sea Surface Height
(SSH) and Estimated Time of Arrival (ETA) data at these points are considered the real
impact that will occur on land.

2. Sensor Points: These points are positioned offshore, simulating the location of tsunami
detection buoys (such as the DART system). These points are designed to capture tsunami
wave data before it reaches the coast, thus serving as the data source for the early warning
system.

The purpose of this analysis is to determine whether the data collected at the Sensor Points
can be used to accurately predict the tsunami characteristics (especially SSH) at the Observation
Points.

The data above serves as the basis for determining the membership functions in the fuzzy
logic model. This fuzzy logic model aims to compare whether the early warning system generated
by the fuzzy logic simulation at the sensor point corresponds to the actual tsunami sea surface
height at the observation point. Therefore, the analysis focuses on the data at the sensor points.

The input parameters used to model fuzzy logic in this study are ETATSU and SSH. Therefore,
membership functions (MEFs) are needed to categorize the data into groups. For SSH or tsunami
sea surface height, the membership function has been determined by BMKG [12], as shown in
(Figure 5). However, for ETATSU, no official authority has established a membership function, so
its determination is based on expert judgment. The ETATSU membership function is limited to
a time range of 50 minutes and divided into three categories: fast, moderate, and slow (Figure 6).
Subsequently, to implement the fuzzy logic model, a set of rules must be created, enabling the
fuzzy logic model to run and complete the data processing phase.

Membership function plots "™ """'* 181 Membership function plots "™ """ 181
low medium high very_high ) fast medium slow
e
0 5 10 0 5 10 15 20 25 30 35 40 45
Figure 5: MEF sea surface height Figure 6: MEF ETATSU

The fuzzy logic model demonstrated a high overall accuracy of 83.3% across the 36 simulated
scenarios, successfully classifying tsunami risk into "WASPADA’ (Advisory), 'SIAGA’ (Warning),
and "AWAS’ (Major Warning) categories. However, this overall figure masks a critical underlying
pattern: the model’s performance was not uniform across different source locations.

A deeper analysis reveals a stark performance divide. The model achieved a 100% success rate
for all magnitudes originating from Epicenter 1 and Epicenter 6. Conversely, all classification
errors occurred in scenarios from Epicenter 2, 3, 4, and 5, particularly at high magnitudes
(Mw 8.2 and 8.5). This pattern strongly suggests that a one-size-fits-all fuzzy model is
insufficient. The relationship between the tsunami parameters at the offshore Sensor Point and
the coastal Observation Point is not a simple, universal constant; it is highly dependent on the
local bathymetry and coastal geometry of each specific path.
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Table 4: ETATSU and SSH Data for 36 Tsunami Scenarios

No. Source Mag. Code Observation Points Sensor Points
ETA (min) SSH (m) ETA (min) SSH (m)
1 1 7 E1M70 54 0,06 24 0,03
2 1 7,3 E1M73 53 0,13 24 0,06
3 1 7,6 E1IM76 52 0,27 22 0,16
4 1 7,9 E1M79 51 0,56 21 0,32
5 1 8,2 E1MS82 49 2,15 19 0,49
6 1 8,5 E1M85 47 4,03 17 0,96
7 2 7 E2M70 70 0,03 27 0,01
8 2 7,3 E2M73 49 0,09 24 0,03
9 2 7,6 E2M76 52 0,27 22 0,16
10 2 7,9 E2M79 46 0,44 21 0,18
11 2 82  E2M82 44 0,85 19 0,21
12 2 8,5 E2M85 42 1,27 16 0,68
13 3 7 E3M70 42 0,15 13 0,04
14 3 7,3 E3M73 42 0,39 12 0,09
15 3 7,6 E3M76 41 0,86 11 0,19
16 3 7,9 E3M79 41 1,69 10 0,51
17 3 8,2 E3M82 40 3,28 8 1,28
18 3 8,5 E3M85 38 9,65 5 3,17
19 4 7 E4M70 21 0,10 3 0,02
20 4 7,3 E4MT73 21 0,29 1 0,06
21 4 7,6 E4AM76 21 0,69 0 0,13
22 4 7,9 E4MT79 21 1,66 0 0,35
23 4 8,2 E4M82 21 3,38 0 0,82
24 4 8,5 E4M85 21 5,62 0 1,70
25 5 7 E5M70 51 0,12 26 0,07
26 5 7,3 E5M73 51 0,28 25 0,12
27 5 7,6 E5M76 49 0,58 24 0,29
28 5 7,9 E5MT79 48 1,02 22 0,51
29 5 8,2 E5M82 45 1,78 20 0,76
30 5 8,5 E5M85
31 6 7 E6M70 79 0,04 Not reached 0,01
32 6 7,3 E6M73 42 0,04 30 0,02
33 6 7,6 E6M76 40 0,09 26 0,05
34 6 7,9 E6MT79 37 0,19 23 0,10
35 6 8,2 E6M82 30 0,55 20 0,20
36 6 8,5 E6M85 29 0,79 16 0,46

For Epicenters 1 and 6, the local geography may result in a simple, linear relationship (e.g., a
1m wave at the sensor consistently becomes a 1.5m wave at the coast). The fuzzy model was
able to successfully learn this simple rule. However, for Epicenters 2-5, the undersea topography
(such as submarine canyons or shallow reefs) likely causes complex, non-linear amplification
effects. This is the critical insight:

e Scenario E3M85 (Mw 8.5): A 3.17m wave at the sensor (already 'AWAS’) is amplified

nearly 300% to 9.65m at the coast.

o Scenario E4AM85 (Mw 8.5): A 1.70m wave at the sensor ("'STAGA’) is amplified 330% to
5.62m at the coast ("AWAS’).

The model’s errors are directly traceable to this non-linear amplification. The model’s most
significant failures occurred when it saw a sensor reading that, for most epicenters, would be
correct, but for that specific location, was a severe underestimation.

For example, the error in Scenario E2M85 (Mw 8.5)—which the analysis noted as 'invalid’—is
particularly illuminating. The sensor recorded only 0.68m (a ’STAGA’ level event), while the
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coast experienced 1.27m (also STAGA’). The model likely classified the 0.68m sensor reading
as "WASPADA’ based on its rules, failing to account for the 187% amplification specific to that
path. This is a classic classification failure, where the model’s generalized rules were incorrect
for a specific, complex case.

This is distinct from the issue in Scenario ESM85, where the simulation data itself was missing
(see Table 4). This is a simulation or input data failure, not a failure of the fuzzy logic model
itself, and must be treated as a null point in the accuracy calculation.

The analysis demonstrates that the primary limitation of the current model is its lack of
spatial awareness. It only considers what the wave height is, not where it is coming from and how
the local geography will transform it. This finding aligns with previous studies [1] but adds a
crucial, specific recommendation. Future work should move beyond simply refining membership
functions. To be effective, the model must:

e Develop Location-Specific Models: Instead of one generic model, location-specific
fuzzy models (or fuzzy rule-sets’) should be developed for different coastal segments, each
tuned to its unique bathymetric profile.

e Incorporate a New Input Variable: A more robust model would integrate a new input
variable, such as a 'Local Amplification Factor’ (LAF). This (pre-calculated) factor would
represent the specific amplification properties of the bathymetry between a given sensor
and a given observation point, allowing the model to dynamically adjust its warning level.

4 Conclusion

This study developed a fuzzy logic model for a tsunami early warning system by incorporating
maximum sea surface height and estimated arrival time. The model is integrated with TUNAMI
F1 simulations, which account for fluid dynamics and seabed topography.

The simulation results indicate that the model achieved an overall accuracy of 83.3%, with the
highest success rates observed in the first and sixth epicenters. However, the model exhibited errors
in several high-magnitude scenarios (Mw > 8.5), highlighting the need for further improvements
in defining membership functions and input parameters.

This study enhances the effectiveness of tsunami early warning systems through a fuzzy
logic—based approach. For future development, it is recommended to integrate additional
parameters such as local bathymetric effects and coastline variability and perform validation
using historical tsunami data to improve the model’s accuracy and reliability.

In conclusion, while this study confirms the potential of fuzzy logic, it critically highlights
that tsunami early warning is not just a magnitude problem; it is a location problem. A reliable
system must account for this complex, location-dependent amplification.
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