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Abstract

This study investigates the spatial distribution of earthquakes in Sumatra using the DBSCAN
clustering algorithm applied to seismic data spanning 1 January 2000 to 31 December 2023.
The analysis identified two distinct seismic clusters: one in the northern region (Aceh and
North Sumatra) and another in the southern region (Lampung, Bengkulu, and West Sumatra),
while several events in central areas were classified as noise. Cluster validity assessment
confirmed that the identified groups are compact and well separated, reflecting meaningful
seismotectonic segmentation. Statistical testing further revealed significant differences in
earthquake depth and magnitude between the clusters, supporting the robustness of the
findings. Notably, the southern cluster corresponds to the Mentawai Fault system, whereas
the northern cluster aligns with the subduction zone and the Sumatran Fault. DBSCAN
proved particularly effective in this context as it can capture clusters of arbitrary shapes,
consistent with the complex geological structures governing seismicity in Sumatra.
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1 Introduction
Spatial data refers to information associated with the geographic location or position of objects
on the Earth’s surface. Spatial clustering is widely applied to identify geographic distribution
patterns and spatial relationships among locations or regions that share similar characteristics.
According to Aldstadt [1], a spatial cluster is defined as a geographically bounded group of events
with sufficient size and density such that their occurrence is unlikely to be due to random chance.
Based on the techniques used to define clusters, spatial clustering algorithms can generally be
categorized into four groups [2], [3]: hierarchical clustering methods [4], [5], [6], partitional
clustering algorithms [7], [8], [9], density-based clustering algorithms [10], [11], [12], [13], and
grid-based clustering algorithms [14].
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Indonesia is located in one of the most tectonically active regions in the world [15], as it lies at
the convergence of three major tectonic plates: the Eurasian, Indo-Australian, and Pacific Plates.
According to data from Badan Pusat Statistik (BPS), in 2023 Indonesia experienced more than
11,000 earthquakes, 31 of which resulted in natural disasters [16]. Along the western margin of
Sumatra, tectonic plate interactions have formed a major subduction zone, the Sumatran Fault
System (SFS), and the Mentawai Fault. These geological structures make the Sumatra region
highly vulnerable to seismic hazards [17].

Various clustering methods have been applied to seismic data. For instance, K-means
clustering has been used to map earthquake vulnerability in Istanbul, Turkey [18], to analyze
seismic events at the Yongshaba mine in China [19], and to identify epicenter clusters in Bengkulu
Province, Indonesia, where five distinct clusters were found both on land and offshore [20].
Hierarchical clustering has also been employed to group earthquake events based on waveform
similarity and travel-time differences, as shown in studies from Spanish Springs and Sheldon,
Nevada [21]. While K-means and hierarchical clustering are often considered conventional
methods due to their simplicity and ease of use, they tend to be less effective for datasets with
noise or irregular spatial distributions [5].

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) provides an alterna-
tive approach capable of detecting clusters of arbitrary shapes while effectively handling noise
[22]. DBSCAN defines clusters as dense regions separated by areas of lower density, making
it well-suited for large and complex spatial datasets. Unlike conventional clustering methods
that rely mainly on distance metrics, DBSCAN employs a density-based approach, enabling the
detection of complex and nonlinear spatial patterns that might otherwise be overlooked [23], [24].

Earthquake data are typically represented by geographic coordinates (longitude and latitude)
together with attributes such as magnitude and depth. DBSCAN is particularly appropriate for
analyzing such data, as it identifies density-based spatial patterns without requiring the number
of clusters to be predefined. Unlike centroid-based methods such as K-means, DBSCAN can
capture clusters of arbitrary shapes, which is critical since earthquake distributions often follow
complex geological structures, including elongated subduction zones, active faults, or volcanic
regions. Previous studies in Indonesia have employed DBSCAN, but most were conducted at the
national scale, producing generalized patterns of earthquake distribution across the archipelago
[11]. For example, research in West Java identified 12 earthquake clusters using DBSCAN [10].
However, despite the region’s high seismic risk and tectonic complexity, applications of DBSCAN
at the regional scale in Sumatra remain limited.

This study addresses this gap by applying DBSCAN to earthquake data from Sumatra,
aiming to uncover spatial patterns of seismicity and contribute novel insights into the region’s
seismic segmentation. The findings are expected to strengthen the scientific basis for disaster
risk reduction and mitigation strategies in one of Indonesia’s most seismically active regions.

The remainder of this paper is organized as follows. Section 2 describes the data sources,
magnitude harmonization, and declustering procedures, and details the methods employed,
including Nearest-Neighbor Analysis, Moran’s Index, and DBSCAN with its evaluation metrics.
Section 3 presents the empirical findings, parameter sensitivity analysis, and spatial interpretation
of the resulting clusters with respect to major tectonic structures. Finally, Section 4 summarizes
the main conclusions, discusses implications for seismic hazard delineation, and outlines directions
for future work.

2 Methods
This study utilizes secondary data from an earthquake event catalog for the Sumatra region,
obtained from two sources: the International Seismological Centre (ISC) Bulletin and the
Indonesian Meteorology, Climatology, and Geophysics Agency (BMKG). The dataset covers the
period from 1 January 2000 to 31 December 2023 and consists of 2,771 earthquake events with
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magnitudes greater than 5.0 Mw. According to [25], earthquakes with magnitudes between 5.0
and 5.9 have the potential to cause localized damage; therefore, this study focuses on events
considered capable of generating such impacts. Geographically, the study area encompasses the
entire island of Sumatra, bounded by coordinates ranging from 95° to 105° East longitude and
6° North to 6° South latitude. The earthquake catalog includes information such as epicenter
coordinates (latitude and longitude), magnitude, and focal depth.

The seismic data initially comprised various types of magnitude scales, including Surface Wave
Magnitude (Ms), Bodywave Magnitude (mb), and Local Magnitude (ML). To ensure consistency,
all magnitudes were converted to Moment Magnitude (Mw) using established conversion formulas,
as referenced in [26]. Prior to further analysis, the dataset was declustered to separate mainshock
events from aftershocks. This process was carried out using the Uhrhammer algorithm [27].

2.1 Nearest-Neighbor Analysis and Moran’s Index

Nearest-Neighbor Analysis (NNI) is a statistical method used to evaluate the presence and
degree of spatial clustering or dispersion among geographic locations (geometric points) [28]. The
procedure involves calculating the average distance from each point to its nearest neighbor. The
NNI value is determined by comparing the observed mean nearest-neighbor distance with the
expected mean distance under a random spatial distribution [28]. The NNI is interpreted relative
to a reference value of 1. Values of NNI equal to 1 indicate a random spatial distribution. Values
of NNI < 1 suggest a clustered pattern, with values approaching 0 indicating a stronger degree
of clustering. Conversely, NNI > 1 suggests a dispersed spatial pattern [28]. To statistically
evaluate the spatial distribution pattern, the following hypotheses are formulated [29].

Spatial autocorrelation refers to the correlation of a variable with itself across space. The
presence of spatial autocorrelation indicates that the attribute value of a given region is associated
with the attribute values of neighboring regions. One of the most commonly used statistical
measures for quantifying spatial autocorrelation is Moran’s Index. The Moran’s Index can be
expressed as in [30].

2.2 Density-Based Spatial Clustering of Applications with Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-based
clustering algorithm originally proposed by Ester et al. [24]. It is designed to detect clusters of
arbitrary shapes in the presence of noise, particularly within high-dimensional spatial and non-
spatial datasets. The core concept of DBSCAN is to identify clusters as regions with high point
density, separated by areas of lower density. Unlike conventional clustering methods, DBSCAN
does not require prior specification of the number of clusters and is capable of identifying noise
or outlier points.

The algorithm relies on two main parameters: epsilon (Eps), which defines the radius of the
neighborhood, and minimum points (MinPts), which specifies the minimum number of points
required within that radius for a point to be classified as a core point. A neighborhood defined
by radius Eps must contain at least MinPts points, implying that the local density exceeds a
certain threshold. The ε-neighborhood of an arbitrary point p is formally defined as follows [22]:

Nε(p) = {q ∈ D | dist(p, q) < ε} (1)

where D is the object database. If the ε-neighborhood of a point p contains at least the minimum
number of points (MinPts), then p is classified as a core point. A core point is formally defined
as follows [22]:

|Nε(p)| ≥ MinPts (2)

The following outlines the algorithm of the DBSCAN clustering method:
1. Define the values of ε (Eps) and MinPts to be used.
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2. Randomly select an initial observation p.
3. Calculate the distance between observation p and all other observations using the Euclidean

distance formula.
4. Identify all observations that are density-reachable from observation p.
5. If the number of observations within the ε-neighborhood of p is greater than or equal to

MinPts, then p is categorized as a core point, and a cluster is formed.
6. If p is a border point with no density-reachable observations, then proceed to the next

unvisited observation.
7. Repeat steps 3 to 6 until all observations have been processed.

2.3 Silhouette Coefficient

The silhouette coefficient is a commonly used metric for evaluating the quality and optimal
number of clusters (k). It measures how similar an object is to other objects within the same
cluster, denoted as a(i), compared to the lowest average dissimilarity to objects in different
clusters, denoted as b(i). The silhouette coefficient for each data point is calculated using the
following formula [31]:

si = b(i) − a(i)
max{a(i), b(i)} (3)

where a(i) represents the average distance between a data point and all other points within the
same cluster, and b(i) denotes the lowest average distance between that point and all points
in the nearest neighboring cluster. The interpretation of clustering quality based on silhouette
coefficient values follows the proposal in [31].

2.4 Test of Normality and Equality of Means

To examine potential differences in the characteristics of the identified clusters, statistical tests
were performed. The first step was to assess whether the data followed a normal distribution,
which determined the use of either parametric or nonparametric inference. Normality was
assessed using the Shapiro–Wilk test. When the data met the normality assumption, differences
between clusters were tested using the parametric independent samples t-test; otherwise, the
nonparametric Mann–Whitney test was applied.

Figure 1: Research Flow Chart
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3 Results and Discussion
The earthquake event with the highest magnitude in a given sequence is generally categorized as
the mainshock. Within a specific time window and spatial extent, subsequent earthquake events
are classified as aftershocks for each event recorded in the earthquake catalog [32]. The process
of separating mainshocks from aftershocks in the catalog is referred to as declustering. After
the declustering process, the dataset consisted of 1,479 mainshock events, with the maximum
magnitude reaching 7.9 Mw. Earthquake activity in the Sumatra region between 1 January 2000
and 31 December 2023 was predominantly distributed along the western coast of Sumatra. The
distribution of distances between earthquake events is illustrated in Figure 2.

Figure 2: Spatial Distance Distribution of Seismic Events in Sumatra

Many earthquakes in Sumatra are concentrated along the island’s western coast. The
distribution of distances between earthquake events, as shown in Figure 2, exhibits a positively
skewed pattern, indicating that most inter-event distances are relatively short, while a few point
pairs are separated by large distances exceeding 1,500 km. Additionally, an increase in frequency
is observed in the 800–1,000 km range, which may suggest the presence of a regional spatial
structure or multiple earthquake concentrations located in distinct and widely separated zones.
To assess whether the seismic data exhibits a non-random spatial pattern, a preliminary analysis
using the Nearest-Neighbor Index (NNI) was conducted. The results of this analysis are presented
in Table 1.

Table 1: NNI Results

Nearest Neighbor Index Z-score P-value

0.682 -23.383 6.25 × 10−121

Table 2: Moran’s I Statistic

Variable Moran I P-value

Magnitude 0.044 0.004
Depth 0.468 < 2.2 × 10−16
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Based on the nearest-neighbor analysis presented in Table 1, an NNI value of 0.682 was
obtained, indicating the presence of a clustered spatial pattern. Furthermore, using a significance
level of α = 0.05, the hypothesis test results in rejection of the null hypothesis (H0), as the
p-value (6.25 × 10−121) is significantly less than α. This suggests that the spatial distribution of
earthquake events in Sumatra from 1 January 2000 to 31 December 2023 exhibits a non-random,
clustered pattern.

Table 2 presents the results of Moran’s I statistic used to assess the spatial autocorrelation of
earthquake magnitude and depth. The Moran’s I value for magnitude is relatively low (I = 0.044),
but with a significant p-value (0.004), indicating the presence of a weak yet statistically significant
positive spatial autocorrelation. In contrast, earthquake depth exhibits a much stronger spatial
dependence, with a Moran’s I value of 0.468 and an extremely significant p-value (< 2.2 × 10−16).
These results suggest that while earthquake magnitudes show only a slight tendency to cluster
spatially, earthquake depths display a pronounced spatial clustering pattern, confirming that
depth is a key variable underlying the spatial structure of seismicity in the study area.

To further delineate regional groupings, clustering was continued using the DBSCAN algorithm.
DBSCAN requires two parameters before clustering: Eps and MinPts. To determine the optimal
combination of these parameters, various combinations of Eps and MinPts were tested. The
evaluation was based on four main criteria: the silhouette coefficient, the number of clusters
formed, the number of points classified as noise, and the number of points successfully clustered.
The results of this evaluation are visualized in Figure 3.

(a) Silhouette Coefficient (b) Number of Clusters

(c) Number of Noises (d) Number of Clustered Points
Figure 3: Results of clustering with various Eps and MinPts combinations.

The silhouette coefficient values for different parameter combinations are shown in Figure 3a.
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High silhouette scores (highlighted in red) indicate well-separated clusters with strong internal
cohesion. The parameter ranges of Eps between 30,000 and 45,000 and MinPts between 25 and
75 produced the highest silhouette values, suggesting the formation of well-structured clusters.
Grey areas represent parameter combinations that failed to produce any clusters.

As illustrated in Figure 3b, the number of clusters varies across parameter settings. Darker
green regions correspond to a larger number of clusters, typically observed at moderate to high
Eps values and low MinPts. However, too many clusters may reflect over-segmentation of the
data rather than meaningful seismic groupings.

The distribution of noise points is presented in Figure 3c. Black areas indicate parameter
settings that produced a very high number of noise points, usually occurring when Eps is too
small or MinPts is too large. In contrast, light grey regions correspond to settings with minimal
noise, highlighting more suitable parameter choices.

Finally, the number of points successfully assigned to clusters is depicted in Figure 3d. Darker
blue areas indicate more clustered points, whereas lighter shades correspond to fewer clustered
points. These results are consistent with Figure 3c, as parameter settings yielding fewer noise
points also lead to a greater number of clustered points.

Figure 4: k-NN Distance Plots

To determine the optimal values of Eps and MinPts (Figure 3), we employed k-NN distance
plots for several candidate parameters (MinPts = 20, 30, 40; Eps = 30,000; 40,000; 50,000). As
shown in Figure 4, the k-NN distance curve remains relatively flat at the beginning and increases
sharply toward the end. Larger MinPts values shift the curve upward, implying that higher Eps
thresholds are required to retain points within clusters. An Eps of 30,000 appears too restrictive,
leading to excessive noise and fragmentation of large clusters. In contrast, the combination
of Eps ≈ 50,000 with MinPts = 20 is positioned near the elbow of the curve, representing a
balance between overly compact and overly diffuse clustering. This conclusion is supported
by the silhouette coefficient, the number of clusters, noise points, and clustered points across
parameter combinations in Table 3.

Overall, the optimal parameter region is defined by a high silhouette coefficient (indicating
good clustering quality), a reasonable number of clusters, minimal noise, and a high proportion
of points successfully assigned to clusters. In DBSCAN, noise refers to points that are neither
core points nor density-reachable from any other point, typically located in low-density regions
and therefore excluded from any cluster [33]. Several candidate parameter combinations were
examined to obtain the most reliable results, which are summarized in Table 3.

Table 3 presents the parameter sensitivity analysis for the DBSCAN clustering algorithm.
The combination of Eps = 40,000 with MinPts = 30 produced the highest silhouette coefficient;
however, it also yielded the largest number of noise points, indicating that this configuration does
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Table 3: Optimal Parameter Candidates (Eps and MinPts) for DBSCAN

Eps MinPts Silhouette Clusters Noise Clustered Points

30,000 20 0.420 10 662 817
40,000 20 0.320 7 338 1141
50,000 20 0.693 2 190 1289
30,000 30 0.515 5 980 499
40,000 30 0.340 7 589 890
50,000 30 0.415 5 342 1137
30,000 40 0.840 3 1191 288
40,000 40 0.556 4 806 673
50,000 40 0.615 5 571 908

not provide a robust clustering solution. In contrast, the combination of Eps = 50,000 and MinPts
= 20 resulted in a Silhouette Coefficient of 0.693, reflecting a good level of cluster separation
quality. With this configuration, DBSCAN successfully identified two clusters, assigning 1,289
points to clusters and classifying 190 points as noise. These results demonstrate that the
selected parameter setting offers the most reliable balance between cluster compactness and noise
reduction, effectively distinguishing high-density regions from low-density areas or outliers. The
visual representation of the clustering results is provided in Figure 5.

Figure 5: Spatial Clustering Map of Seismic Data in Sumatra using DBSCAN

Two main clusters were identified based on the clustering results shown in Figure 5. Cluster 1
(shown in red) is concentrated in southern to central Sumatra, encompassing regions such as
Lampung, Bengkulu, and southern West Sumatra. This area lies near the southern segment
of the Mentawai Fault. The Mentawai segment, located along the western coast of Sumatra,
Indonesia, is characterized by the convergence of the Indo-Australian Plate and the Sunda Plate.
The complex interactions between these tectonic plates have historically generated numerous
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significant earthquakes in the region [34].
Cluster 2 (shown in blue) is located in northern Sumatra, covering Aceh, North Sumatra,

and surrounding areas. This region is part of the subduction zone, where the Indo-Australian
Plate subducts beneath the Eurasian Plate, and is also influenced by the activity of the northern
segment of the Sumatran Fault. Meanwhile, grey dots represent earthquake events that were not
assigned to any cluster and are therefore classified as noise by the DBSCAN algorithm.

The overlay with tectonic features shows that the identified clusters correspond closely with
major geological structures. The red line represents the subduction zone, which runs parallel to
the western coast of Sumatra, while the orange lines denote fault systems that cut across the
island. The alignment of seismic clusters with these structures suggests that DBSCAN effectively
delineates seismotectonic patterns, with distinct clustering in the northern and southern segments
of Sumatra.

Several fault segments of the Sumatran Fault System, as defined by the National Center for
Earthquake Studies, include Nicobar, Seulimeum-North, Aceh-North, Seulimeum-South, Aceh-
Central, and Aceh-South in the northern part of Sumatra. Further south, the identified segments
comprise Lok Tawar, Peusangan, Tripal-thrust, Tripa2, Tripa3, Tripa4, Tripa5, Batee-A, Batee-B,
Batee-C, Renun-A, Renun-B, Renun-C, Toru, Angkola, Barumun, Sumpur, Sianok, Suliti, Siulak,
Dikit, Ketaun, Musi, Manna, Kumering-North, Kumering-South, Semangko Barat-A, Semangko
Barat-B, Semangko Barat-C, Semangko Timur-A, Semangko Timur-B, and the Semangko Graben.
A detailed overview of these fault segments is provided in [35].

In addition, two major offshore fault systems are recognized: the West Andaman Fault (WAF)
in northern Sumatra, and the Mentawai Fault (MF) in southern Sumatra, the latter of which is
characterized as a backthrust delineating the boundary between the accretionary prism and the
forearc basin [35], [36].

This spatial clustering pattern aligns with the findings of [37], who analyzed the seismicity and
seismic hazard potential of the Sumatran region by evaluating a-values, b-values, and anomalous
b-values. Their study found that the highest seismicity levels are concentrated in the southern
Sumatra zone, while the subsurface rock structure in northern Sumatra exhibits the highest
stress levels, corresponding to the frequent occurrence of large-magnitude earthquakes in that
area. The detailed characteristics of each identified cluster are presented in Table 4.

Table 4: Earthquake Characteristics by Cluster

Cluster Magnitude (Mw) Depth (km)
1 2 1 2

Number of Events 622 667 622 667
Median 5.30 5.24 35.25 29.00
Mean 5.40 5.35 39.77 36.34
Std. Deviation 0.36 0.32 19.83 26.08
Maximum 7.90 7.70 122.60 183.00

Table 5: Hypothesis Testing on the Characteristics of Clustering Results

Variable Test of Normality (Shapiro–Wilk) Mann–Whitney Test
W P-value Statistic P-value

Depth 0.812 < 0.001 252591 < 0.001
Magnitude 0.765 < 0.001 225807.5 0.005

Table 4 presents the descriptive statistics of earthquake events based on the two main clusters.
The average magnitudes in both clusters are relatively similar: 5.40 Mw in Cluster 1 and 5.35 Mw
in Cluster 2, with maximum magnitudes reaching 7.90 Mw and 7.70 Mw, respectively. However,
a notable difference is observed in the depth variable. Cluster 2 exhibits a wider variation in
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depth, with a standard deviation of 26.08 km and a maximum depth of 183.00 km, compared to
122.60 km in Cluster 1.

To further clarify the differences in characteristics between the two clusters, an inferential
analysis was conducted. Table 5 presents the results of the hypothesis testing on the clustering
outcomes. The Shapiro–Wilk test indicated that both depth (W = 0.812, p < 0.001) and
magnitude (W = 0.765, p < 0.001) did not follow a normal distribution. Consequently, the
nonparametric Mann–Whitney test was employed to examine mean differences between clusters.
The results revealed statistically significant differences in both depth (Statistic = 252,591,
p < 0.001) and magnitude (Statistic = 225,807.5, p = 0.005) across clusters. These findings
suggest that the clusters identified by the DBSCAN algorithm are characterized by distinct
seismic properties, with significant variations in earthquake depth and magnitude, thereby
supporting the robustness of the clustering results in distinguishing different seismic regimes.

Regarding average focal depth, both clusters are dominated by shallow earthquake sources.
This is expected, as seismic activity in the Sumatra region is typically generated by interplate
earthquakes originating from tectonic processes along the Sumatra subduction zone, which marks
the boundary between the Indo-Australian Plate and the Eurasian Plate, as well as from the
Mentawai Fault and intraplate earthquakes that occur along the Great Sumatran Fault system
on land [37].

4 Conclusion
The spatial clustering of seismic data using the DBSCAN algorithm revealed two main earthquake
clusters in Sumatra: Cluster 1 in the south–central region near the Mentawai Fault, and Cluster 2
in the north, shaped by the subduction zone and the northern segment of the Sumatran Fault.
The close alignment of these clusters with major tectonic structures highlights DBSCAN’s
effectiveness in capturing seismotectonic patterns and distinguishing regimes with different depth
and magnitude characteristics.

This study contributes to advancing the use of density-based clustering in seismology by
offering a data-driven framework for delineating earthquake-prone zones. Future research
should integrate temporal seismicity patterns and additional geophysical parameters, alongside
comparative evaluations with alternative clustering methods, to further strengthen predictive
accuracy and regional hazard mapping.
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