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Abstract

Renewable energy optimisation and early warning systems require accurate short-term wind
speed forecast. Anomalies in environmental data impair forecasting model reliability. This
paper presents an integrated approach using IoT-based remote sensing and time series
modelling to address the issue. IoT-based anemometer sensors collected wind speed data at
one-minute intervals from December 24, 2024, to January 10, 2025. Aggregating the raw data
into 5-minute intervals prepared it for the ARIMA model. This model determined temporal
patterns and predicted short-term wind speeds. Analyzing residuals between observed and
predicted results helped identify wind outliers. This approach is novel because it uses IoT-
based continuous sensing and time series modeling for real-time environmental monitoring.
Studies showed that a 65-minute frame with 5-minute intervals was best for replicating
wind speed dynamics. Six cycles of outlier detection found 87 outliers. The ARIMA model
improved predictions by include these outliers as exogenous variables. This emphasizes the
importance of fixing time series model anomalies to improve prediction. The augmented
ARIMA model with outlier corrections provides minute-level forecasts and reliable anomaly
identification for renewable energy optimization and early warning systems. This study
shows that new statistical methods and the Internet of Things (IoT) can improve real-time
environmental and energy decisions.
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1 Introduction

The Autoregressive Integrated Moving Average (ARIMA) time series model is an established
technique extensively employed in studying non-stationary data, particularly for modelling and
forecasting meteorological phenomena such as temperature, precipitation, and wind velocity
[1]–[4]. The model functions by integrating autoregressive (AR), differencing (I), and moving
average (MA) elements to capture short-term patterns and long-term trends. Several prior studies
have utilised ARIMA to model wind speed on both daily and monthly scales, including research
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by some researchers [5]–[7]. When applied to high-resolution data, however, conventional ARIMA
models frequently face a loss in performance. This is because these models do not explicitly
handle the presence of outliers, which are common in short-time-dimensional weather data.

In the West Kalimantan region, wind speed shows noticeable variability, particularly around
the year’s end during the monsoon transition period [8]. Toward late 2024, fluctuations in
wind conditions, along with meteorological irregularities, were reported at several monitoring
sites. Such variability can influence sectors including shipping safety, agriculture, and forest
fire management [9], underscoring the need for reliable forecasting systems. While minute-by-
minute wind speed data provide detailed temporal insights, they also pose challenges due to
high volatility and the presence of outliers. These outliers may arise from genuine localised
turbulence or transient weather phenomena, but they may also result from sensor noise or
equipment interference, making it essential to distinguish between true meteorological events
and artifacts.

Advancements in Internet of Things (IoT) technology facilitate the acquisition of real-time
atmospheric data at minute intervals. This detailed data enhances the precision of forecasts,
particularly within locally-focused early warning systems [10], [11]. The primary issue with
high-resolution data is the significant noise and the occurrence of outliers, including Additive
Outliers (AO) and Innovation Outliers (IO), which can affect the noise model parameters. Some
studies demonstrated the significance of outlier detection and correction in minute-level data
to enhance the precision of ARIMA models; however, the methodology remains confined to
small-scale experiments and has not been evaluated under extreme climate conditions in West
Kalimantan [12]–[14].

This study applies ARIMA modelling with iterative outlier detection and adjustment for
minute-level wind speed forecasting. While ARIMA and outlier correction are established tech-
niques in time series analysis, their integration with IoT-based real-time monitoring systems
for high-frequency environmental data remains underexplored, particularly in regions prone to
sudden wind fluctuations such as West Kalimantan. Rather than introducing a new forecast-
ing algorithm, this work demonstrates the practical effectiveness of an outlier-aware ARIMA
framework for enhancing short-term wind speed prediction. Although the present study does not
compare ARIMA against modern machine learning methods such as LSTM or GRU, it provides
a statistical baseline that highlights the importance of addressing anomalies in high-resolution
environmental data.

The remainder of this paper is organised as follows. Section 2 details the methodological
framework, covering the baseline ARIMA model, the outlier-augmented ARIMA formulation,
and the IoT-based wind/rain detection system. Section 3 reports the empirical results and their
discussion, including model identification, diagnostics, and the impact of outlier adjustments on
forecast accuracy. Section 4 summarises the main findings and outlines practical implications and
directions for future work. The Appendix compiles the complete iteration history and parameter
tables.

2 Methods
This section outlines the methodological framework adopted in this study. We begin by describing
the classical ARIMA model, which serves as the foundation for time series forecasting. The
discussion then extends to the ARIMA model with outlier factors, designed to handle anomalies
in the data. Finally, we present the rain and wind detection system that integrates sensor-based
measurements with forecasting techniques.

Nur’ainul Miftahul Huda 862



Combining IoT and Time Series Model for Minute-Level Outlier Detection . . .

2.1 ARIMA Model

The Autoregressive Integrated Moving Average (ARIMA) model is a prevalent statistical method
in time series forecasting. Since its inception by Box and Jenkins in 1976, ARIMA has been
extensively utilised across diverse domains, including economics, finance, meteorology, and
epidemiology. Numerous prior studies have demonstrated the efficacy of ARIMA in modeling
non-stationary data, including the research on stock price forecasting [15] and predicting daily
COVID-19 case numbers [16]–[18]. The primary benefit of ARIMA is its proficiency in effectively
managing historical data patterns via Autoregressive (AR), differencing (I), and Moving Average
(MA) components. The ARIMA(p,d,q) model is characterized by [19],

ϕ(B)(1 − B)dYt = θ(B)et

where

ϕ(B) = (1 − ϕ1B − ϕ2B2 − . . . )
θ(B) = (1 − θ1B − θ2B2 − . . . )
BdYt = Yt−d

The ARIMA approach begins by determining the stationarity of the data. If not, the differ-
entiation process continues until the data attains stationarity. Subsequently, the identification
and parameter estimation of the ARIMA(p, d, q) model are conducted, where p denotes the
autoregressive order, d represents the degree of differencing, and q signifies the moving average
order. Optimal model selection typically relies on the Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Root Mean Square Error (RMSE), or Mean Absolute
Percentage Error (MAPE) metrics. After establishing the model, a diagnostic test is conducted
on the residuals to verify that the model satisfies the white noise assumption [19]. The ultimate
outcome of an effective ARIMA model can facilitate short-term forecasts with a comparatively
narrow margin of error.

2.2 ARIMA Model with Outlier Factor

Outliers in time series data are points that drastically diverge from the overall trend and may
result from multiple sources, including recorded inaccuracies, external disruptions, or infrequent
occurrences (e.g., natural disasters or economic crises) [20], [21]. In time series analysis, outliers
can be categorised into many categories, including Additive Outliers (AO), Innovation Outliers
(IO), and level shifts. Identifying and categorising outliers compromises the model’s accuracy
[14].

The primary risk posed by outliers in time series data is their potential to undermine
fundamental model assumptions, including stationarity and the normality of residuals. Outliers
can lead to skewed parameter estimate findings, diminish forecasting accuracy, and elevate error
metrics such as MAPE or RMSE [22]–[24]. In an ARIMA model, an extreme outlier might result
in overfitting or erroneous model selection. Consequently, identifying and managing outliers
is an essential phase before constructing a dependable time series model. A traditional visual
technique for identifying outliers is the utilisation of box plots [25]. Upon detecting an outlier
via the box plot, the subsequent action may involve eliminating the data if deemed erroneous or
applying transformations such as winsorising, interpolation, or smoothing techniques to mitigate
its impact. In time series analysis, it is crucial to ascertain whether outliers possess any particular
significance (e.g., resulting from notable events) before making alterations or eliminations.

Two categories of outliers exist: Additive Outliers (AO) and Innovative Outliers (IO). Each
sort of outlier serves a distinct function based on its influence. AO outliers directly influence
when t = T , but IO outliers impact all subsequent observations following the detection of the
outlier, specifically YT , YT +1, . . . . The ARIMA model incorporating outlier factors is [26].
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Yt =

Xt + ωI
(TA)
t AO

Xt + θ(B)
ϕ(B)ωI

(TI)
t IO

with

I
(Tu)
t =

{
1 t = T

0 t ̸= T

and u = {I, A}.
In general, the ARIMA model used when more than one outlier is detected is defined by

Yt =
k∑

j=1
ωjvj(B)ITu

t + Xt (1)

where

Xt = θ(B)
ϕ(B)at

vj(B) =

1 AO
θ(B)
ϕ(B) IO

The methodology for identifying outliers in time series data follows an iterative procedure [26],
[27]. The process begins with obtaining the residuals of the fitted ARIMA model and proceeds
through several stages of detection, adjustment, and re-estimation until no further outliers are
detected, as outlined below.

1. Initialization. The algorithm starts with the residuals from the ARIMA model:

êt = π̂(B)Xt

= ϕ̂(B)
θ̂(B)

Xt.

2. Residual variance estimation. Compute the variance of the residuals to obtain the
initial estimate of the innovation variance:

σ̂2
a = 1

n

n∑
t=1

ê2
t .

3. Outlier test statistics. For each observation t = 1, 2, . . . , n, compute the statistics

λ̂1,t = τ ω̂AT

σ̂a
, λ̂2,t = ω̂IT

σ̂a
.

An outlier is identified if either statistic exceeds the threshold C (commonly set to 3 or 4).
In this study, C = 3 was selected, corresponding to a 99.7% confidence level under normality.
This threshold provides a balance between sensitivity and false positives. Specifically:

• If λ̂T = |λ̂1,t| > C, then an Additive Outlier (AO) is identified at time T .
• If λ̂T = |λ̂2,t| > C, then an Innovation Outlier (IO) is identified at time T , with

λ̂T = max{λ̂1,t, λ̂2,t}.

4. Residual adjustment. Once an outlier is detected, adjust the residuals accordingly:

ẽt =

êt − ω̂Aπ̂(B)I(TA)
t , AO,

êt − ω̂II
(TI)
t , IO.
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5. Iteration. Repeat the outlier detection and adjustment steps (Steps 3 and 4) using the
updated residuals. The procedure terminates when no additional outliers are identified.

Once all outliers have been identified, the ARIMA modelling is re-executed by incorporating
the outlier factor corresponding to the identified instances. After the model is conducted and
all the parameters are estimated, repeat the first until the fifth process till no more outlier is
detected. The ARIMA modelling technique using outlier factors is illustrated in Figure 1.

Figure 1: Flowchart ARIMA model, outlier detection, and ARIMA model + outlier factor model.

2.3 Wind Detection System

This rain and wind detection system is developed by merging multiple environmental sensors
linked via a Wireless Sensor Network (WSN) [28]. Rain sensors employ optical or electrically
conductive mechanisms to identify precipitation. In contrast, wind speed and direction are
gauged using an anemometer and wind vane, which rely on magnetic or ultrasonic sensors [29].
Each sensor is linked to a microcontroller, such as the ESP32, which regularly gathers data.
Sensor data is automatically calibrated for precision and transmitted via an Iot network utilising
communication modules such as Wi-Fi, LoRa, or GSM (e.g., SIM800L) to a server or cloud
platform. Data is received and saved in a database for visualisation and analysis on the backend.
The system facilitates real-time and historical monitoring, allowing for the prompt identification
of severe weather and expeditious, data-informed decision-making [30].

3 Results and Discussion
This section presents the empirical findings and their interpretation. We begin with a descriptive
overview of the wind speed data and the preprocessing steps applied. Next, the results of ARIMA
model identification and parameter estimation are reported, followed by the incorporation of
outlier factors into the modelling framework. Finally, the discussion highlights the implications
of these findings for short-term wind speed forecasting and IoT-based monitoring systems.
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3.1 Results

Wind speed data is acquired by an automatic detection instrument, a cup-type anemometer
that operates to catch wind gusts and turn them into rotational motion. Each cup rotation is
measured by magnetic or optical sensors within the device, subsequently converted into speed
units (meters per second). The apparatus is positioned at a conventional elevation of 10 meters
above ground level, adhering to meteorological measurement regulations to prevent interference
from structures or vegetation. Data recording was automated at one-minute intervals, yielding
about 25,920 data points from 24 December 2024 to 10 January 2025. This data represents
real-time wind speed variations, encompassing minor and significant swings.

The data were averaged at five-minute intervals to enhance analysis and mitigate the impact
of brief, dramatic changes. This methodology was employed due to the propensity of 1-minute
intervals to provide extremely volatile data, but not all minor fluctuations are pertinent for
medium-term analytical requirements. A more stable representation of the wind speed trend
is achieved by averaging every five minutes without compromising its fundamental properties.
Consequently, the data volume was diminished to approximately 5,184 points, enhancing pro-
cessing and visualisation efficiency. The preprocessing phase involved addressing missing values
via linear interpolation and identifying outliers using the interquartile range (IQR) approach,
yielding a refined dataset prepared for subsequent analysis.

Figure 2: Time Series Data Plot.

The time series plots illustrate wind speed variations from 24 December 2024 to 10 January
2025 (shown in Figure 2), with data averaged at five-minute intervals to mitigate noise and
enhance analytical stability. Most wind speed measurements remain consistent within the range
of 0–10 m/s, indicative of the climatic traits of West Kalimantan, which typically experiences
low to moderate surface winds.

Nevertheless, distinct spikes manifest at specific intervals, signifying the existence of outliers
or extraordinary wind phenomena. This phenomenon may be attributed to local atmospheric
dynamics during the rainy season, which often occurs in West Kalimantan from late December to
early January. These spikes may represent actual events, such as abrupt strong gusts preceding
substantial rainfall, or may simply result from sensor interference.

Acknowledging the presence of outliers is crucial, as they can impair the efficacy of predictive
models like ARIMA if left unaddressed. Therefore, outlier detection and remediation are
incorporated into the preprocessing stage to enhance the accuracy of predictive models and
to strengthen IoT-based wind monitoring systems in tropical locations. The subsequent steps
involve the implementation of the ARIMA model considering outlier factors:

3.1.1 ARIMA Modelling

Model identification was conducted using ACF and PACF diagnostics (Figure 3). Following the
order selection criteria in [26], candidate models were ARIMA(p, 0, 0) with p ∈ {1, 7, 10, 13} and
q = 0. Parameters for each candidate were then estimated by maximum likelihood (MLE).
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(a) (b)
Figure 3: (a) ACF Plot and (b) PACF Plot.

The parameter estimation results for each possible model are given in Table 1.

Table 1: ARIMA model based on ACF and PACF plot (Figure 3).

Ordo Model

AR(1) Yt = 4.09 + 0.59 Yt−1

AR(7) Yt = 4.09 + 0.26 Yt−1 + 0.17 Yt−2 + 0.14 Yt−3 + 0.07 Yt−4 + 0.07 Yt−5 + 0.09 Yt−6 + 0.05 Yt−7
AR(10) Yt = 4.09 + 0.26 Yt−1 + 0.17 Yt−2 + 0.13 Yt−3 + 0.06 Yt−4 + 0.07 Yt−5 + 0.09 Yt−6 + 0.04 Yt−7

−0.03 Yt−8 + 0.04 Yt−9 + 0.04 Yt−10
AR(13) Yt = 4.09 + 0.26 Yt−1 + 0.17 Yt−2 + 0.13 Yt−3 + 0.06 Yt−4 + 0.07 Yt−5 + 0.07 Yt−6 + 0.08 Yt−7

+0.04 Yt−8 − 0.04 Yt−9 + 0.03 Yt−10 + 0.03 Yt−11 − 0.01 Yt−12 + 0.03 Yt−13

The final phase of the modelling process is the diagnostic assessment. According to the
diagnostic test in Table 2, none of the models satisfied normality and residual independence
criteria. Consequently, the model exhibits outliers, necessitating the implementation of an outlier
detection algorithm based on model residuals. The selected model has the lowest RMSE value
(bold text in Table 2), specifically the AR(13) model.

Table 2: Diagnostic Test.

Ordo Dependency Test Normality Test RMSE

AR(1) Not fulfilled Not fulfilled 4.607
AR(7) Not fulfilled Not fulfilled 4.151
AR(10) Not fulfilled Not fulfilled 4.143
AR(13) Not fulfilled Not fulfilled 4.138

3.1.2 ARIMA Model with Outlier Factor

As seen in the flowchart in Figure 1, the subsequent step involves identifying outliers based on
the residuals of the AR(13) model. Iteration 0 represents the AR(13) model. Iteration 1 results
from outlier detection with the model derived from iteration 0, and so forth. Table 3 presents
the outcomes of outlier detection throughout six iterations. No outliers were identified following
the sixth round. Most outliers were identified in the initial round.

Upon completing the iteration 1 process, proceed to estimate the parameters of the ARIMA
model by incorporating the outlier component (refer to Equation 1). The resultant parameters
are presented in Table 4. Upon the completion of parameter estimation in iteration 1, the
outlier detection process for iteration 2 is conducted by examining the residuals of the ARIMA
model, incorporating the outlier factor from iteration 1. The outlier detection time from the
second iteration is subsequently incorporated into the ARIMA model along with the outlier
factor derived from the first iteration. Additionally, parameter estimation for the ARIMA model
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Table 3: Outlier’s Time Detected. The blue text indicates the number of outliers detected in that
iteration.

Itr. Innovative Outlier Additive Outlier

1 120; 121; 886; 888; 892; 1596; 2436; 2449;
2450; 2453; 2454; 2458; 2994; 3002; 3005;
3014; 3017; 3270; 3271; 3277; 3557; 3562;
3575; 3856; 3860; 3872; 3876; 3878; 4142;
4154; 4155; 4393; 4402; 4405; 4408; 4416;
4711; 4712 → (38)

122; 890; 891; 1599; 1601; 1864; 2026; 2114;
2452; 2463; 2465; 2985; 3016; 3021; 3268;
3269; 3276; 3567; 3570; 3578; 3582; 3863;
3867; 3881; 3883; 3896; 4131; 4156; 4160;
4407; 4417; 4422; 4428; 4717 → (34)

2 3006; 3272; 3558; 4406 → (4) 2460; 3015; 3564; 3576; 4413; 4426 → (6)
3 2459 → (1) 3009; 3563; 4713 → (3)
4 3275 → (1) 123 → (1)
5 3278 → (1) → (0)
6 → (0) 3008 → (1)

(a) (b)
Figure 4: Diagnostic Test (a) Dependency Residual and (b) Normality Residual for ARIMA Model with
Outlier Factors

is conducted by incorporating outlier components identified in iterations one and two. This
procedure is reiterated until a model with residuals no longer identifiable as outliers is generated.

Table 4: ARIMA, Innovative Outlier (IO), and Additive Outlier (AO) per Iteration

Itr. ARIMA IO AO
(µ; ϕ1; . . . ; ϕ13) (ωTI1I

(TI1)
t ; . . . ; ωTIn

I
(TIn)
t ) (ωTA1I

(TA1)
t ; . . . ; ωTAn

I
(TAn)
t )

0 4.09; 0.26; . . . ; 0.03
1 3.87; 0.23; . . . ; 0.01 24.18; 20.18; . . . ; 18.65 35.01; 18.67; . . . ; 17.29
2 3.84; 0.21; . . . ; 0.01 24.32; 20.05; . . . ; 12.83 35.13; 20.52; . . . ; 16.49
3 3.84; 0.20; . . . ; 0.01 23.62; 21.46; . . . ; -8.23 37.59; 18.73; . . . ; 15.81
4 3.84; 0.20; . . . ; 0.01 25.75; 22.03; . . . ; -9.76 36.44; 19.26; . . . ; 14.82
5 3.84; 0.20; . . . ; 0.01 25.87; 22.19; . . . ; -16.88 36.49; 19.32; . . . ; 14.85
6 3.84; 0.20; . . . ; 0.01 24.33; 19.65; . . . ; -7.19 34.40; 19.12; . . . ; 15.41

Upon obtaining the ARIMA model with the outlier component, a diagnostic test is subse-
quently performed to assess the influence of the outlier factor on the model. According to Table
4, outliers influenced model residuals that failed to meet the diagnostic criteria. The diagnostic
test outcomes for the ARIMA model incorporating the outlier component are presented in Figure
4, indicating that the ARIMA model with the outlier factor has satisfied both diagnostic tests.
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Table 4 presents the brief of re-estimated ARIMA parameters along with the number of
outliers identified at each iteration, the results are presented in more detail in the appendix.
While the complete iteration history is provided for transparency, the primary value of this table
lies in showing how the parameter estimates stabilize after successive adjustments. Specifically,
the initial iterations reveal relatively large shifts in parameter values as the model accounts for
the presence of outliers. In contrast, by the final iterations, both ARIMA parameters and the
number of newly detected outliers converge, indicating that the model has effectively adjusted
for the underlying anomalies. This progression highlights the iterative nature of outlier detection
and re-estimation, demonstrating that stable parameter estimates are only achieved once the
majority of influential outliers have been incorporated into the model.

In addition to the diagnostic perspective, outliers also influence model accuracy. The baseline
ARIMA model produced an RMSE of 4.138, whereas the ARIMA model incorporating outlier
components improved the fit with an RMSE of 3.259. A comparison of the observed data
to the fitted values for both models is presented in Figure 5. To further evaluate predictive
performance, the mean absolute percentage error (MAPE) was also calculated, yielding 17.09%
for the outlier-adjusted ARIMA model. These results demonstrate that accounting for outliers
improves short-term forecasting accuracy. Nevertheless, they are based primarily on in-sample
evaluation.

(a)

(b)
Figure 5: Wind Speed Data (Blue Line) and Fitted Values (Red Line) (a) ARIMA Model without
Outlier Factor and (b) ARIMA Model with Outlier Factor

Figure 5 illustrates that the ARIMA model incorporating outlier effects significantly influences
the ability to get extreme data points. Considering several factors, including diagnostic tests,
model correctness, and the capacity to identify extreme values, the model incorporating the
outlier component is highly effective for analysing wind speed data patterns. The model can be
employed to forecast wind speed.
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3.2 Discussion

The ARIMA model utilised in this study demonstrates significant efficacy in modelling high-
resolution wind speed data patterns, particularly following an iterative outlier detection and
adjustment process. This procedure involves detecting outliers from the original model residuals,
examining the ACF and PACF patterns, and assessing the RMSE value for each iteration. The
results indicate that the AR(13) model exhibits the optimal performance, evidenced by the lowest
RMSE, suggesting that the wind speed at any point is significantly affected by the speed data from
the preceding 13 periods, around 65 minutes prior (with a 5-minute interval every observation).
This indicates that wind speed dynamics exhibit significant autoregressive behaviour beyond
one hour, which is crucial for short-term forecasting. The use of this comparatively elevated AR
order signifies that local atmospheric processes exhibit significant temporal dependency at high
time resolution.

Besides their statistical efficacy, ARIMA models have demonstrated considerable reliability
when applied to 5-minute data, capturing short-term dynamics more precisely than daily or
hourly data. The model’s responsiveness to minute-scale variations renders it appropriate for
real-time monitoring or control systems, including wind turbine regulation and innovative grid
applications. This study’s minute-level forecasting methodology is a distinctive feature of the
research focused on hourly or daily predictions. Minute-level forecasting offers substantial
benefits in enhancing the accuracy of swift decision-making, particularly during abrupt weather
fluctuations. The model employed for minute-level wind speed forecasting for the subsequent
hour is the ARIMA(13,0,0) model, incorporating outlier components (refer to Table 4, at the
sixth iteration of the model). However, because

I
(Tu)
t =

{
1 t = T

0 t ̸= T

Then, for forecasting, I
(Tu)
t it will always be 0. Consequently, the model at the sixth iteration

becomes

Ŷ5107+h = 3.831 + 0.202Y5107+h−1 + 0.176Y5107+h−2 + 0.120Y5107+h−3

+ 0.057Y5107+h−4 + 0.052Y5107+h−5 + 0.049Y5107+h−6 + 0.033Y5107+h−7

− 0.005Y5107+h−8 + 0.011Y5107+h−9 + 0.025Y5107+h−10 + 0.006Y5107+h−11

+ 0.020Y5107+h−12 + 0.014Y5107+h−13

(2)

The prediction results for the next hour are given in Figure 6 below.

Figure 6: Minute-Level Prediction Result for 1 Hour (Red Line) based on The ARIMA Model With
Outlier Factors

The efficacy of this concept is predominantly contingent upon the backing of an Internet
of Things (IoT)-driven data gathering system, facilitating continuous, automated, and real-
time documentation of wind speed. The Internet of Things (IoT) technology offers benefits
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related to temporal precision, seamless system integration, and enhanced operational efficiency.
Incorporating minute-level data, iterative outlier detection and adjustment, ARIMA modelling,
and IoT data collecting establishes a refined and practical framework for accurate short-term
wind speed modelling.

4 Conclusions

This study shows that incorporating Additive Outliers (AO) and Innovative Outliers (IO) into the
ARIMA framework improves 5-minute wind-speed forecasts. Using a six-stage iterative procedure,
an AR(13) specification was selected as optimal. The outlier-adjusted ARIMA model achieved
an in-sample RMSE of 3.259 and a MAPE of 17.09%, improving upon the baseline ARIMA
RMSE of 4.138. These results indicate that short-term variability at a 5-minute resolution can be
effectively captured by dependencies extending up to 65 minutes (13 lags). The use of granular
IoT-based sensing is essential, as it enables the identification of micro-patterns and transient
disturbances that may be missed at coarser resolutions. Together, IoT sensing and outlier-aware
ARIMA modelling provide accurate and timely short-horizon forecasts, supporting real-time
wind monitoring and early warning applications.
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Appendix

ARIMA, Innovative Outlier (IO), and Additive Outlier (AO) per Iteration

Itr. ARIMA IO AO
(µ; ϕ1; . . . ; ϕ13) (ωTI1I

(TI1)
t ; . . . ; ωTIn

I
(TIn)
t ) (ωTA1I

(TA1)
t ; . . . ; ωTAn

I
(TAn)
t )

0 4.09; 0.26; 0.16;
0.13; 0.06; 0.07;
0.08; 0.04; -0.04;
0.03; 0.03; -0.01;
0.03; 0.03

1 3.87; 0.23; 0.17;
0.12; 0.07; 0.05;
0.06; 0.03; -0.01;
0.01; 0.04; -0.02;
0.03; 0.01

24.18; 20.18; 24.12; 25.46; -20.15; 24.72;
23.59; 27.26; 25.27; 9.93; 10.62; -23.94;
23.05; 20.95; 19.05; 18.44; -7.80; 37.79;
33.82; -10.18; 21.19; 14.96; 19.51; 25.46;
22.62; 18.94; 20.27; 19.93; 26.59; 24.05;
23.04; 23.13; 22.22; 19.57; 13.24; -17.86;
22.09; 18.65

35.01; 18.67; 12.18; 22.72; 19.92; 24.19;
26.04; 23.41; -9.97; 23.09; 20.17; 25.15;
19.28; 19.89; -8.68; -8.64; 14.35; 16.55;
19.13; 16.88; 15.75; 19.32; 23.09; 17.54;
16.95; 23.28; 22.89; 19.22; 19.09; -14.17;
-18.64; -18.06; 14.35; 17.29

2 3.84; 0.21; 0.17;
0.13; 0.05; 0.05;
0.05; 0.05; -0.01;
0.01; 0.04; -0.01;
0.03; 0.01

24.32; 20.05; 25.50; 25.25; -12.63; 21.70;
23.58; 26.27; 24.48; 11.71; 11.21; -17.32;
21.91; 20.64; 19.53; 18.85; -12.75; 41.61;
39.21; -14.39; 21.14; 18.01; 19.13; 25.22;
20.55; 18.67; 21.99; 20.49; 27.14; 22.27;
21.16; 23.07; 24.35; 17.99; 11.01; -17.28;
24.52; 20.14; 13.21; 11.84; 16.86; 12.83

35.13; 20.52; 13.59; 21.84; 19/26; 24.17;
25.51; 24.71; -9.85; 20.85; 19.71; 25.11;
15.89; 20.19; -8.69; -7.57; 13.88; 16.67;
19.54; 17.14; 15.34; 19.22; 23.19; 17.61;
16.66; 22.49; 23.04; 20.48; 19.69; -16.23;
-13.99; -15.79; 15.55; 18.65; 10.52; 15.61;
15.03; 15.71; -14.02; 16.49

3 3.84; 0.20; 0.18;
0.13; 0.06; 0.05;
0.05; 0.05; 0.04;
-0.05; 0.03; 0.04;
-0.01; 0.02; 0.01

23.62; 21.46; 25.69; 24.76; -13.03; 21.52;
22.85; 24.01; 21.93; 12.48; 11.97; -23.07;
21.30; 23.07; 15.58; 18.05; -13.90; 41.21;
33.58; -13.95; 21.09; 20.84; 20.49; 25.44;
20.81; 19.54; 20.63; 21.28; 27.05; 23.45;
19.75; 24.49; 24.80; 19.37; 10.33; -18.53;
24.29; 21.54; 12.15; 8.37; 18.02; 10.58;
-8.23

37.59; 18.73; 12.85; 20.87; 19.72; 23.83;
26.79; 24.59; -9.32; 21.27; 20.18; 24.94;
15.76; 19.41; -7.76; -9.37; 11.93; 18.36;
19.56; 15.50; 16.72; 19.14; 23.19; 17.94;
17.75; 23.30; 22.27; 17.26; 19.04; -13.95;
-17.11; -15.83; 14.22; 19.30; 17.58; 14.35;
17.54; 14.79; -15.17; 15.84; 11.98; 20.10;
15.81

4 3.84; 0.20; 0.18;
0.13; 0.6; 0.05;
0.05; 0.02; -0.01;
0.02; 0.04; -0.01;
0.03; 0.01

25.75; 22.03; 24.27; 24.22; -17.14; 22.34;
23.48; 25.13; 21.75; 10.56; 14.25; -21.11;
22.37; 21.14; 18.35; 17.84; -12.20; 42.53;
32.75; -12.83; 21.69; 19.62; 20.47; 27.76;
22.69; 19.84; 21.05; 23.68; 26.57; 22.29;
18.33; 24.70; 23.36; 14.98; 8.08; -20.39;
23.00; 21.91; 11.75; 4.88; 19.46; 17.43;
-14.82; -9.76

36.44; 19.26; 13.13; 21.32; 19.05; 24.14;
26.92; 24.63; -10.66; 21.57; 19.63; 24.65;
16.84; 19.77; -6.99; -9.20; 7.61; 17.97;
20.01; 16.68; 17.44; 17.64; 21.93; 17.85;
18.28; 24.24; 22.38; 17.22; 18.57; -16.33;
-19.30; -16.87; 13.86; 19.99; 9.57; 14.84;
17.65; 17.13; -16.35; 14.56; 10.56; 18.60;
18.19; 14.82

5 3.84; 0.20; 0.19;
0.13; 0.06; 0.06;
0.05; 0.03; -0.01;
0.01; 0.03; -0.01;
0.02; 0.01

25.87; 22.19; 25.07; 24.01; -16.98; 22.34;
23.24; 25.06; 21.81; 10.87; 14.06; -21.13;
21.87; 20.21; 17.76; 17.78; -11.98; 42.53;
34.53; -16.12; 21.67; 19.61; 19.57; 27.38;
23.07; 20.37; 23.57; 20.47; 26.77; 22.27;
18.44; 24.21; 22.99; 15.34; 7.11; -20.56;
22.65; 20.10; 14.96; 5.55; 19.00; 17.86;
-12.99; -12.34; -16.88

36.49; 19.32; 13.15; 21.69; 19.14; 24.87;
27.55; 24.64; -10.93; 21.35; 19.49; 24.68;
16.57; 19.62; -7.21; -8.72; 7.26; 17.67;
20.05; 15.82; 17.76; 17.54; 22.17; 17.17;
17.04; 24.16; 22.32; 16.79; 18.16; -16.69;
-19.25; -16.89; 14.04; 20.31; 10.55; 15.59;
18.08; 15.19; -17.78; 15.36; 11.92; 17.87;
18.47; 14.85

6 3.84; 0.20; 0.18;
0.12; 0.06; 0.05;
0.05; 0.03; -0.01;
0.01; 0.03; 0.01;
0.02; 0.01

24.33; 19.65; 24.67; 25.90; -12.86; 22.21;
23.31; 25.61; 22.41; 15.37; 11.49; -22.87;
21.03; 22.18; 19.02; 18.49; -13.55; 44.54;
32.70; -8.70; 21.07; 20.09; 18.96; 27.37;
19.39; 20.51; 20.28; 19.91; 26.35; 22.22;
17.89; 23.67; 23.99; 15.88; 7.66; -18.27;
25.01; 22.27; 15.61; 9.85; 16.56; 13.74;
-4.67; -13.49; -7.19

34.40; 19.12; 13.33; 21.61; 19.97; 24.26;
25.55; 24.45; -8.67; 22.58; 20.06; 25.09;
15.65; 19.34; -8.54; -8.92; 13.91; 17.94;
19.79; 16.51; 15.95; 19.09; 22.26; 17.44;
16.56; 23.20; 22.53; 16.89; 18.45; -14.69;
-13.67; -15.82; 14.97; 19.40; 12.86; 14.56;
16.97; 14.74; -17.33; 14.64; 13.15; 19.84;
18.79; 13.82; 15.41
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