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Abstract

Tungro disease is a serious threat to rice cultivation, caused by a viral infection and spread by
green leafhoppers. This study developed a mathematical model to assess the spread of tungro
disease, taking into account plant growth phases and control factors, such as roguing. The
model is divided into two subpopulations: plants and vectors. Dynamic analysis reveals the
existence of two equilibrium points. The non-endemic equilibrium point is stable if R0 < 1;
conversely, the endemic point is stable if R0 > 1. Sensitivity analysis using the PRCC method
identified that the infectivity level and roguing rate are the most influential parameters on
R0. An optimal control approach was employed to determine the optimal control strategy,
considering both the intensity of roguing and vector control. Pontryagin’s Maximum Principle
was used to obtain optimality conditions. Simulation results showed that roguing applied
during the vegetative phase significantly reduced the number of infected plants and the
intensity of disease spread. These findings demonstrate that integrating dynamic analysis,
sensitivity analysis, and optimal control can provide an effective and efficient strategy for
controlling tungro disease.
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Copyright © 2025 by Authors, Published by CAUCHY Group. This is an open access article
under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

1 Introduction

Rice (Oryza sativa L.) is a significant food commodity that plays a strategic role in the Indonesian
economy, particularly as a provider of employment in the agricultural sector. Furthermore, this
sector is also a significant source of income for rural communities, contributing to national food
security [1]. Rice, as the main crop of the rice plant, is not only widely consumed but also plays
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a vital role in driving socio-economic growth and is a key component in realizing sustainable
agricultural development and optimal utilization of natural resources [2].

However, rice productivity in Indonesia is often hampered by various problems, one of which
is the attack of plant diseases caused by viruses. One of the most detrimental viral diseases is
tungro disease. This disease poses a significant threat to rice production, particularly in South
and Southeast Asia [3], [4]. Tungro disease is caused by infection with two types of viruses, namely
Rice Tungro Bacilliform Virus (RTBV) and Rice Tungro Spherical Virus (RTSV), which are
transmitted semi-persistently by the insect vector, the green leafhopper (Nephotettix virescens)
[5]. Infected rice plants typically exhibit symptoms of yellowing leaves, stunted growth, and
reduced yields, ultimately resulting in significantly reduced crop yields pratisno2024detection.

Various approaches have been developed to understand and control the spread of tungro
disease. Amelia et al. [1] studied the characteristics of the virus that causes tungro and explored
control strategies, including roguing and the use of pesticides. Anggriani et al. [6] proposed a
mathematical optimization approach for a roguing strategy, considering both cost and control
effectiveness. Suandi et al. [7] integrated roguing strategies with delayed replanting in analyzing
disease spread. Suryaningrat et al. [8] added predator-prey interaction factors to disease spread
modeling, while Chikore et al. [9] applied the SEIR model to model interplant transmission via
vectors. Pratisno et al. [10] studied disease distribution by considering agronomic aspects, vector
populations, and viral genetic variation.

In addition to dispersion modeling, several studies also focus on sensitivity analysis to identify
key parameters in system dynamics. Yang and Liu [11] used the Sobol Global Sensitivity Analysis
method, while Resmawan and Yahya [12] applied a partial derivative-based local sensitivity
method. Anggriani et al. [13] and Ndairou et al. [14] combined Partial Rank Correlation
Coefficient (PRCC) and Latin Hypercube Sampling (LHS) in their sensitivity analyses.

Additionally, optimal control theory has also begun to be widely applied in mathematical
model-based disease control. Pontryagin’s Maximum Principle was used by Madubueze et al. [15]
and Adewale et al. [16] in developing control strategies for nonlinear differential equation systems.
Amelia et al. [17] used Pontryagin’s Minimum Principle and the forward-backward sweep method
to solve control models. Barbolosi et al. [18] and Huo et al. [19] applied the optimal control
approach to pharmacological and cancer therapy problems, demonstrating the broad potential of
this method in dynamic systems. The optimal analysis conducted by Amelia et al. [20] employed
Pontryagin’s Minimum Principle, considering two variables: pesticide application and natural
enemy conservation through refugia.

Although numerous studies have been conducted, no study has specifically developed a
mathematical model for tungro disease spread that considers plant growth phases, namely the
vegetative and generative phases, and utilizes roguing as the primary control strategy. However,
the plant growth phase can influence spread dynamics and the effectiveness of interventions.

Therefore, this study aims to develop and analyze a mathematical model for the spread of
tungro disease that explicitly accounts for rice plant growth phases and integrates a roguing-based
control strategy. A system dynamics analysis is conducted to examine the model’s behavior over
time, followed by a sensitivity analysis to identify the key parameters that most influence disease
spread. These analyses provide the foundation for formulating and implementing an optimal
control strategy to achieve more effective and efficient disease management.

2 Mathematical Models
The model developed in this study is a modification of the model proposed by Maryati et al.
[21]. The development focused on implementing a roguing strategy as a control measure to
suppress the spread of tungro disease. In this model, the roguing parameter is denoted by the
symbol ρ, with the assumption 0 ≤ ρ ≤ 1 that represents the proportion of infected plants that
are immediately removed from the system. Unlike previous studies by Amelia et al. [1], which
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modeled the spread of tungro disease based on general viral characteristics, the model in this
study explicitly considers plant growth phases in population dynamics. Furthermore, this model
also develops optimal control strategies designed to evaluate the effectiveness of interventions
based on each of these growth phases. The model is visually illustrated in Fig. 1, accompanied
by a description of each parameter and variable in Table 1.

Table 1: Description of Parameters and Variables [21]
Variables/ Parameters Description Value R0 < 1 Value R0 > 1

Sv Rice plants are susceptible (vegeta-
tive phase)

500 500

Iv Rice plants infected (vegetative
phase)

100 100

Sg Rice plants are susceptible (genera-
tive phase)

300 300

Ig Rice plants infected (generative
phase)

100 100

Swh Susceptible vectors 450 450
Iwh Infected vector 150 150
Λ Recrutment rate of rice plant 100 100
µp Rice plant death rate 0.3 0.3
α The growth rate of plants from Iv to

Ig

0.7 0.7

ρ Roguing level 0.1 0.1
β1 Rate of Iv 0.0005 0.0005
β2 Rate of Ig 0.0005 0.0005
ω Recrutment rate of Sv 100 100
γ1 The rate of vector infection when tak-

ing food from Iv

0.007 0.025

γ2 Vector infection when taking food
from Ig

0.005 0.002

µt Vector mortality rate 0.7 0.2
A1 Cost coefficient for Iv 1 1
A2 Cost coefficient for Ig 1 1
C Cost coefficient for roguing 1 1

Figure 1: Schematic diagram of the spread of tungro disease
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From Fig. 1 and Table 1, the resulting development model is stated in Eq. 1 to Eq. 6.

dSv

dt
= Λ − αSv − β1SvIwh − µpSv (1)

dIv

dt
= β1SvIwh − µpIv − ρIv (2)

dSg

dt
= αSv − β2SgIwh − µpSg (3)

dIg

dt
= β2SgIwh − µpIg − ρIg (4)

dSwh

dt
= ω − γ1IvSwh − γ2IgSwh − µISwh (5)

dIwh

dt
= γ1IvSwh + γ2IgSwh − µIIwh (6)

With Sv, Iv, Sg, Ig, Swh, Iwh ≥ 0.

3 Results and Discussion
This section presents an analysis of the dynamics of tungro disease spread, starting from the
identification of the equilibrium point and the calculation of the basic reproduction number (R0),
as well as the analysis of endemic and non-endemic stability, to the sensitivity of key parameters
that form the basis for designing optimal control strategies. Next, numerical simulations are
used to illustrate population dynamics and the implementation of control strategies, thereby
linking theoretical findings to practical applications in a logical, structured manner.

3.1 Result

3.1.1 Dynamic Analysis
Theorem 1
If the tungro disease spread model (Eq. 1 to Eq. 6) with non-negative initial conditions

Sv(0), Iv(0), Sg(0), Ig(0), Swh(0), Iwh(0) ≥ 0

has a solution, then the solution obtained is unique, namely:

L(t) =



Sv(t)

Iv(t)

Sg(t)

Ig(t)

Swh(t)

Iwh(t)


∈ ΩL for t > 0.

Based on [22], the existence and uniqueness of the solution of the system of Eq. 1 to Eq. 6
are investigated in the region [0, ∞) × ΩL, where

ΩL =
{

(Sv, Iv, Sg, Ig, Swh, Iwh)T ∈ R6
+ | max{|Sv|, |Iv|, |Sg|, |Ig|, |Swh|, |Iwh|} ≤ L

}
.

For L sufficiently large.
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Proof:
Let

L = (Sv, Iv, Sg, Ig, Swh, Iwh)T , L̄ = (S̄v, Īv, S̄g, Īg, S̄wh, Īwh)T

and define
F (L) =

(
dSv

dt
,

dIv

dt
,

dSg

dt
,

dIg

dt
,

dSwh

dt
,

dIwh

dt

)T

For any L, L̄ ∈ ΩL, we obtain:

∥F (L) − F (L̄)∥ ≤ M
(
|Sv − S̄v| + |Iv − Īv| + |Sg − S̄g| + |Ig − Īg| + |Swh − S̄wh| + |Iwh − Īwh|

)
= M∥L − L̄∥,

where
M1 = µp, M2 = µp + ρ, M3 = µI , and M = max{M1, M2, M3}.

Biologically, the fulfillment of the Lipschitz condition and the existence of a unique solution
indicate that the model is stable and can evolve predictably and consistently, without producing
unrealistic or deviant behavior. ■

Theorem 2
If every initial condition Sv(0), Iv(0), Sg(0), Ig(0), Swh(0), Iwh(0) ≥ 0, then the solution of Eq. 1
to Eq. 6 is non-negative for all t > 0.

Proof:
It is shown that all solutions of equations Eq. 1 to Eq. 6 are non-negative for all t > 0, given the
initial conditions Sv(0), Iv(0), Sg(0), Ig(0), Swh(0), Iwh(0) ≥ 0. Obtained:

dSv

dt
= Λ − αSv − β1SvIwh − µpSv,

dSv

dt
= −(α + β1Iwh + µp)Sv + Λ.

Sv(0) = exp
(

−
∫ t

0
(α + β1Iwh(s) + µp)ds

)
≥ 0.

By using the same method, it follows that Sv(0), Iv(0), Sg(0), Ig(0), Swh(0), Iwh(0) ≥ 0 for
each t > 0. Thus, it is proven that Eq. 1 to Eq. 6 have non-negative solutions. ■

Biologically, these results indicate that the model’s solutions will consistently remain non-
negative over time. This implies that the model will not produce negative population numbers,
thereby ensuring that the system remains biologically meaningful and realistic.

Theorem 3
If Eq. 1 to Eq. 6 have solutions, then the obtained solutions are finite for all t ∈ [0, t0].

Proof:
From Eq. 1 to Eq. 6, we obtain: N = NP +NV , NP = Sv +Iv +Sg +Ig, and NV = Swh+Iwh.
By assuming that µp = µI = µp + ρ = µ, we have dN

dt = Λ + ω − µN.By using the variable
separation method, we obtain 0 ≤ N(t) ≤ Λ+ω

µ . Thus, it is proven that Eq. 1 to Eq. 6 are
bounded for all t ∈ [0, t0]. ■

Biologically, this model demonstrates realism by showing that plant populations have a
reasonable and controlled upper limit. In other words, the model reflects natural conditions in
which plant populations do not experience uncontrolled growth or sudden extinction within a
given time span.
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3.1.2 Non-Endemic Equilibrium Point

The non-endemic equilibrium point is obtained by settingEq. 1 to Eq. 6 equal to zero [23]. Then,
by substituting the non-endemic condition Iv = Ig = Iwh = 0 into equations Eq. 1 to Eq. 6, the
non-endemic equilibrium point is obtained as written in Eq. 7.

E0 = {Sv, Iv, Sg, Ig, Swh, Iwh} =
{

Λ
µp + α

, 0,
αΛ

µp(µp + α) , 0,
ω

µI
, 0

}
. (7)

3.1.3 Basic Reproduction Number
The Basic Reproduction Number is defined as

R0 = ρ(FV −1),

where ρ is the spectral radius (dominant eigenvalue) of the matrix FV −1 [24], [25], [26].
F , V , and R0 are obtained for the tungro disease model as in Eq. 8:

F =

 β1SvIwh

β2SgIwh

γ1IvSwh + γ2IgSwh

 , V =

µpIv + Ivρ
µpIg + Igρ

µIIwh

 , R0 =
√

Λω(µpβ1γ1 + αβ2γ2)
µp(µp + α)(µp + ρ)µ2

I

. (8)

Here, F represents a matrix of new infection levels that appear in the compartment, and V
represents the levels that leave the compartments. In this case, it represents the average number
of new infections produced by a single tungro-infected plant in a fully susceptible rice population.

3.1.4 Stability Analysis
Theorem 4
The non-endemic equilibrium point in Eq. 7 is locally stable if R0 < 1.

Proof:
The stability of the non-endemic equilibrium point for Eq. 7 is determined by the eigenvalues
obtained from the characteristic Eq. 9 obtained from the Jacobian matrix.

1
µIµp(µp + α)(µp + λ)(µp + λ + ρ)(µp + α + λ)(µI + λ)(a0λ2 + a1λ + a2) = 0, (9)

with

a0 = 1 > 0,

a1 = ρ + µI + µp > 0,

a2 = µp(µp + α)(µp + ρ)µ2
I − Λω(µpβ1γ1 + αβ2γ2)

= 1 − R2
0 > 0.

From Eq. 9, the eigenvalues are:

λ1 = −µp

λ2 = −(µp + ρ)
λ3 = −(µp + α)
λ4 = −µI

λ5,6 =
−a1 ±

√
a2

1 − 4a0a2

2a0
.
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Based on these eigenvalues, λ1, . . . , λ4 are clearly negative. To ensure local stability, the
eigenvalues λ5 and λ6 must also be negative. Using the Routh–Hurwitz criterion, the polynomial
a0λ2 + a1λ + a2 = 0 has roots with negative real parts if all its coefficients have the same sign.
This implies λ5 and λ6 are negative if R0 < 1.

Because all eigenvalues are negative, it is proven that the non-endemic equilibrium point in
Eq. 7 is locally stable if R0 < 1. These results indicate that tungro disease will not spread in a
plant population if R0 < 1. ■

3.1.5 Existence of Endemic Equilibrium Points

Theorem 6
Eq. 1 to Eq. 6 have an endemic equilibrium point if R0 > 1.

Proof:
The existence of an endemic equilibrium point is obtained by solving Eq. 1 to Eq. 5, yielding the
point as shown in Eq. 10 to Eq. 14:

I∗
g = I∗

whβ2αΛ
(I∗

whβ2 + µp)(I∗
whβ1 + µp + α)(µp + ρ) , (10)

I∗
v = β1ΛI∗

wh

(I∗
whβ1 + µp + α)(µp + ρ) , (11)

S∗
g = αΛ

(I∗
whβ2 + µp)(I∗

whβ1 + µp + α) , (12)

S∗
v = Λ

I∗
whβ1 + µp + α

, (13)

S∗
wh = ω(I∗

whβ2 + µp)(I∗
whβ1 + µp + α)(µp + ρ)

(I∗
whβ2 + µp)(I∗

whβ1 + µp + α)(µp + ρ)µI + (γ1β1µp + β2(I∗
whβ1γ1 + αγ2))I∗

whΛ . (14)

Substituting Eq. 10 to Eq. 14 into Eq. 6, we obtain Eq. 15:

− I∗
wh(a4I∗2

wh + a5I∗
wh + a6)

(I∗
whβ2 + µp)(I∗

whβ1 + µp + α)(µp + ρ)µI + I∗
whΛ(I∗

whβ1β2γ1 + µpβ1γ1 + αβ2γ2) = 0, (15)

where the coefficients are

a4 = ((µp + ρ)µI + Λγ1)β2µIβ1,

a5 = ((α + µp)β2 + β1µp)(µp + ρ)µ2
I + Λ(µpβ1γ1 + αβ2γ2)µI − Λωβ1β2γ1,

a6 = µ2
Iµp(α + µp)(µp + ρ) − ωΛ(µpβ1γ1 + αβ2γ2).

Based on the Routh–Hurwitz criterion, the characteristic equation polynomial (a4I2
wh +

a5Iwh + a6) = 0, will have at least one positive root if one of the polynomial coefficients has a
different sign. Therefore, it can be concluded that Eq. 11 has a positive root if R0 > 1.

This indicates that when R0 > 1, tungro disease has the potential to spread and persist
within the plant population, thus allowing the existence of an endemic equilibrium point. ■

3.1.6 Sensitivity Analysis

Sensitivity analysis was conducted using the Latin Hypercube Sampling (LHS) method and the
Partial Rank Correlation Coefficient (PRCC) method [27]. A total of 5.000 samples were used
to determine the parameters that influence the basic reproduction number, as written in Eq. 8,
where each parameter is assumed to have a value between 0 and 1. The results obtained are
presented in Table 2.
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Table 2: Sensitivity Analysis Results
Parameter Sensitivity Index to R0 Parameter Sensitivity Index to R0
µp -0.288313328930483 β2 0.00254836677353819
α -0.643749923339776 γ1 0.00245239481037207
ρ 0.000614852963961030 γ2 0.00134398671948831
β1 0.00218526675365787 µI 0.00161285354250586

The PRCC sensitivity analysis results, presented in Table 2, indicate that several parameters
have a significant influence on the basic reproduction number R0. Specifically, the parameter
α exhibits a strong negative correlation with R0, suggesting that increasing the value of α can
reduce the potential for disease transmission. Furthermore, five other parameters, namely ρ, β1,
β2, γ1, γ2, and µI , show a positive effect, where increasing their values contributes to a decrease in
the R0 value. Conversely, the parameters µp and α have a negative relationship, where increasing
their values can actually lead to a reduction in R0. Among all the parameters analyzed, only the
parameter ρ (roguing rate) can be directly controlled in field practice. Therefore, this parameter
was selected as the primary control variable in formulating the optimal control strategy.

3.1.7 Optimal Control

The objective of optimal control in this section is to minimize the costs incurred while controlling
the population of infected plants and vectors; thus, the objective function of this optimal control
model is as given in Eq. 16.

J(u) = min
{∫ t1

t0

(
A1Iv + A2Ig + Cu2

)
dt

}
(16)

With constraint functions as in Eq. 17 to Eq. 22:

dSv

dt
= Λ − αSv − β1SvIwh − µpSv, (17)

dIv

dt
= β1SvIwh − µpIv − uIv, (18)

dSg

dt
= αSv − β2SgIwh − µpSg, (19)

dIg

dt
= β2SgIwh − µpIg − uIg, (20)

dSwh

dt
= ω − γ1IvSwh − γ2IgSwh − µISwh, (21)

dIwh

dt
= γ1IvSwh + γ2IgSwh − µIIwh. (22)

Boundary conditions:

t0 < t < t1, 0 ≤ u(t) ≤ 1, Sv(0), Iv(0), Sg(0), Ig(0), Swh(0), Iwh(0) ≥ 0
The optimal control theory method is used to solve the optimal control model using the

Pontryagin minimum principle, where u is the optimal control [28] [29]. From the objective
function and constraints in Eq. 16 to Eq. 22, the Hamiltonian function is obtained as in Eq. 23.

The Hamiltonian function H is given by:

H = A1 · Iv + A2 · Ig + C · u2 + λ1
dSv

dt
+ λ2

dIv

dt
+ λ3

dSg

dt
+ λ4

dIg

dt
+ λ5

dSwh

dt
+ λ6

dIwh

dt
. (23)

With λi for is i = 1, . . . , 6, a co-state variable, then the Hamiltonian function must satisfy:
co-state equations, adjoint equations, and stationary conditions.
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Co-state Equation:

∂H

∂λ1
= dSv

dt
= Λ − αSv − β1SvIwh − µpSv,

∂H

∂λ2
= dIv

dt
= β1SvIwh − µpIv − uIv,

∂H

∂λ3
= dSg

dt
= αSv − β2SgIwh − µpSg,

∂H

∂λ4
= dIg

dt
= β2SgIwh − µpIg − uIg,

∂H

∂λ5
= dSwh

dt
= ω − γ1IvSwh − γ2IgSwh − µISwh,

∂H

∂λ6
= dIwh

dt
= γ1IvSwh + γ2IgSwh − µIIwh.

Adjoint Equation:

λ̇1 = − ∂H

∂Sv
= −λ1(−β1Iwh − µp − α) − λ2Iwhβ1 − λ3α,

λ̇2 = −∂H

∂Iv
= −λ2(−µp − u) + λ5γ1Swh − λ6γ1Swh,

λ̇3 = − ∂H

∂Sg
= −λ3(−β2Iwh − µp) − λ4β2Iwh,

λ̇4 = −∂H

∂Ig
= −A2 − λ4(−µp − u) + λ5γ2Swh − λ6γ2Swh,

λ̇5 = − ∂H

∂Swh
= −λ5(−γ2Ig − γ1Iv − µI) − λ6(−γ2Ig + γ1Iv),

λ̇6 = − ∂H

∂Iwh
= λ1Svβ1 − λ2Svβ1 + λ3β2Sg − λ4β2Sg + λ6µI .

Stationary conditions:
u∗ = λ4Ig + λ2Iv

2C
.

Control function with bounds:

u∗ = max
{

min
[

λ4Ig + λ2Iv

2C
, 1

]
, 0

}
.

3.2 Discussion

The simulations presented in this section, both for population dynamics and optimal control, are
performed using the parameters explicitly described in Table 1.

3.2.1 Population Dynamics
Based on Fig. 2, the population dynamics of rice plants during the vegetative and generative
phases indicate that tungro disease infection did not develop into an endemic state. This is
evident from the significant downward trend in the number of infected plants in both phases,
which approaches zero by the end of the observation period (day 30). Meanwhile, the population
of susceptible plants reached a stable state, indicating that the infection would not continue to
spread. This phenomenon is consistent with the basic reproduction number (R0 < 1), which
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epidemiologically means that each infected plant transmits the disease to, on average, fewer than
one healthy plant. Therefore, the infection cannot persist and tends to disappear over time.

Analysis of the insect vector population also shows a similar pattern. Initially, the number of
infected insects increases and reaches a peak, but then decreases significantly to approach zero.
In contrast, the population of healthy insects, which had previously declined, gradually increases
again. This indicates that infection in the vector population is not sustainable and the outbreak
does not last long, which is consistent with the condition R0 < 1.

(a) Rice Plant (b) Vector
Figure 2: Population dynamics when R0 < 1

Conversely, in Fig. 3, the population dynamics of rice plants indicate that the infection
persisted throughout the observation period. The number of infected plants remained relatively
high, with no significant decline, and the population of infected insects persisted for 30 days.
This indicates that the disease can maintain its chain of transmission, creating an endemic state
consistent with the condition R0 > 1.

(a) Rice Plant (b) Vector
Figure 3: Population dynamics when R0 > 1
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3.2.2 Optimal Control

Fig. 4 shows the effectiveness of optimal control through roguing, which significantly reduced the
spread of tungro disease in rice plants. The population of infected plants decreased consistently in
both growth phases in the control scenario compared to the uncontrolled scenario. A significant
decrease was also observed in the population of infected vectors, confirming that reducing the
inoculum source by removing infected plants can directly suppress infection levels in both plants
and vectors.

An optimal roguing strategy applied intensively, especially in the first seven days after initial
infection detection, is crucial for breaking the chain of transmission and preventing a surge in
the number of infected plants. This approach has the potential to lead the system toward a
disease-free state and reduce the basic reproductive number, thereby preventing the formation of
an endemic state and supporting sustainable rice production

(a) Ig (b) Iv

(c) Iwh (d) u(t)
Figure 4: Population dynamics when R0 > 1
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4 Conclusion
This study successfully developed a mathematical model that considers the growth phase of
rice plants and control strategies, including roguing, to analyze the spread of tungro disease.
Simulations showed that the application of roguing during the vegetative phase significantly
reduced the number of infected plants and decreased the transmission rate. Dynamic analysis
identified two equilibrium points, while sensitivity analysis using the Partial Rank Correlation
Coefficient (PRCC) method confirmed that the level of infectivity and the roguing rate were
the most influential parameters on the R0 value. Using an optimal control approach based
on Pontryagin’s Maximum Principle, the best strategy combining roguing intensity and vector
control can be determined to suppress infection and prevent endemic conditions. Thus, this
optimal control strategy has been proven effective in reducing the infection rate and has the
potential to lead the system towards a tungro-free plant condition.
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