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Abstract

Time series forecasting is essential for anticipating future outcomes and supporting decision-
making, yet achieving high predictive accuracy remains challenging. Wavelet-based approaches,
particularly the Maximal Overlap Discrete Wavelet Transform (MODWT), offer potential
improvements, although limited studies have systematically compared wavelet filter types and
decomposition levels. This study evaluates several wavelet filters and decomposition levels
combined with ARIMA models across six datasets exhibiting varying temporal characteristics.
Forecasting accuracy was measured using the Mean Absolute Error (MAE) and Symmetric
Mean Absolute Percentage Error (SMAPE). For the datasets analyzed, the Haar filter yielded
the lowest MAE and SMAPE values, a result supported by the Kruskal-Wallis test and Dunn’s
test, which indicated significant differences in accuracy across filters. In contrast, differences
in decomposition levels were not statistically significant, suggesting that decomposition level
played a limited role in forecasting performance within this dataset context. These findings
provide empirical, dataset-specific evidence regarding filter selection in MODWT-ARIMA
modeling and highlight the comparatively minor influence of decomposition level on forecasting
accuracy.
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1 Introduction

Time series data is a collection of observational data organized chronologically [1]. The time
intervals between observations are fixed, such as seconds, minutes, hours, days, weeks, months,
and so on. One application for time series data is to forecast future events using time series
forecasting methods [1]. Future occurrences can be predicted via time series forecasting, allowing
actions to be planned ahead of time to produce favorable results [2]. To be truly useful, time
series forecasting predictions must be highly accurate, with minimal errors [3]. Root Mean
Squared Error (RMSE), mean absolute error (MAE), and symmetric mean absolute percentage
error (SMAPE) as criteria for choosing the optimal forecasting model [3], [4], [5], [6], [7], [8],
[9]. Lower RMSE, MAE, or SMAPE values suggest better forecasting outcomes. Finding the
forecasting approach that yields the fewest possible errors is still an open problem.

Several forecasting models have been developed and used to analyze data with varying
properties. Stationary data can be forecasted using the Autoregressive (AR), Moving Average
(MA), and Autoregressive Moving Average (ARMA) models [10]. The ARIMA (Autoregressive
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Integrated Moving Average) model can be utilized with non-stationary data since it combines
Autoregressive (AR), Moving Average (MA), and Integrated (I). The integrated (I) value reflects
the number of differencing steps used to render the data stationary [5]. If the data is non-
stationary and incorporates seasonal patterns, the Seasonal Autoregressive Integrated Moving
Average (SARIMA) model can be applied. Other approaches, such as machine learning, like
artificial neural networks (ANN) and convolutional neural network (CNN), can be employed
to deal with nonlinear data [11]. Hybrid methods, which integrate numerous techniques or
procedures, are also being developed.

Wavelet decomposition is one such approach that enhances forecasting accuracy by transform-
ing non-stationary series into several stationary components [10]. The Maximal Overlap Discrete
Wavelet Transform (MODWT) is preferred over the standard Discrete Wavelet Transform (DWT)
because it can handle arbitrary data lengths [12], [13]. Previous studies have demonstrated the
usefulness of MODWT in improving forecasts. For example, Ndlovu and Chikobvu [12] applied
MODWT with Haar and Daubechies wavelets to predict cryptocurrency risks, obtaining improved
accuracy. Other works also confirmed that wavelet-based preprocessing can significantly enhance
time series forecasting results [3], [10], [13], [6], [14], [15], [16], [17], [18], [7], [8]. Various wavelet
filters have been used, including Haar, Daubechies, Least Asymmetric , Best Localized, Coiflet,
and symlet4 [12], [13], [14], [19]. However, most studies adopted these filters without explaining
the rationale behind their selection, even though the choice of filter substantially affects the
resulting forecast.

Similarly, the decomposition level which determines how many scales the signal is broken into
varies widely across studies. For instance, Al-Wadi et al. [20] used the first level, Farajpanah et al.
[21] the third, and Panja et al. [22] and Hermansah et al. [23] the sixth level, yet none provided
justification for their choices. This raises a critical question: Does a higher decomposition level
necessarily yield more accurate forecasts, or is the opposite true?

This study addresses this research gap by systematically comparing multiple wavelet filters
and decomposition levels within the MODWT-ARIMA framework. Six datasets, both stationary
and non-stationary, were analyzed using seven wavelet filters (Haar, Daubechies 4, Daubechies
6, Least Asymmetric 8, Least Asymmetric 16, Best Localized 14, and Best Localized 20) at all
possible decomposition levels. The results provide empirical evidence and guidelines for selecting
appropriate wavelet filters and decomposition levels to achieve optimal forecasting accuracy.

2 Methods

This section details the methodological framework used to evaluate the effect of wavelet filters and
decomposition levels on forecasting accuracy. First, we describe the research design, including the
characteristics of the six time series, the rolling-origin evaluation scheme, and the computation
of MAE and SMAPE as accuracy measures. We then outline the MODWT-ARIMA modeling
procedure, specifying how the MODWT decomposition and subsequent ARIMA modeling are
combined to generate one-step-ahead forecasts for each filter—level combination.

2.1 Research Framework

This is a quantitative study that compares the empirical performance of wavelet filters and
wavelet decomposition levels according to RMSE, MAE, and SMAPE values. In this study, six
datasets were used, namely simulated observations, monthly rainfall data for Gunung Kidul
Regency from January 2018 to December 2024, traffic accident deaths in the United States from
1973 to 1978 [24], the number of goods by rail between 1987 and 2022 [25], tobacco production
statistics in the United States from 1871 to 1984 [1], and international airline passenger data
(Airline Data) from January 1949 to December 1960 [1]. The Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test was conducted to determine the stationarity of the six data sets [5]. All datasets are
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initially split into two parts using an 80% training and 20% testing ratio under a rolling-origin
scheme. The number of origins increases by one in each subsequent iteration, and the maximum
number of origins is equal to the total number of observations minus one. At each origin, the
training data are decomposed using the MODWT, producing several sub-series. Each sub-series
is then modeled using the auto.arima function, and the resulting ARIMA model is used to
generate a one-step-ahead forecast (h = 1).

The wavelet filters employed in the MODWT decomposition include Haar, Daubechies 4 (d4),
Daubechies 6 (d6), Least Assymmetric 8 (1a8), Least Assymmetric 16 (1al6), Best Localized 14
(bl14), and Best Localized 20 (bl20) filters. The decomposition levels considered are all feasible
levels, which depend on the length of the data. Within the waveslim package in R, the maximum
decomposition level is specified as |logy(N)]| with N is the length of the data.

Regarding ARIMA modeling, auto.arima in R returns the model with the lowest AIC as the
best candidate. The auto.arima function does not only generate non-seasonal ARIMA models,
but it is also capable of automatically fitting SARIMA models when the argument seasonal =
TRUE is specified. However, auto.arima is unable to detect the seasonal period automatically,
and by default, the seasonal period is set to 1. Therefore, when the time series plot clearly
indicates the presence of seasonality, the seasonal period must be explicitly defined within the
auto.arima function prior to model estimation.

For evaluation, RMSE, MAE, and SMAPE are computed from the one-step-ahead forecasts,
where RMSE, MAE, and SMAPE are defined as in Eq. 1, Eq. 2, and Eq. 3, where N is the
number of data points, X; is the actual data, and X; is the prediction result.

1 Y .
RMSE = $ =D (X — Xy)? (1)
N t=1
1Y .
MAE = =" |X; — X{| (2)
N t=1

SMAPE = (3)

100%% 1 X; — Xy
N3 (1] + 1 Xe]) /2

In the case of h=1, the RMSE value becomes identical to the MAE value, as both reduce to
the absolute error. At each origin, one value of RMSE, MAE, and SMAPE is obtained. The
performance metrics used for evaluation are the average RMSE, average MAE, and average
SMAPE across all origins (iterations). Given that h=1, the average RMSE is equivalent to
the MAE, or the average MAE. Therefore, only MAE and SMAPE are used as the evaluation
measures for all possible combinations of wavelet filters and decomposition levels in each dataset.
These values are then compared, and the combination yielding the smallest value is considered
to produce the best forecasting model.

In addition to selecting the minimum error values, the conclusions are further validated using
the Kruskal-Wallis test followed by Dunn’s post-hoc test. Before conducting the Kruskal-Wallis
test, the MAE and SMAPE values were first normalized to ensure that the magnitudes of the
values were comparable and not excessively different from one another. The Kruskal-Wallis
test, as applied in Akila’s study [26], does not require the MAE or SMAPE distributions to
be normally distributed. The test indicates that at least one pair of filters or decomposition
levels differs significantly when the p-value is less than 0.05, leading to the rejection of the
null hypothesis [27]. If the Kruskal-Wallis test reveals significant differences, Dunn’s test is
subsequently performed, following the procedure described by Dunn (1964) and referenced in
[28]. In this study, the Holm correction is employed for the multiple-comparison adjustment.
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2.2 MODWT-ARIMA

MODWT-ARIMA modelling is the ARIMA model of MODWT decomposition data. The
MODWT-ARIMA forecasting results are the total of the ARIMA forecasting results, both
detailed and smooth. The original data is the sum of the MODWT outcomes, as calculated in
Eq. 4.

J
Zy=> Djy+Spt=12... N (4)
j=1
If D;; is modelled using ARIMA(p, d, ¢), the model in Eq. 5 is achieved [10]. Meanwhile, Eq. 6 is
used to obtain the model for S;;. The MODWT-ARIMA forecast result is calculated by adding
the ARIMA results for detail and smoothing.

¢jp(B)(1 = B)'Dj, = 0o + 04(B)ay (5)

1p(B)(1 = B)!Sys = 0+ 04(B)ay (6)

3 Results and Discussion

This section presents the empirical findings obtained from applying the MODWT-ARIMA
framework across six datasets using various combinations of wavelet filters and decomposition
levels. The analysis is organized sequentially, beginning with an overview of the datasets and
their stationarity properties, followed by the decomposition outcomes, the resulting ARIMA
models, and the forecasting accuracy summarized through MAE and SMAPE. The discussion
then evaluates the comparative performance of filters and decomposition levels and concludes
with statistical validation using the Kruskal-Wallis and Dunn tests. Together, these results
provide a comprehensive assessment of how filter choice and decomposition depth influence
forecasting accuracy.

The datasets utilized in this study are presented in Fig. 1. Each dataset displays distinct
temporal characteristics, including stationary behavior, non-stationary trends, and seasonal
patterns, which collectively provide a diverse empirical basis for evaluating the performance of
different wavelet filters and decomposition levels.
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Figure 1: Graph of Six Data Sets Used in the Study

In Fig. 1 dataset (a), is a simulated dataset, dataset (b) is rainfall dataset, dataset (c) contains
number of death, datasets (d) is a tobacco production dataset; dataset (e) is number of goods
dataset; and dataset (f) is an airline dataset. Based on the observed plots, datasets (a), (b), and
(c) appear to be stationary, whereas datasets (d), (e), and (f) exhibit an upward trend, indicating

Mira Andriyani 1269



Empirical Evaluation of Wavelet Filter and Level

non-stationarity. In addition, dataset (f) displays a clear seasonal pattern with a period of 12.
Dataset (c) also shows a nearly repeating pattern that suggests seasonality, although its period
is not clearly identifiable. To formally assess the stationarity of all six datasets, the KPSS test
was conducted, and the results are summarized in the Table 1.

Table 1: The Results of KPSS Test

Data p-value Decision
Simulation 0.1 Stationary
Rainfall 0.1 Stationary
Death 0.08853 Stationary
Tobacco Production 0.01 Non-Stationary
Number of Goods by Rail 0.01592 Non-Stationary
Airlines 0.01 Non-Stationary

From Table 1, three datasets, (a), (b), and (c) are stationary and the other three are non-
stationary. Under the rolling-origin scheme, the training dataset is decomposed using MODWT
at each iteration, producing several sub-datasets. For example, in the airlines dataset, applying
MODWT with the Haar filter at level 3 yields four sub-datasets—D1, D2, D3, and S3—as
illustrated in Fig. 2. MODW'T decomposition is applied to all datasets using seven wavelet filters,
namely Haar, d4, d6, 1a8, 1al16, bl14, and bl20, across levels 1 up to the maximum feasible level.
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Figure 2: The Decomposition Results of Airlines Dataset by Haar at the Third Level

The y-axis labels in Fig. 2, such as D1(t), represent the values of D1 at time t. For the
simulated dataset with 300 observations, the initial training size of 240 (0.8 x 300) allows a
maximum level of 7. The maximum decomposition levels for the other datasets—rainfall, death,
tobacco, number of goods, and airlines—are 6, 5, 6, 4, and 6, respectively.

The total number of decompositions for each dataset equals (7 x maximum level). For
each combination of dataset, filter, and level, each sub-dataset generated through MODWT is
modeled using auto.arima, producing as many ARIMA models as there are sub-datasets. As an
example, Table 2 presents the four ARIMA models generated from the sub-datasets resulting
from the decomposition of the airlines dataset using the Haar filter at level 3 with origin 115
(initial-origin).

Table 2: ARIMA models of the sub-datasets from the airlines dataset using the Haar filter at level 3

Subdataset ARIMA model

D1 ARIMA(0,0,2)(1,0,0)[12]
D2 ARIMA(3,0,0)(0,1,0)[12]
D3 ARIMA(3,0,0)(0,1,1)[12]
S3 ARIMA (2,1,0)(1,0,0)[12]
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Based on Table 2, the auto.arima function used in this study can automatically construct
SARIMA models for datasets exhibiting seasonal trends. It should be noted, however, that
the seasonal period must be specified in advance. Because each combination produces multiple
models, it is not practical to report all of them, and representative examples are therefore
provided.

It is important to note that the ARIMA models used in this study were not subjected to
detailed diagnostic checking, such as residual autocorrelation or normality tests. This decision was
taken to maintain the primary focus of the analysis, which was to compare forecasting accuracy
across different wavelet filters and decomposition levels rather than to optimize or evaluate the
ARIMA models themselves. Although diagnostic tests can further validate model adequacy, the
consistent modeling framework applied across all filters ensures that the comparative insights
drawn in this study remain reliable. Nonetheless, incorporating full diagnostic procedures
represents a valuable direction for future research, particularly for studies aiming to assess both
filter performance and model specification in greater depth.

In this framework, the expected value of the original series is reconstructed by summing the
expected values of the ARIMA-fitted sub-datasets. The same set of ARIMA models is then used
to generate one-step-ahead forecasts, and the final predicted value is obtained by aggregating
the forecasts from all sub-models.

After obtaining the one-step-ahead forecasts at each origin, the MAE and SMAPE values
were calculated. The MAE and SMAPE values reported in this section represent the averages
across all forecasts at each origin. Therefore, each combination of dataset, filter, and level is
associated with a single MAE and SMAPE value. For instance, in the simulated dataset with a
total of 300 observations and an initial training size of 240, there are 60 forecasts, resulting in 60
MAE values. The reported MAE is the average of these 60 values. Table 3 presents a snapshot
of the table showing the average MAE and SMAPE values for each combination of dataset, filter,
and level.

Table 3: Illustration of the mean MAE and SMAPE obtained for each dataset, filter, and decomposition
level combination

Name of Dataset Filter Level MAE SMAPE
Simulation Haar 1 0.804035 177.333947
Simulation Haar 2 0.820109 155.498955
Simulation Haar 3 0.828560 161.147645
Airlines b120 5 255.858626  82.832744

Airlines bl20

[=p}

257.321961  83.479226

Based on the results in Table 3, it is possible to identify the filter—level combinations that
yield the lowest MAE or SMAPE for each dataset. Table 4 and Table 5 provide a consolidated
summary of the minimum MAE and SMAPE values obtained across all datasets.

Table 4: Summary of Minimum MAE Table 5: Summary of Minimum SMAPE
Name of Dataset Minimu MAE Filter Level Name of Dataset Minimu MAE Filter Level
Simulation 0.804035 Haar 1 Simulation 155.498956 Haar 2
Rainfall 231.712661 Haar 1 Rainfall 117.054792 Haar 1
Death 679.467340 Haar 5 Death 7.830627 Haar 5
Tobacco 1288.178639 Haar 1 Tobacco 102.809825 Haar 1
Number of Goods 15463.125093  Haar 1 Number of Goods 39.971473 Haar 1
Airlines 236.958006 Haar 6 Airlines 73.277248 Haar 6

Based on Table 4 and Table 5, the Haar filter consistently yields the smallest MAE and
SMAPE values across all evaluated datasets, regardless of whether the series exhibits stationary
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or non-stationary behavior. There is no difference in the selected filter when the selection is
based on MAE or SMAPE. However, a discrepancy arises in the choice of decomposition level for
the simulated dataset: MAE identifies level 1 as the most accurate, whereas SMAPE indicates
that level 2 provides superior performance. The most frequently selected decomposition level
across the six datasets was Level 1 (low level). Higher levels were selected only for the death
and airlines datasets, both at Level 5. As shown in Figure 1, these two datasets exhibit clear
seasonal patterns. If the significance testing had indicated that decomposition level exerts a
statistically significant influence on forecasting accuracy, one possible interpretation would be
that datasets with pronounced seasonality may require higher decomposition levels to achieve
improved accuracy.

Subsequently, validation is performed using the Kruskal-Wallis (KW) test and Dunn’s post
hoc test to determine whether the observed differences in MAE and SMAPE are statistically
significant. Both the KW and Dunn tests are conducted using the R software. Prior to conducting
the Kruskal-Wallis significance tests, the datasets containing the MAE and SMAPE values were
normalized. This normalization step was necessary to prevent large differences in scale across
datasets from influencing the statistical comparison. The KW tests include: (i) a KW test on
MAE values across filters, (ii) a KW test on MAE values across decomposition levels, and (iii) a
KW test on SMAPE values across filters. The p-values obtained from the Kruskal-Wallis tests
for MAE and SMAPE are 2.2e-16 and 8.884e-11, respectively. These results lead to the rejection
of the null hypothesis, indicating that there are significant differences in both MAE and SMAPE
across the filters. To identify which specific pairs of filters differ significantly, Dunn’s post hoc test
was performed, and the results are presented in Table 6. In Table 6, a comparison is considered

Table 6: Result of Dunn Test for Filter Based on SMAPE

Comparison P.adj Conclusion
bl14 - bl20 0.952246172 not significant
bl14 - d4 1 not significant
bl20 - d4 1 not significant
bl14 - d6 0.856675677 not significant
bl20 - d6 0.819622238 not significant
d4 - d6 0.02784277 significant
bl14 - haar 2.81E-05 significant
bl20 - haar 3.57E-05 significant
d4 - haar 0.008836356 significant
d6 - haar 1.08E-09 significant
bl14 - 1al6 1 not significant
bl20 - 1a16 1 not significant
d4 - lal6 0.52668853  not significant
d6 - 1al6 1 not significant
haar - 1al6 7.11E-07 significant
bl14 - 1a8 1 not significant
bl20 - 1a8 1 not significant
d4 - 1a8 0.118405471 not significant
d6 - 1a8 1 not significant
haar - 1a8 2.30E-08 significant
1al6 - 1a8 1 not significant

statistically significant when the adjusted p-value (P.adj) is less than 0.05. A significant result
indicates that the pair of filters being compared exhibits a statistically meaningful difference in
their SMAPE values. The table also shows that the Haar filter displays significant differences
when compared with each of the other six filters included in the analysis. The Dunn post hoc test
for the MAE values across filters produced results consistent with those obtained for SMAPE,
indicating that the Haar filter exhibits significantly different MAE values compared with the
other filters.
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Meanwhile, the Kruskal-Wallis test conducted to examine differences in MAE across decom-
position levels yielded a p-value of 0.9983 (> 0.05). This result indicates that the MAE values
do not differ significantly across levels, suggesting that the decomposition level does not exert a
significant effect on forecasting accuracy. However, these findings negate the earlier assumption
and demonstrate that, even for datasets exhibiting seasonal patterns, the choice of decomposition
level does not have a significant impact on forecasting accuracy.

Overall, the findings from both the accuracy evaluation and the statistical tests consistently
highlight the superior performance of the Haar filter across various data characteristics (whether
stationary or non-stationary, and whether exhibiting trend or seasonality) and decomposition
levels. The convergence of results from MAE, SMAPE, and subsequent post hoc analyses provides
strong empirical support for the robustness of this filter in improving forecasting accuracy.

4 Conclusion

Based on the analyses conducted on the six datasets in this study, the Haar filter consistently
yielded the lowest forecasting errors and demonstrated statistically significant differences compared
with the other filters. These findings should be understood as dataset-specific insights rather
than universal claims, as the datasets used represent a limited set of characteristics, including
stationary, non-stationary, trending, and seasonal series. Although different decomposition levels
emerged across datasets, the significance tests indicated that decomposition level did not exert a
meaningful influence on forecasting accuracy within this empirical context. Overall, the results
offer a practical empirical guideline suggesting that the Haar filter may be a strong candidate for
forecasting tasks involving datasets with similar properties.

This study has several limitations. In particular, the ARIMA models employed were not
subjected to diagnostic checks, such as residual autocorrelation or normality testing, which
could influence the reliability of the model estimates. Future research may extend this work
by incorporating comprehensive diagnostic testing to ensure model adequacy, examining a
broader variety of time-series structures, exploring additional wavelet families, and assessing the
interaction between filter choice, decomposition level, and forecasting model performance. Such
extensions would help strengthen and potentially generalize the empirical observations reported
here.

CRediT Authorship Contribution Statement

Mira Andriyani: Conceptualization, Methodology, Data Curation, Formal Analysis, Software,
Validation, Visualization, Writing—Original Draft, Writing—Review & Editing.
Dewi Retno Sari S.: Supervision.

Declaration of Generative AI and Al-assisted technologies

During the preparation of this text, the authors used ChatGPT-5 to help create some LaTeX
scripts in R and sentences in more academic English. The author used DeepL to translate
and QuillBot to paraphrase. Meanwhile, the author relied on R 4.4.2 and RStudio for image
visualization and calculations.

Declaration of Competing Interest

The authors declare no competing interests, financial or personal, that could have influenced the
work presented in this study.

Mira Andriyani 1273



Empirical Evaluation of Wavelet Filter and Level

Funding and Acknowledgments

This research was supported by Universitas Sebelas Maret through Agreement on the Assignment
of Research Implementation of Non-State Budget Funds (APBN) 2025 with contract number
371/UN27.22/PT.01.03/2025.

Data and Code Availability

The code analyzed during the current study are publicly available in the GitHub!. All datasets
utilized in this study can be found in the sources cited in Section 2.

References

1]
2]

[10]

[11]

W. W. Wei, Time Series Analysis Univariate and Multivariate Methods. Pearson Education,
Inc., 2006, vol. 2. Available online.

S. Adamala, “Time series analysis: A hydrological prospective,” American Journal of
Scientific Research and Essays, vol. 1, no. 1, pp. 31-40, 2016. Available online.

E. Aladag, “Forecasting of particulate matter with a hybrid arima model based on wavelet
transformation and seasonal adjustment,” Urban Climate, vol. 39, no. June, pp. 100 930—
100945, 2021. por1: 10.1016/j.uclim.2021.100930.

J. Bruzda, “The haar wavelet transfer function model and its applications,” DYNAMIC
ECONOMETRIC MODELS, vol. 11, pp. 141-153, 2011. por: 10.12775/DEM.2011.010.

H. P. M., M. Z. Rehman, A. A. Dar, and T. W. A., “Forecasting co2 emissions in india:
A time series analysis using arima,” Processes, vol. 12, no. 12, pp. 2699-2714, 2024. DOI:
10.3390/pr12122699.

S. Al Wadi, A. Hamarsheh, and H. Alwadi, “Maximum overlapping discrete wavelet
transform in forecasting banking sector,” Applied Mathematical Sciences, vol. 7, no. 80,
pp. 3995-4002, 2013. DOI: 10.12988/ams . 2013. 36305.

N. A. Yaacob, J. J. Jaber, D. Pathmanathan, S. Alwadi, and I. Mohamed, “Hybrid of the
lee-carter model with maximum overlap discrete wavelet transform filters in forecasting
mortality rates,” Mathematics, vol. 9, no. 18, pp. 2295-2305, 2021. DOI: 10.3390/math918
2295.

M. U. YOUSUF, I. AL-BAHADLY, and E. AVCI, “Short-term wind speed forecasting
based on hybrid modwt-arima-markov model,” IEEE Access, vol. 9, no. May, pp. 4803-4820,
2021. po1: 10.1109/ACCESS.2021.3084536.

A. Jierula, S. Wang, T.-M. OH, and P. Wang, “Study on accuracy metrics for evaluating the
predictions of damage locations in deep piles using artificial neural networks with acoustic
emission data,” Applied Science, vol. 11, p. 2314, 2021. DOI: 10.3390/app11052314.

L. Zhu, Y. Wang, and Q. Fan, “Modwt-arma model for time series prediction,” Applied
Mathematical Modelling, vol. 38, no. 56, pp. 1859-1865, 2014. DOI: 10.1016/j.apm.2013
.10.002.

K. Szostek, D. Mazur, G. Dratus, and J. Kusznier, “Analysis of the effectiveness of arima,
sarima, and svr models in time series forecasting: A case study of wind farm energy
production,” Energies, vol. 17, no. September 2024, pp. 4803—-4820, 2024. DOI: 10.3390/en
17194803.

https://github.com/mir2876/modwt—-arima-rolling-origin

Mira Andriyani 1274


https://books.google.co.id/books?id=LB42uQEACAAJ
https://escipub.com/Articles/AJSRE/Vol1/Adamala-AJSRE-2016
https://doi.org/10.1016/j.uclim.2021.100930
https://doi.org/10.12775/DEM.2011.010
https://doi.org/10.3390/pr12122699
https://doi.org/10.12988/ams.2013.36305
https://doi.org/10.3390/math9182295
https://doi.org/10.3390/math9182295
https://doi.org/10.1109/ACCESS.2021.3084536
https://doi.org/10.3390/app11052314
https://doi.org/10.1016/j.apm.2013.10.002
https://doi.org/10.1016/j.apm.2013.10.002
https://doi.org/10.3390/en17194803
https://doi.org/10.3390/en17194803
https://github.com/mir2876/modwt-arima-rolling-origin

Empirical Evaluation of Wavelet Filter and Level

[12]

[13]

[16]

[17]

18]

[20]

22]

23]

T. Ndlovu and D. Chikobvu, “A wavelet-decomposed wd-arma-garch-evt model approach
to comparing the riskiness of the bitcoin and south african rand exchange rates,” data,
vol. 8, no. 7, pp. 122-145, 2023. DOI: 10.3390/data8070122.

A. A. A. Dghais and M. T. Ismail, “A study of stationarity in time series by using wavelet
transform,” in Proceedings of the 21st National Symposium on Mathematical Sciences
(SKSM21), vol. 1605, AIP Publishing, 2014, pp. 798-804. DOI: 10.1063/1.4887692.

T. S. ALSHAMMARI, M. T. ISMAIL, S. AL-WADI, M. H. SALEH, and J. J. JABER,
“Modeling and forecasting saudi stock market volatility using wavelet methods,” Journal of
Asian Finance, Fconomics and Business, vol. 7, no. 11, pp. 83-93, 2020. DOI: 10.13106/j
afeb.2020.vo0l7.n011.08.

L.-W. Lin and X.-H. Zhou, “Multiscale forecasting approach of property insurance income
via wavelet method,” Mathematical Problems in Engineering, vol. 2022, no. 1, p. 9554695,
2022. DOI: 10.1155/2022/9554695

P. Mittal, “Wavelet transformation and predictability of gold price index series with arma
model,” International Journal of Experimental Research and Review (IJERR), vol. 30,
no. April, pp. 127-133, 2023. DOL: 10.52756/1jerr.2023.v30.014.

P. Mittal, “Forecasting of crude oil prices using wavelet decomposition based denoising
with arma model,” Asia Pacific Financial Markets, vol. 31, pp. 355-365, 2024. DOI: 10.10
07/s10690-023-09418-7.

J. Quilty and J. Adamowski, “A maximal overlap discrete wavelet packet transform
integrated approach for rainfall forecasting — a case study in the awash river basin (
ethiopia ),” Environmental Modelling and Software, vol. 144, no. July, pp. 105119-105 133,
2021. poI: 10.1016/j.envsoft.2021.105119.

G. Chiranjivi and R. Sensarma, “International review of financial analysis the effects
of economic and financial shocks on private investment: A wavelet study of return and
volatility spillovers,” International Review of Financial Analysis, vol. 90, no. January,
p. 102936, 2023. por: 10.1016/j.irfa.2023.102936

S. Al Wadi, O. Al Singlawi, J. J. Jaber, M. H. Saleh, and A. A. Shehadeh, “Enhancing
predictive accuracy through the analysis of banking time series: A case study from the
amman stock exchange,” Journal of Risk and Financial Management, vol. 17, no. 3, p. 98,
2024. por: 10.3390/jrfm17030098.

H. Farajpanah, A. Adib, M. Lotfirad, H. Esmaeili-Gisavandani, M. M. Riyahi, and A.
Zaerpour, “A novel application of waveform matching algorithm for improving monthly
runoff forecasting using wavelet—ml models,” Journal of Hydroinformatics, vol. 26, no. 7,
pp. 1771-1789, 2024. DOI: 10.2166/hydro.2024.128.

M. Panja, T. Chakraborty, U. Kumar, and N. Liu, “Epicasting: An ensemble wavelet neural
network for forecasting epidemics,” Neural Networks, vol. 165, no. June, pp. 185-212, 2023.
DOI: 10.1016/j.neunet.2023.05.049.

Hermansah, D. Rosadi, H. Utami, Abdurakhman, and G. Darmawan, “Hybrid modwt-finn
model for time series data forecasting,” in AIP Conference Proceedings, vol. 2192, 2019.
DOI: 10.1063/1.5139175.

P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting. Springer
International Publishing, 2016. DO1: 10.1007/978-3-319-29854-2.

Badan Pusat Statistik, Jumlah penumpang dan barang melalui transportasi kereta api
indonesia tahun 1987-2022, https://www.bps.go.id/id/statistics-table/1/MTIQx
NCMx/ jumlah-penumpang-dan-barang-melalui-transportasi-kereta-api-indonesi
a-tahun-1987-2022.html, Date Accessed: July 14th, 2025.

Mira Andriyani 1275


https://doi.org/10.3390/data8070122
https://doi.org/10.1063/1.4887692
https://doi.org/10.13106/jafeb.2020.vol7.no11.08
https://doi.org/10.13106/jafeb.2020.vol7.no11.08
https://doi.org/10.1155/2022/9554695
https://doi.org/10.52756/ijerr.2023.v30.014
https://doi.org/10.1007/s10690-023-09418-7
https://doi.org/10.1007/s10690-023-09418-7
https://doi.org/10.1016/j.envsoft.2021.105119
https://doi.org/10.1016/j.irfa.2023.102936
https://doi.org/10.3390/jrfm17030098
https://doi.org/10.2166/hydro.2024.128
https://doi.org/10.1016/j.neunet.2023.05.049
https://doi.org/10.1063/1.5139175
https://doi.org/10.1007/978-3-319-29854-2
https://www.bps.go.id/id/statistics-table/1/MTQxNCMx/jumlah-penumpang-dan-barang-melalui-transportasi-kereta-api-indonesia-tahun-1987-2022.html
https://www.bps.go.id/id/statistics-table/1/MTQxNCMx/jumlah-penumpang-dan-barang-melalui-transportasi-kereta-api-indonesia-tahun-1987-2022.html
https://www.bps.go.id/id/statistics-table/1/MTQxNCMx/jumlah-penumpang-dan-barang-melalui-transportasi-kereta-api-indonesia-tahun-1987-2022.html

Empirical Evaluation of Wavelet Filter and Level

[26] A. D. Kayit and M. T. Ismail, “Advancing stock price prediction through the development
of hybrid ensembles: A comprehensive comparative analysis of machine learning approaches,”
Journal of Big Data, vol. 12, p. 232, 2025. DOI: 10.1186/s40537-025-01185-8.

[27) D. Ramadhani, A. M. Soleh, and Erfiani, “Characteristics of machine learning-based
univariate time series imputation method,” JUITA: Jurnal Informatika, vol. 12, pp. 279—
288, 2024. por: 10.30595/juita.v12i2.23453.

[28] A. Dinno, “Cnonparametric pairwise multiple comparisons in independent groups using
dunn’s test,” The Stata Journal, vol. 15, pp. 292-300, 2015.

Mira Andriyani 1276


https://doi.org/10.1186/s40537-025-01185-8
https://doi.org/10.30595/juita.v12i2.23453

	Introduction
	Methods
	Research Framework
	MODWT-ARIMA

	Results and Discussion
	Conclusion

