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Abstract

This study investigates the dynamical behavior of a three species ecological system involv-
ing unilateral interactions of commensalism and amensalism with Beddington–DeAngelis
functional responses. The positivity, boundedness, existence, and uniqueness of the model
solutions are established, and four equilibrium points are identified. Stability analysis shows
that the neutral-only and the coexistence equilibrium points are locally asymptotically stable,
whereas the other equilibria are always unstable. Numerical simulations are conducted to
confirm the analytical findings. Ecologically, the results indicate that stability can be achieved
only when all neutral species coexist, even though without the commensal–amensal species.
The existence of the commensal-amensal species is influenced by its own population density.
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1 Introduction
Species interactions in ecosystems encompass various forms such as predation, competition, and
symbiosis, which generally exert reciprocal effects. However, some symbiotic relationships exhibit
unilateral interactions, where only one species is affected while the other remains unaffected [1].
Two primary examples are commensalism, in which one species benefits without affecting the
other, and amensalism, where one species is harmed while the other is unaffected [2].

Most mathematical studies of commensalism and amensalism have focused on two-species
systems [3], [4], [5], [6], [7], [8], [9]. To the best of our knowledge, no previous study has investi-
gated a three-species interaction model, in which one species simultaneously engages in both
commensalism and amensalism. However, real ecosystems involve more complex interactions
among three or more species. In this model, we consider the interaction between sea anemones,
clownfish, and crustaceans that exhibit intertwined commensalism and amensalism. Sea anemone
tentacles provide shelter for clownfish from predators while the sea anemone remains unaffected,
thereby forming a commensalism [10]. Meanwhile, clownfish and crustaceans exhibit an amensal-
istic relationship, as clownfish are disadvantaged by the presence of crustaceans that compete for
food resources [11]. Furthermore, an indirect biological interaction occurs between sea anemones
and crustaceans coexisting in the same habitat. Sea anemones produce toxins that impair the
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nervous system of nearby crustaceans, thereby reducing their survival rate [12]. Nevertheless,
the movement of crustaceans around sea anemones facilitates greater food distribution to the
anemones [13].

Motivated by the lack of studies on three-dimensional systems and the ecological interac-
tions, we propose a three-species commensalism–amensalism model with Beddington–DeAngelis
functional responses. The constructed model integrates the commensalism model with Bed-
dington–DeAngelis functional responses by [9] and the linear amensalism model developed by
[14]. Unlike previous models [9], [14], this formulation deliberately excludes external modifiers,
such as delayed responses or external resource influences, to isolate and analyze the intrinsic
effects of interspecies interactions. This study focuses on the fundamental mechanisms underlying
both commensalism and amensalism by integrating their basic interaction structures into a
unified three-species framework. This simplification allows a clearer examination of the combined
dynamics of commensalism and amensalism, which have not been explicitly formulated in prior
works. Moreover, this model incorporates biological interactions by sea anemones, clownfish, and
crustaceans to enhance its ecological relevance. This paper aims to investigate the qualitative
properties of solutions, determine the equilibrium points, and analyze the local stability properties
of possible equilibrium points of the model. Finally, the numerical simulations are demonstrated
to support the analytical findings.

2 Methods

1. First, we constructed this model based on the commensalism model developed by [9] and the
amensalism model proposed by [14]. We constructed this model by considering ecologically
realistic interactions inspired by sea anemones, clownfish, and crustaceans to enhance its
ecological relevance.

2. Establish the positivity, boundedness, existence, and uniqueness of solutions to the system.
3. Next, we investigate the existence of equilibria and local stability properties of the equilib-

rium points of the model.
4. After that, to demonstrate the feasibility of our main results, we present numerical simula-

tions using selected parameters.
5. Finally, we discuss the ecological significance of the obtained results and conclude the study

by summarizing the main findings.

3 Results and Discussion
In this section, we analyse the proposed three-species commensalism–amensalism model and
interpret its ecological implications. We begin by formulating the system of differential equations
that describes the interactions among the neutral–commensalism, commensal–amensal, and
neutral–amensalism species. We then establish basic analytical properties of the model, including
positivity, boundedness, and well-posedness of solutions. After that, we characterise all biologically
meaningful equilibria and study their local stability. Finally, we support the analytical results
through numerical simulation and discuss the ecological meaning of the observed dynamical
regimes.

3.1 Model Formulation

In the ecosystem, the neutral-commensalism species can be represented by sea anemones, which
provide shelter for clownfish. In this relationship, the sea anemones neither benefits nor is
harmed [10]. In addition to sea anemones and clownfish, there are crustaceans living in the same
ecosystem. The movement of crustaceans can generate water currents that carry food particles,
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which in turn increases the food availability for sea anemones when the crustaceans move nearby.
Since sea anemones are sessile organisms attached to coral reefs or the seabed and unable to
search for food actively [15], the presence of crustaceans indirectly enhances their food intake [13].
Therefore, this phenomenon increases the population growth rate of sea anemones. The quantity
of additional food support provided by crustaceans is denoted by the parameter β. Therefore,
the growth rate of the neutral–commensalism population is expressed as

dx

dt
= x(a1 − b1x) + βz. (1)

The population of the commensal–amensal species grows with intrinsic growth rate a2 and
carrying capacity a2

b2
. This species gains benefits from the neutral–commensalism species and

suffers losses from the neutral–amensalism species, both of which affect its population dynamics. In
the marine ecosystem, the commensal–amensal species is represented by the clownfish. Clownfish
form a commensalism with sea anemones and an amensalism with crustaceans. The commensalism
arises because clownfish gain shelter among the tentacles of sea anemones, while the anemones
are unaffected.

The rate at which clownfish receive benefits from commensalism is denoted by c and depends on
the population densities of both species. An increased clownfish population leads to intraspecific
competition for limited space within anemones, reducing the benefit received per individual.
Conversely, an increase in anemone density enhances the benefit only up to a certain limit,
beyond which the effect saturates. This ecological behavior follows the Beddington–DeAngelis
functional response cx

mx+ny+1 , where m represents the saturation effect due to the increasing
anemone population and n measures the intraspecific interference among clownfish.

In amensalism, clownfish and crustaceans compete for food resources. Because clownfish
are confined to coral and anemone habitats, the presence of crustaceans significantly reduces
their available food [11]. Meanwhile, crustaceans are not noticeably affected because they are
capable of moving over long distances, unlike clownfish, which can only move around the anemone
[16]. This creates an amensalism where the clownfish are harmed, but the crustaceans remain
unaffected. The rate of loss experienced by the clownfish due to this amensalism is represented
by α. Accordingly, the population dynamics of the commensal–amensal species are expressed as

dy

dt
= y

(
a2 − b2y + cx

mx + ny + 1 − αz

)
. (2)

The population of the neutral–amensalism species is assumed to grow logistically with intrinsic
growth rate a3 and carrying capacity a3

b3
. In this ecosystem, the neutral–amensalism species is

represented by crustaceans. As discussed earlier, crustaceans are not significantly affected by
their interaction with clownfish. However, they can experience negative effects when moving
close to sea anemones. Sea anemones possess toxic tentacles as a defense mechanism, and these
toxins can impair the nervous system of nearby crustaceans, causing temporary paralysis. This
paralysis reduces their mobility, productivity, and ability to evade predators [12]. Consequently,
the growth rate of the crustacean population decreases with higher anemone density, which
is represented by the inverse term a3

x . Thus, the population dynamics of the neutral–amensal
species are formulated as

dz

dt
= z

(
a3
x

− b3z

)
. (3)

Based on the above explanations, a three-species commensalism–amensalism system that
describes the population dynamics of neutral–commensalism, commensal–amensal, and neu-
tral–amensalism species can be written as
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dx

dt
= x(a1 − b1x) + βz,

dy

dt
= y

(
a2 − b2y + cx

mx + ny + 1 − αz

)
,

dz

dt
= z

(
a3
x

− b3z

)
,

(4)

where a1, b1, β, a2, b2, c, m, n, α, a3, b3 > 0.

3.2 Positivity and Boundedness of Solutions

This section establishes the positivity and the boundedness of solutions of the system 4. First,
we show that the solutions remain positive for all t ≥ 0. Second, we prove that the solutions are
uniformly bounded, ensuring that the populations stay in a finite region.

Theorem 1. All solutions of system (4) with initial values x(0), y(0), z(0) > 0 are positive for
all t ≥ 0. The solution x(t) remains strictly positive for all t ≥ 0.

Proof: From model (4), we can solve y(t) and z(t) using initial condition y(0), z(0) > 0, the
results are given by:

y(t) = y(0) exp
∫ t

0

(
a2 − b2y + cx

mx + ny + 1 − αz

)
dt,

z(t) = z(0) exp
∫ t

0

(
a3
x

− b3z

)
dt.

Hence, the solutions y(t) and z(t) remain positive for all t ≥ 0 whenever y(0), z(0) > 0. To prove
that x(t) remains strictly positive, consider the first equation of system (4),

dx

dt
= f(x, z) = x(a1 − b1x) + βz.

On the boundary x = 0, and since z(t) remains positive for all t ≥ 0, we have

f(0, z) = βz ≥ 0.

This implies that the vector field does not point outward from the nonnegative half-line. Hence,
by the Nagumo tangency condition, the set {x ≥ 0} is forward invariant under the flow of (4).

Moreover, since x(0) > 0 and f(0, z) = βz ≥ 0, the trajectory cannot touch or cross the
boundary x = 0 in finite time. Indeed, if there exists t∗ > 0 such that x(t∗) = 0, then from the
first equation we have

ẋ(t∗) = βz(t∗) ≥ 0.

Thus, at the boundary x = 0, the vector field does not point toward the region x < 0, and the
solution cannot enter it.

Furthermore, because z(t) > 0 for all t ≥ 0, it follows that ẋ(t) = βz(t) > 0 whenever
x(t) → 0+. Therefore, x(t) cannot reach 0 in finite time; instead, it is immediately pushed back
into the region x > 0. Consequently,

x(t) > 0 for all t ≥ 0.

Theorem 2. The solutions of system (4) are uniformly bounded.

Proof: Define the function
N(t) = x(t) + y(t) + z(t),
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Then, for every γ > 0, we get

dN(t)
dt

+ γN = (x(a1 − b1x) + βz) +
(

a2y − b2y2 + cxy

mx + ny + 1 − αzy

)
+
(

a3z

x
− b3z2

)
+ γ(x + y + z)

≤ (γ + a1)x − b1x2 +
(

γ + a2 + c

m

)
y − b2y2 + (γ + β + a3) z − b3z2

≤ (γ + a1)2

4b1
+
(
γ + a2 + c

m

)2
4b2

+ (γ + β + a3)2

4b3
= K.

Hence, we have
N(t) ≤ K

γ
+
(

N(0) − K

γ

)
e−γt

lim
t→∞

N(t) ≤ K

γ
.

Therefore, all solutions of system (4) are uniformly bounded by K
γ .

3.3 Existence and Uniqueness of Solutions

In this section, we show that the system (4) admits a unique solution within the region Ω. This
follows from the Fundamental Existence–Uniqueness Theorem in [17], since the system satisfies
the Lipschitz condition.

Theorem 3. The system (4) admits a unique solution within the region

Ω :=
{

(x, y, z) ∈ R3
≥0 : max(|x|, |y|, |z|) ≤ K

γ

}
.

Proof: Let X = (x, y, z), X̄ = (x̄, ȳ, z̄), and define

P (X ) = (P1(X ), P2(X ), P3(X )),

where
P1(X ) = dx

dt
, P2(X ) = dy

dt
, P3(X ) = dz

dt
.

For any X , X̄ ∈ Ω, it follows that

||P (X ) − P (X̄ )|| =|P1(X ) − P1(X̄ )| + |P2(X ) − P2(X̄ )| + |P3(X ) − P3(X̄ )|
≤(a1 + 2Kb1

γ + cK
γ + a3γ

K )|x − x̄| + (a2 + 2Kb2
γ + cK

γ + αK
γ )|y − ȳ|

+ (β + αK
γ + a3γ

K + 2Kb3
γ )|z − z̄|.

By setting

L = max
{

a1 + 2Kb1
γ + cK

γ + a3γ
K , a2 + 2Kb2

γ + cK
γ + αK

γ , β + αK
γ + a3γ

K + 2Kb3
γ

}
,

we obtain
||P (X ) − P (X̄ )|| ≤ L||X − X̄ ||.

Thus, P (X ) satisfies the Lipschitz condition in Ω.
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3.4 Equilibrium Points

In this section, we show all possible equilibrium points of the system (4).

Theorem 4. The system (4) has four equilibrium points, which E1
(

a1
b1

, 0, 0
)
, E2

(
a1
b1

, y2, 0
)
, and

E3(x3, 0, z3) always exist. The other equilibrium point E4(x∗, y∗, z∗) exist if B3 < 0, where
B3 = 1

b2n

(
αa3
b3x∗ (mx∗ + 1) − a2(mx∗ + 1) − cx∗

)
and x∗ is the unique positive real root of cubic

equation x3 − a1
b1

x2 − a3β
b1b3

= 0.

Proof: The equilibrium points of the system (4) are identified by setting the following
equations

x(a1 − b1x) + βz = 0

y

(
a2 − b2y + cx

mx + ny + 1 − αz

)
= 0

z

(
a3
x

− b3z

)
= 0.

(5)

First, we can verify that E1
(

a1
b1

, 0, 0
)

always exist.

Second, when E2
(

a1
b1

, y2, 0
)
, we determine that y2 is all feasible positive real solutions of the

following quadratic equation:
A1y2 + A2y + A3 = 0, (6)

where
A1 = 1, A2 = a1m

b1n
+ 1

n
− a2

b2
, and A3 = −

(
a1a2m

b1b2n
+ a2

b2n
+ a1c

b1b2n

)
.

The discriminant of equation (6) is ∆ = (A2)2 −4A3. We can solve that ∆ > 0 because (A2)2 > 0
and −4A3 > 0. It guarantees that (6) have two distinct real roots, i.e. y21 and y22 . Moreover,
we can solve the multiplication of y21 and y22 as y21y22 = A3

A1
< 0. The negative result implies

that the roots have opposite signs. Hence, equation (6) has a unique positive real root given by
y2 = −A2+

√
(A2)2−4A3
2 . Therefore, E2

(
a1
b1

, y2, 0
)

where y2 = −A2+
√

(A2)2−4A3
2 always exist.

Next, by setting y = 0, we get E3(x3, 0, z3), where z3 = a3
b3x3

and x3 is all real positive roots
of the following cubic equation:

x3 − a1
b1

x2 − a3β

b1b3
= 0. (7)

By the transformation x = u − a1
3b1

, equation (7) reduces to the depressed cubic

u3 + 3pu + q = 0, (8)

with p = − a12

9b1
2 and q = −

(
a3β
b1b3

+ 2a13

27b1
3

)
. By applying Lemma 3.1 in [18], the depressed cubic

equation (8) admits exactly one real positive root explicitly. Furthermore, we can observe that
equation (7) has only one change of sign. By using Descartes’ rule of sign in [19], it is verified
that the equation (7) has one positive root. Thus, x3 is a unique real positive root and satisfies
z3 = a3

b3x3
, so the equilibrium point E3(x3, 0, z3) always exist.

Lastly, we determine the coexistence equilibrium point E4(x∗, y∗, z∗). From equation (5),
by arranging z∗ = a3

b3x∗ and substituting to dx
dt = 0, we have a cubic equation similar with (7).

Hence, there is a unique real positive root x∗ and x∗ = x3, that also satisfies z3 = z∗ = a3
b3x∗ .

Furthermore, by substituting x∗, z∗ to dy
dt = 0, we get y∗ is all possible positive real solutions of

the following quadratic equation:

B1y2 + B2y + B3 = 0, (9)
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where

B1 = 1, B2 = mx∗ + 1
n

+ 1
b2

(
αa3
b3x∗ − a2

)
, B3 = 1

b2n

(
αa3
b3x∗ (mx∗ + 1) − a2(mx∗ + 1) − cx∗

)
.

Since the discriminant ∆ = B2
2 − 4B3 > 0, the quadratic equation admits two distinct real roots.

Because the product of the roots is B3 and their sum is −B2, then there are three possible cases
for the existence of positive real roots of (9). We can verify as follows:

1. If B2 < 0 and B3 > 0, both roots would be positive. Let mx∗ + 1 = S, then

B2 = S

n
+ 1

b2

(
αa3
b3x∗ − a2

)
(10)

and
B3 = 1

b2n

(
S

(
αa3
b3x∗ − a2

)
− cx∗

)
. (11)

From (10), we get
αa3
b3x∗ − a2 = b2B2 − b2S

n
. (12)

Then, B3 reduced to

B3 = SB2
n

− S2

n2 − cx∗

nb2
. (13)

By letting B2 < 0, necessarily implies that B3 < 0, with the result that the case where
B2 < 0 and B3 > 0 cannot occur.

2. If B2 > 0 and B3 < 0, equation (9) has exactly one positive root. We can verify from
equation (13) by letting B3 < 0, we get B2 < S

n + cx∗

b2S . Let S
n + cx∗

b2S = B∗
2 , then the case

where B2 > 0 and B3 < 0 exist if 0 < B2 < B∗
2 .

3. If B2 < 0 and B3 < 0, equation (9) again has exactly one positive root. This case exists
and is proven in case 1, because letting B2 < 0, necessarily implies that B3 < 0.

Hence, equation (9) has a real positive root given by

y∗ =
−B2 +

√
B2

2 − 4B3

2 .

Therefore, the coexistence equilibrium point E4(x∗, y∗, z∗) exists where z∗ = a3
b3x∗ , x∗ = x3 is a

unique real positive root of (7) and

y∗ =
−B2 +

√
B2

2 − 4B3

2 , (14)

if B3 < 0 holds.

3.5 Local Stability Analysis

In this section, we obtain the local stability of the equilibrium points of the system (4) by
evaluating the Jacobian matrix of (4). The Jacobian matrix of the system (4) is given bya1 − 2b1x∗ 0 β

P Q −αy∗

− a32

b3(x∗)3 0 − a3
x∗ ,

 (15)

where Q = a2 − 2b2y∗ + cx∗

mx∗+ny∗+1 − cnx∗y∗

(mx∗+ny∗+1)2 − αa3
b3x∗ , P = cy∗

mx∗+ny∗+1 − cmx∗y∗

(mx∗+ny∗+1)2 , and
(x∗, y∗, z∗) is the equilibrium points of (4).
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Theorem 5. The equilibrium points E1 and E2 are unstable.

Proof: The Jacobian matrix (15) evaluated at E1 and E2 are, respectively, J(E1) =−a1 0 β
0 a2 + a1c

ma1+b1
0

0 0 a3b1
a1

, and

J(E2) =

 −a1 0 β
cy2

mx2+ny2+1 − cmx2y2
(mx2+ny2+1)2 a2 − 2b2y2 + cx2

mx2+ny2+1 − cnx2y2
(mx2+ny2+1)2 −αy2

0 0 a3b1
a1

 .

The eigenvalues of J(E1) are λ1 = −a1, λ2 = a2 + a1c
ma1+b1

, λ3 = a3b1
a1

. Also, the eigenvalues of
J(E2) are λ1 = −a1, λ2 = a2 −2b2y2 + cx2

mx2+ny2+1 − cnx2y2
(mx2+ny2+1)2 , λ3 = a3b1

a1
. Each of the matrices

J(E1) and J(E2) have at least one positive eigenvalue. Hence, the equilibrium points E1 and E2
are unstable.

Theorem 6. The neutral-only equilibrium point E3 is locally asymptotically stable when c < c∗,
αa3
b3x3

> a2, and β
b3x3

> 1, where c∗ =
(

1
x3

) (
αa3
b3x3

− a2
)

(mx3 + 1).

Proof: The Jacobian matrix (15) at E3 is

J(E3) =

a1 − 2b1x3 0 β
0 a2 + cx3

mx3+1 − αa3
b3x3

0
− a32

b3x33 0 − a3
x3

 . (16)

The characteristics equation of J(E3) is(
a2 + cx3

mx3 + 1 − αa3
b3x3

− λ

)(
d0λ2 + d1λ + d2

)
= 0, (17)

where d0 = 1, d1 = 2b1x3 + a3
x3

−a1 and d2 = 2a3b1 + a32β
b3x33 − a1a3

x3
. The roots of (17) have negative

real parts if a2 + cx3
mx3+1 − αa3

b3x3
< 0. Thus, we have c < c∗, where c∗ =

(
1

x3

) (
αa3
b3x3

− a2
)

(mx3 + 1)
and αa3

b3x3
> a2. Based on the Routh-Hurwitz criterion, the real parts of the roots of the quadratic

part of (17) are negative if

d0 = 1 > 0, |d1| > 0, and
∣∣∣∣∣d1 1
0 d2

∣∣∣∣∣ = d1d2 > 0 (18)

Since d1 > 0, then d2 > 0. We can solve that

d1 = 2b1x3 + a3
x3

− a1 > 0 ⇒ 2b1x3 + a3
x3

> a1 (19)

and
d2 = 2a3b1 + a3

2β

b3(x3)3 − a1a3
x3

> 0 ⇒ 2b1x3 + a3β

b3x32 > a1. (20)

By eliminating (20) by (19), we can solve that 0 < a3
x3

(
β

b3x3
− 1

)
. Therefore, λ2, λ3 in (17) is

negative if β
b3x3

> 1. Since c < c∗, αa3
b3x3

> a2, and β
b3x3

> 1, then the E3 is locally asymptotically
stable.

Theorem 7. The coexistence equilibrium point E4 is locally asymptotically stable when c < c∗∗,
2b2y∗ + αa3

b3x∗ > a2, and β
b3x∗ > 1, where c∗∗ =

(
1

x∗

) (
2b2y∗ + αa3

b3x∗ − a2
) (

(mx∗+ny∗+1)2

mx∗+1

)
.
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The characteristic equation of matrix (15) at E4(x∗, y∗, z∗) is given by

(Q − λ)
(
e0λ2 + e1λ + e2

)
= 0, (21)

where e0 = 1, e1 = 2b1x∗ + a3
x∗ − a1 and e2 = 2a3b1 + a32β

b3(x∗)3 − a1a3
x∗ . The roots of equation (21)

have negative real parts if Q < 0. Thus, we have c < c∗∗, where

c∗∗ =
( 1

x∗

)(
2b2y∗ + αa3

b3x∗ − a2

)((mx∗ + ny∗ + 1)2

mx∗ + 1

)

and
2b2y∗ + αa3

b3x∗ > a2.

Next, with the Routh-Hurwitz criterion, the roots of the quadratic part of (21) have negative
real parts if

e0 = 1 > 0, |e1| > 0, and
∣∣∣∣∣e1 1
0 e2

∣∣∣∣∣ = e1e2 > 0 (22)

It has been mentioned before that x3 = x∗, then we have e0 = d0, e1 = d1, and e2 = d2. Hence,
we can get the same criterion for λ2, λ3 in E4 stability as in E3, that is negative if β

b3x3
= β

b3x∗ > 1.
Hence, the E4 is locally asymptotically stable if c < c∗∗, 2b2y∗ + αa3

b3x∗ > a2, and β
b3x∗ > 1.

We summarize the stability condition of each equilibrium point through the Table 1.

Table 1: Stability condition of the equilibrium points of model (4)

Equilibria Type of Stability Stability Condition

E1( a1
b1

, 0, 0) Unstable -
E2

(
a1
b1

, y2, 0
)

Unstable -

E3(x3, 0, z3) Asymptotically stable c <
(

1
x3

)(
αa3
b3x3

− a2

)
(mx3 + 1), αa3

b3x3
> a2,

β
b3x3

> 1
E4(x∗, y∗, z∗) Asymptotically stable c <

( 1
x∗

) (
2b2y∗ + αa3

b3x∗ − a2

)(
(mx∗+ny∗+1)2

mx∗+1

)
,

2b2y∗ + αa3
b3x∗ > a2, β

b3x∗ > 1

3.6 Numerical Simulation

In this section, we present numerical simulations using the 4th-order Runge-Kutta to demonstrate
the feasibility of our main results. To prevent the risk of division by zero in the term a3

x , a
small positive threshold was introduced by setting x = 10−6 whenever x = 0. This approach
is commonly used to maintain numerical stability and avoid computational errors without
significantly affecting the system’s dynamics. For all simulations, hypothetical parameter values
were employed, as empirical data were unavailable. These values satisfy the necessary conditions
established through the stability analysis. All parameter sets used in this numerical simulation
are shown in Table 2.

Firstly, we conducted a simulation under the necessary condition for the stability of E3 using
the parameter set 1 in Table 2. From Table 2, using parameter set 1, we obtain c < c∗, β

b3x3
> 1,

and αa3
b3x3

> a2, which satisfies the necessary condition for E3 stability. The numerical simulation
of the solution and phase portrait captures the behavior of E3. As shown in Fig. 1, x increases
rapidly at the beginning and then settles at a constant value at x ≈ 13.361. Similarly, z increases
slightly and stabilizes at z ≈ 0.748446. Meanwhile, y decreases drastically and converges to
y = 0. The results confirm the locally asymptotically stable behavior of E3. Furthermore, the
phase portrait in Fig. 2 llustrates that the solution of system (4) asymptotically approaches the
equilibrium point E3 = (13.361, 0, 0.748446).
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Table 2: Parameter sets for numerical simulation

No. Parameter Set Equilibrium Points Values of Required Condition

1 a1 = 0.25, b1 = 0.025, E3 c < c∗ = 0.04644770517
β = 1.5, a2 = 0.4, x3 ≈ 13.361 β

b3x3
= 1.1227 > 1

b2 = 0.04, a3 = 1, y3 = 0 αa3
b3x3

= 0.5239 > a2
b3 = 0.1, m = 0.3, z ≈ 0.748446

n = 0.5, α = 0.7, c = 0.03

2 a1 = 0.25, b1 = 0.025, E4 c < c∗∗ = 0.5083893560
β = 1.5, a2 = 0.4, x∗ = 13.361 β

b3x∗ = 1.1227 > 1
b2 = 0.04, a3 = 1, y∗ = 5.50835 B3 = −102.5808 < 0
b3 = 0.1, m = 0.3, z∗ = 0.748446 B2 = 13.1144 > 0

n = 0.5, α = 0.7, c = 0.2 2b2y∗ + αa3
b3x∗ = 2.7396 > a2

3 a1 = 0.25, b1 = 0.025, E4 c < c∗∗ = 32.14562241
β = 1.5, a2 = 0.8, x∗ = 13.361 β

b3x∗ = 1.1227 > 1
b2 = 0.04, a3 = 1, y∗ = 31.4378 B3 = −710.9960 < 0
b3 = 0.1, m = 0.3, z∗ = 0.748446 B2 = −8.8219 < 0

n = 0.9, α = 0.3, c = 1.7 2b2y∗ + αa3
b3x∗ = 0.9646 > a2

Figure 1: Solution of x, y and z for the stability of E3

Figure 2: Phase portrait illustration of E3
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Next, we conducted a simulation under the necessary condition of E4 stability. We first
consider the condition where B2 > 0 and B3 < 0 holds, using parameter set 2 at Table 2. In
Table 2 and parameter set 2, we obtain c < c∗∗, β

b3x∗ > 1, and 2b2y∗ + αa3
b3x∗ > a2, which fulfills

the necessary condition for the local stability of E4. According to Fig. 3, the curves of x and z
show a trend similar to that in Fig. 1. Meanwhile, y decreases slightly at first and then grows
until it stabilizes at y ≈ 5.50835. The phase portrait in Fig. 4 validates that the solution tend
and stabilize to E4 = (13.361, 5.50835, 0.748446) asymptotically.

Figure 3: Solution of x, y and z for the stability of E4, where B2 > 0 and B3 < 0

Figure 4: Phase portrait illustration of E4 where B2 > 0 and B3 < 0

Finally, we consider the condition of E4 where B2 < 0 and B3 < 0 with parameter set 3
at Table 2. In Table 2 and parameter set 2, where B2 < 0 and B3 < 0, we obtained c < c∗∗,

β
b3x∗ > 1, and 2b2y∗ + αa3

b3x∗ > a2. These results confirm the consistency of the previous stability
analysis and satisfy the conditions required for the local stability of E4. As shown in Fig. 5, the
curves of x and z show similar trends to those observed when B2 > 0. The trend of their curves
is similar to that observed in Fig. 1. However, the y curve increases rapidly from the beginning
until it stabilizes at y ≈ 31.4378. Moreover, phase portrait Fig. 6 demonstrate that the solutions
are locally asymptotically stable at the equilibrium point.
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Figure 5: Solution of x, y and z for the stability of E4, where B2 < 0 and B3 < 0

Figure 6: Phase portrait illustration of E4 where B2 > 0 and B3 < 0

3.7 Discussion

This study demonstrates the influence of neutral species in supporting the abundance of
commensal-amensal species. From the local stability analysis of E2, it is shown that when
one neutral species does not coexist with the commensal-amensal species and the other neutral
species, the system becomes unstable. However, if the commensal-amensal species coexist with
all neutral species, the dynamics of their population growth become stable. This finding is
supported by the stability analysis of E4, confirmed by the simulation results and phase portrait
illustrations in Fig. 3, Fig. 5, Fig. 4, and Fig. 6. On the other hand, all neutral species can
survive and maintain stable populations independently, even when the commensal–amensal
populations go extinct. This is revealed by the stability of E3 and illustrated in Fig. 1 and Fig. 2.
These results suggest that, in real ecosystems, neutral species can persist without relying on
commensal-amensal species.

In line with this study, the two species commensalism model reveals that the commensal
population grows stably when coexisting with neutral species. While the neutral species can
possess stable dynamics without the commensal species [20]. A similar outcome is observed in
the two species amensalism model, where the system can be stable when amensal coexist with
neutral species, while the neutral species itself can admit stability [14]. Hence, the neutral species
has an important role in maintaining the ecosystem dynamics.

Moreover, from the stability analysis and numerical simulations, we observe that the stability
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of each equilibrium point depends on the value of c, the rate at which clownfish receive benefits
from commensalism. Moreover, it has been mentioned in the existence of equilibrium point
analysis, that x3 = x∗, which means αa3

b3x3
= αa3

b3x∗ > a2 and support stability condition of
E3(x∗, 0, z∗). This result shows that, if the rate of loss due to amensalism is weighted by the
carrying capacity of the neutral amensalism and larger than the intrinsic growth of the commensal-
amensal, then the commensal-amensal species goes extinct. However, in the stability of E4,
where the system is stable in the presence of all species, we have the condition 2b2y∗ + αa3

b3x∗ > a2.
This implies that the population density of the commensal–amensal species plays a significant
role in sustaining their presence in the ecosystem.

Furthermore, because many factors influence the dynamics of the ecosystem in terms of
three species commensalism-amensalism, future research could explore more complex interaction
structures, such as incorporating environmental fluctuations, time delays, or stochastic effects.
In addition, extending the model into higher-dimensional ecological networks may provide deeper
insights into how neutral species contribute to the overall stability and resilience of ecosystems.

4 Conclusion
The three species commensalism-amensalism model with Beddington-DeAngelis functional re-
sponse describes the complexity of the ecosystem’s dynamics among more than two species,
in which one species simultaneously engages in both commensalistic and amensalistic inter-
actions. This model involves neutral-commensalism species, commensal–amensal species, and
neutral-amensalism species. In the real ecosystem, this model reflects the interaction among
sea anemones, clownfish, and crustaceans. We examine the positivity, boundedness, existence,
and uniqueness of the solution, and identify four equilibrium points. The first two equilibria are
always unstable. Moreover, the system admits a stability condition when the equilibrium point
denotes the existence of only neutral species and the coexistence of commensal-amensal with
neutral species.

From an ecological perspective, the stability of the three-species system is ensured only
when all neutral species coexist. If any neutral species is absent, the system becomes unstable.
In contrast, stability can still be maintained even in the absence of the commensal–amensal
species. This finding underlines the critical role of neutral species in sustaining community
persistence. Nevertheless, the existence of commensal-amensal species can be enhanced by their
own population density. More broadly, this model extends classical two-species frameworks to a
more ecologically relevant three-species setting, offering insight into how unilateral symbioses
shape ecosystem stability.
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