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Abstract

This study aims to identify spatial groupings of regencies and cities in East Nusa Tenggara
(NTT) Province based on health and sanitation determinants associated with stunting by
applying the Fuzzy Geographically Weighted Clustering optimized through the Flower Polli-
nation Algorithm (FGWC–FPA). The analysis utilized eight indicators for 2024, including
breastfeeding coverage, low birth weight (LBW) rates, basic immunization completeness,
complementary feeding practices, and access to safe drinking water and adequate sanitation.
The results produced two distinct clusters: Cluster 1 is characterized by higher rates of
complementary feeding and BCG immunization but limited access to drinking water and san-
itation, as well as higher LBW prevalence. Cluster 2, in contrast, exhibits significantly better
access to drinking water (90.37%) and sanitation (83.19%), along with more optimal Hepatitis
B immunization coverage. Cluster validity evaluation using the Classification Entropy (CE)
and Separation Index (SI) demonstrates that the optimal configuration is achieved at c = 2
and m = 1.5, yielding the lowest CE (0.6631) and SI (0.0653) values. These findings indicate
that the FGWC–FPA method provides superior clustering performance, producing more
stable and well-separated clusters that accurately reflect the spatial distribution of stunting
determinants in NTT.
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1 Introduction

Clustering is a technique used to group data into subsets (clusters) based on object similarity,
such that objects within the same cluster share more similar characteristics than those in different
clusters [1]. In unsupervised learning, clustering is applied to unlabeled data to group similar
objects together and separate those that differ [2], [3]. Clustering methods are commonly divided
into hard clustering—where each object belongs to only one cluster—and fuzzy clustering, which
allows objects to have membership degrees across multiple clusters [4]. As data structures
become increasingly complex, fuzzy clustering is widely used due to its flexibility in representing
heterogeneous patterns [5].

One of the most widely used fuzzy clustering methods is Fuzzy C-Means (FCM), but it has
limitations such as difficulty determining the optimal number of clusters, susceptibility to local
optima, and reduced performance for complex or high-dimensional datasets [6]. To address these
issues, Fuzzy Geographically Weighted Clustering (FGWC) was developed by incorporating
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spatial information such as distance and population. However, FGWC still relies on randomly
initialized cluster centers, which may lead to suboptimal outcomes.

To enhance optimization performance, FGWC has been integrated with metaheuristic algo-
rithms. Previous studies indicate that metaheuristic-based optimization can produce more stable
global solutions [7]. For instance, FGWC has been applied successfully in clustering regional
economic development indicators [8], demonstrating its applicability for spatially structured data.

Building upon these developments, this study applies the FGWC–FPA method to identify
spatial patterns of stunting in East Nusa Tenggara (NTT). Stunting is a chronic nutritional
problem that significantly affects child development [9]. According to the Indonesian Nutritional
Status Survey (SSGI), national stunting prevalence declined slightly from 21.6% (2022) to 21.5%
(2023), yet NTT remained the province with the highest prevalence, reaching 37% in 2024 [10].
This condition underscores the need for comprehensive spatial analysis to understand stunting
determinants in the region.

This study aims to implement and evaluate the FGWC–FPA method for clustering districts
and municipalities in NTT based on health, nutrition, and sanitation indicators. By integrating
spatial weighting and metaheuristic optimization, the method is expected to generate more
accurate and stable cluster structures that reflect actual regional conditions. The findings are
anticipated to support public health planning, the prioritization of stunting mitigation efforts,
and broader applications of advanced spatial clustering and optimization methods in public
health research.

2 Methods
This research employs secondary data provided by the Central Statistics Agency of East Nusa
Tenggara Province (https://ntt.bps.go.id/id). The research data consist of several predictor
variables, namely: infants who receive exclusive breastfeeding (X1), infants who receive early
breastfeeding initiation (X2) [11], infants with low birth weight (LBW) (X3) [12], infants who
receive complete basic BCG immunization (X4), infants who receive complete basic Hepatitis B
immunization (X5) [13], toddlers who are given complementary foods (X6) [14], households that
have access to safe drinking water (X7), and households that have access to proper sanitation
(X8). The analysis in this study covers all districts/cities in East Nusa Tenggara, with a total of
22 districts/cities included in the 2024 dataset. The method used in this research is FGWC-FPA.
The stages of the study are as follows:

1. Developing a FGWC model with the FPA.
2. Conducting the FGWC-FPA analysis through the following steps:

(a) Data preparation: including data input as well as the construction of distance and
geographical weight matrices.

(b) Parameter determination: specifying fuzzy clustering parameters (number of
clusters c, fuzziness value m, threshold, maximum iterations), FPA parameters (global
and local pollination), and geographic parameters (α, β, a, b).

(c) Initialization and fitness function: defining the number of agents, initializing the
starting positions, and selecting the FGWC-V or FGWC-U fitness function according
to the data characteristics.

(d) Optimization process with FPA: consisting of global pollination using Lévy
flight, local pollination with neighbor solutions, agent position updates, and stopping
criterion checks.

(e) Clustering result evaluation: assessing the final solution using cluster validity
indices, namely the Separation Index (SI) and Classification Entropy (CE), in order
to obtain the optimal clustering results.
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2.1 Fuzzy Geographically Weighted Clustering

The Fuzzy Geographically Weighted Clustering (FGWC) method, introduced by G. A. Mason
and R. D. Jacobson in 2007, extends the conventional Fuzzy C-Means (FCM) algorithm by
embedding spatial components-such as regional distances and population magnitudes-that impact
the determination of cluster centroids [15]. FGWC calculates the influence of one region on
another in relation to its population. A distance-decay effect is applied as a weighting factor in the
clustering process. The FGWC algorithm thus incorporates the influence of spatial interactions
as an integral part of the model [16]. The membership degree of each cluster is then determined
at every iteration of the fuzzy clustering algorithm using the following equation:

µ
′
i = α × µi + β × 1

A

n∑
j

wij × µj (1)

Parameters α and β are scaling factors that influence the proportions before and after
weighting. The definitions of n based on the values of α and β are as follows:

α + β = 1 (2)

The membership criteria for FGWC are defined as follows:

wij = (mi × mj)b

da
ij

(3)

This study applies the FGWC-V variant, where spatial weights explicitly incorporate pop-
ulation magnitude through mi and mj . Because population effects are included in the spatial
interaction term, this formulation corresponds to FGWC-V rather than FGWC-U. The above
weighting function is the single spatial weighting scheme used throughout the model, ensuring
consistency with the chosen FGWC-V framework.

Parameters a and b control the effects of distance and population on the weights, and are
specified by the user.

JF GW C
m (U, V ; W ) =

c∑
i=1

n∑
k=1

um
ik∥xk − vi∥2 (4)

2.2 Flower Pollination Algorithm

The Flower Pollination Algorithm (FPA) represents a metaheuristic optimization approach
inspired by the biological process of flower pollination. As in nature, the reproductive success of
a flower species depends on pollination. In this method, the algorithm distinguishes between two
mechanisms: global pollination and local pollination [17]. The objective function of the Flower
Pollination Algorithm (FPA) in the global pollination process is defined as follows:

vt+1
i = vt

i + γL(λ)
(
g∗ − vt

i

)
(5)

The objective function of the Flower Pollination Algorithm (FPA) in the local pollination
process is defined as follows:

vi
t+1 = vi

t + ϵ(vj
t − vk

t) (6)

2.3 Validity Index

The cluster validity index is used to determine the optimal number of clusters, as it plays
an important role in obtaining reliable estimates in cluster analysis. It also serves to assess
whether the specified number of clusters can adequately represent the entire dataset. In addition,
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the validity index provides objective criteria for determining the partition value in clustering
algorithms [18].

1. Separation Index (SI)
The Separation Index (SI) is defined as the ratio of the objective function value to the
minimum cluster separation. A smaller SI value indicates a more optimal cluster partition
[19].

S =

c∑
i=1

n∑
k=1

um
ik∥xk − vi∥2

min
i̸=j

∥vi − vj∥2 (7)

where
S : Separation Index, measuring the compactness and separation of clusters.

Lower values indicate better clustering.
n : total number of data points.
c : total number of clusters.
uik : membership degree of data point k in cluster i.
m : fuzziness exponent (m > 1), controlling the degree of fuzziness in

clustering.
xk : data point at location k.
vi : cluster center for cluster i.
∥xk − vi∥2 : squared Euclidean distance between data point k and cluster center i.
mini̸=j ∥vi − vj∥2 : minimum squared distance between any two distinct cluster centers,

representing cluster separation.
2. Classification Entropy (CE)

Classification Entropy (CE) is used to measure the degree of uncertainty in fuzzy clustering
results. A smaller CE value indicates clearer and more distinct clusters, whereas a larger
value reflects greater ambiguity in the clustering [20].

CE = − 1
n

n∑
k=1

c∑
i=1

um
ik log(um

ik) (8)

where
CE : Cluster Entropy, a measure of uncertainty in the clustering results.
n : total number of data points.
c : total number of clusters.
um

ik : membership degree of data point k in cluster i.
m : fuzziness exponent (m > 1), controlling the level of cluster fuzziness. Higher m

leads to fuzzier clusters.
log(um

ik) : natural logarithm of the membership value, quantifying the uncertainty associated
with the membership.

3 Results and Discussion
Taken together, the clustering outputs, centroid profiles, spatial patterns, and validity index
comparisons show that the FGWC–FPA configuration with c = 2 and m = 1.5 yields the most
coherent and interpretable partition of districts and cities in NTT with respect to stunting-related
determinants. The contrast between Cluster 1 and Cluster 2 highlights clear differences in access
to safe drinking water and sanitation, immunization coverage, and low birth weight prevalence,
while the superior CE, SI, and XB values confirm the robustness of the resulting clusters. These
empirical findings provide the basis for synthesizing the main insights of this study and discussing
their implications for spatially targeted stunting mitigation, as outlined in the next section.
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3.1 FGWC Development Model with FPA (FGWC-FPA)

Lemma 1 (Global and Local Pollination Mechanism in FGWC-FPA). Let µik denote the fuzzy
membership degree of data point xk in cluster i, vi denote the cluster center, L be the step size
determined by the Lévy flight mechanism, and ϵ be a small random number (0 < ϵ < 1). The
membership and cluster center updates in the FGWC-FPA algorithm are governed by the following
rules:

1. Global Pollination:

µ
(t+1)
ik = µt

ik + L(µg − µt
ik), (9)

where µ
(t)
ik =

(
∥xk − vi∥2∑c

i=1 ∥xk − vi∥2

) −t
m−1

, (10)

L = λ Γ(λ) sin(πλ)
π|s|1+λ

. (11)

The normalization constraint is given by:
c∑

i=1
µ

(t+1)
ik = 1, (12)

and the cluster center is updated as:

v
(t+1)
i =

(∑n
k=1 µm

ikxk∑n
k=1 µm

ik

)t

+ L(vg − vt
i). (13)

2. Local Pollination:

µ
(t+1)
ik = µt

ik + ϵ(µg − µt
ik), (14)

v
(t+1)
i = vt

i + ϵ(vg − vt
i), (15)

where ϵ represents a local random factor that adjusts the pollination intensity.

Proof. The update mechanism is derived from the Flower Pollination Algorithm (FPA), where
global pollination simulates long-distance transfer of the best solutions through Lévy flight,
while local pollination exploits neighborhood information using a small random perturbation ϵ.
The normalization step ensures that the membership degrees in each iteration satisfy the fuzzy
constraint ∑c

i=1 µik = 1. Hence, the proposed update rules maintain both global exploration
and local exploitation, improving convergence stability and avoiding local optima in the FGWC
process.

3.2 Formulation of the FGWC-FPA Objective Function

Lemma 2 (Derivation of the FGWC-FPA Model). The Fuzzy Geographically Weighted Clustering–
Flower Pollination Algorithm (FGWC-FPA) model seeks to minimize the spatially weighted fuzzy
objective function

JF GW C =
c∑

i=1

n∑
k=1

um
ikwij∥xk − vi∥2, (16)

where dkl denotes the geographical distance between locations k and l, and h is the bandwidth
parameter controlling the spatial influence. subject to the membership constraint

c∑
i=1

uik = 1, uik ∈ [0, 1], ∀k = 1, . . . , n. (17)

The model integrates the fuzzy clustering process of FGWC with the optimization capability of the
Flower Pollination Algorithm (FPA) to achieve global convergence.
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Proof. To obtain the optimal membership degrees uik, the Lagrangian function is defined as

L(U, V, λ) =
c∑

i=1

n∑
k=1

um
ikwij∥xk − vi∥2 −

n∑
k=1

λk

(
c∑

i=1
uik − 1

)
, (18)

where λk are the Lagrange multipliers associated with the membership constraint.
Differentiating L with respect to uik and setting it equal to zero gives

∂L
∂uik

= m um−1
ik wij∥xk − vi∥2 − λk = 0. (19)

Hence,
um−1

ik = λk

m wij ∥xk − vi∥2 . (20)

Applying the constraint ∑c
i=1 uik = 1, the membership update rule becomes

uik = 1
c∑

j=1

(
∥xk − vi∥
∥xk − vj∥

) 2
m−1

(21)

Next, to determine the optimal cluster centers vi, the FPA is applied. Instead of using direct
differentiation with respect to vi, FPA performs iterative optimization through two stochastic
mechanisms inspired by the natural process of flower pollination:

(a) Global Pollination:
vt+1

i = vt
i + L (vt

i − g∗), (22)

where L follows a Lévy flight distribution that enables global exploration, and g∗ is the
best global solution obtained so far (the cluster center minimizing JF GW C at iteration t).

(b) Local Pollination:
vt+1

i = vt
i + ϵ(vt

j − vt
k), (23)

where vt
j and vt

k are two randomly selected cluster centers different from vt
i , and ϵ is a

uniformly distributed random number in [0, 1] controlling local search intensity.
At each iteration, JF GW C is recomputed using the updated values of uik and vt+1

i . If the
updated objective function satisfies

J t+1
F GW C < J t

F GW C , (24)

the new solution is accepted; otherwise, it is retained. Repeated application of the global and
local pollination steps ensures convergence of the algorithm by balancing exploration (searching
new areas) and exploitation (refining known good solutions).

Therefore, the FGWC–FPA model effectively combines spatially weighted fuzzy clustering
and metaheuristic optimization, allowing uik and vi to be updated iteratively until the objective
function converges to a global minimum.

The FGWC-FPA model employed in this study is formulated as shown in Equation (16),
where the objective function integrates fuzzy membership weighting and spatial information
within an optimization framework. This equation represents the final model used to determine
the optimal cluster structure by iteratively updating the membership degree uik and the cluster
centers vt+1

i through the Flower Pollination Algorithm until the objective function JF GW C−F P A

reaches convergence.

JF GW C−F P A =
c∑

i=1

n∑
k=1

um
ikwij∥xk − vt+1

i ∥2, (25)
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where
xk : data point at location k
vi : cluster center for cluster i
uik : membership degree of xk in cluster i
m : fuzziness parameter (m > 1)
wk : spatial weight between points k and l
dk : geographical distance between locations k and l
h : bandwidth parameter controlling spatial influence
JF GW C−F P A : objective function of the FGWC–FPA model

3.3 Distance Matrix and Geographic Weight Matrix

D =


0 0.819 4.207 · · · 4.192

0.819 0 3.389 · · · 3.374
4.207 3.389 0 · · · 0.039

...
...

... . . . ...
4.192 3.374 0.039 · · · 0


In the FGWC algorithm, the spatial structure of the data is represented through a distance

matrix D, which quantifies the Euclidean distances among the 22 districts and cities in East
Nusa Tenggara (NTT) Province. The diagonal elements (dii = 0) indicate self-distances, while
the off-diagonal elements describe the spatial proximity between regions, where smaller distances
imply stronger spatial influence. This distance matrix serves as the foundation for constructing
the spatial weight matrix W (ui, vi), allowing the model to incorporate both geographic proximity
and spatial heterogeneity. Furthermore, population size is considered alongside distance effects at
each iteration to better reflect demographic and spatial characteristics. The population data used
in this study were obtained from the Central Statistics Agency (BPS) for the 22 administrative
areas of NTT in 2024, as summarized in the following table.

Table 1: Population of Selected Regencies and Cities in East Nusa Tenggara (NTT) Province, 2024
Region Population
West Sumba 155,000
East Sumba 259,300
Kupang Regency 380,200
South Central Timor 481,300
...

...
Malaka 193,500
Kupang City 474,800

In the FGWC framework, data weighting is guided by geographic criteria and spatial relevance,
allowing each district or city to be distinctly characterized during the clustering process. The
fuzzy membership degree is determined based on spatial weights and the distance of each region
to its respective cluster center, forming a distance matrix that represents regional similarities.
This matrix is essential for optimizing cluster center positions in accordance with the spatial
configuration and population distribution, enabling FGWC to generate spatially representative
clusters that reveal stunting distribution patterns across the 22 districts and cities of East Nusa
Tenggara (NTT) Province in 2024.

W =


0 1/0.819 1/4.207 · · · 1/4.192

1/0.819 0 1/3.389 · · · 1/3.374
1/4.207 1/3.389 0 · · · 1/0.039

...
...

... . . . ...
1/4.192 1/3.374 1/0.039 · · · 0


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3.4 Parameter Settings for FGWC-FPA Experiments

Table 2: Parameter Configurations for FGWC-FPA
Category Parameter Values / Range

Fuzzy Clustering (FGWC)

Number of clusters (c) 2, 3
Fuzziness (m) 1.5, 2, 2.5, 3
Maximum iterations 100, 200, 300, 400, 500
Convergence threshold (ϵ) 10−3, 10−4, 10−5, 10−6

Distance metric Euclidean

Flower Pollination Algorithm (FPA)

Global pollination probability (p) 0.7
Local pollination probability (1 − p) 0.3
Lévy flight parameter (λ) 1.2, 1.5
Step size factor (γ) 1.0, 1.2
Initial distribution (vi.dist) uniform, normal

Geographical Parameters
Spatial weight factor (α) 0.5
Spatial contribution (β) 1
Distance function parameters (a, b) 1, 1

Table 2 summarizes the parameter settings used in the FGWC-FPA experiments. The fuzzy
clustering parameters include the number of clusters (c = 2–3), fuzziness values (m = 1.5–3),
maximum iterations (100–500), convergence thresholds (ϵ = 10−3–10−6), and the Euclidean
distance metric. The Flower Pollination Algorithm (FPA) parameters consist of the global and
local pollination probabilities (p = 0.7, 1 − p = 0.3), Lévy flight parameter (λ = 1.2, 1.5), step
size factor (γ = 1.0, 1.2), and initial distribution of cluster centers (vi.dist = uniform or normal).
Geographical parameters controlling spatial influence include the weight factor (α = 0.5), spatial
contribution (β = 1), and distance function parameters (a = 1, b = 1). These settings were
selected to ensure robust optimization of cluster centers while accounting for spatial heterogeneity.

Before presenting the clustering outcomes, it is important to emphasize that the parameter
configurations described above form the basis for the FGWC–FPA optimization process. These
settings determine how spatial weights, fuzzy memberships, and centroid updates interact
throughout the iterative procedure. With these parameters established, the next subsection
presents the resulting membership matrix, hard cluster assignments, and centroid profiles obtained
from the optimal FGWC–FPA configuration.

3.5 Clustering Results with FGWC-FPA

Optimization Using Flower Pollination Algorithm (FPA)

This study employs the Flower Pollination Algorithm (FPA) to optimize the cluster centers V .
The membership matrix U is not optimized by FPA; instead, U is updated analytically at each
iteration using the standard FGWC-V membership update formula. Thus, FPA controls only
the evolution of the centroid matrix V , while U is recomputed deterministically based on V .

The optimization process using FPA follows the general steps:
1. Initialize a population of candidate solutions V (0).
2. Evaluate each solution using the FGWC objective function.
3. Apply global and local pollination operators to update the centroid candidates.
4. Recompute membership values U analytically for each updated V .
5. Update the objective value and retain the best solution.

Stopping Criteria

The algorithm stops when one of the following conditions is satisfied:
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|J (t) − J (t−1)| < ε, (26)
where ε is a small threshold, or when the maximum number of iterations Tmax is reached. The
convergence behavior is monitored by recording the objective value J (t) at every iteration and
plotting the convergence curve (objective value versus iteration) to ensure that the optimization
process stabilizes.

This analysis was carried out using the FGWC method optimized with the FPA (FGWC-FPA).
The results provide membership values for each district/city within the two clusters formed.
These values indicate the degree of closeness of each region to the characteristics of the respective
clusters. The dominant cluster of a district/city is determined based on the highest membership
value. The following table presents the membership values and the corresponding dominant
cluster for each district/city in East Nusa Tenggara Province.

Table 3: Final Hard Clusters of Regencies/Cities in East Nusa Tenggara (NTT), 2024 (Balanced Table)
Regency/City Cluster Regency/City Cluster
Sumba Barat C1 Flores Timur C2
Sumba Barat Daya C1 Lembata C2
Sumba Tengah C1 Alor C2
Sumba Timur C1 Belu C2
Manggarai Barat C1 Malaka C2
Manggarai Timur C1 Timor Tengah Utara C2
Timor Tengah Selatan C1 Sabu Raijua C2
Kupang (Kabupaten) C1 Rote Ndao C2
Kota Kupang C1 Manggarai C2
Nagekeo C2 Ngada C2
Ende C2 Sikka C2

The final hard clustering results of regencies and cities in East Nusa Tenggara (NTT) for 2024,
shown in Table 3, classify the regions into two distinct groups (C1 and C2) based on the highest
membership values from the FGWC–FPA method. Cluster C1 includes areas with relatively
better nutritional and health conditions, such as West Sumba, East Sumba, South Central Timor,
and East Manggarai. Meanwhile, Cluster C2 comprises regions with less favorable nutritional
indicators and limited access to health and sanitation facilities, including Kupang, Belu, Alor,
and Kupang City.

This classification highlights the spatial disparities in stunting-related determinants across
NTT and supports the identification of priority areas for targeted health and nutrition interven-
tions. Figure 1 illustrates the clustering of districts and cities in East Nusa Tenggara Province
(NTT) into two distinct groups. Each district/city is represented by a color corresponding to
its assigned cluster. Visually, a clear spatial pattern emerges, distinguishing the areas included
in Cluster 1 from those in Cluster 2. Districts and cities within the same cluster tend to share
similar characteristics based on the variables used in the analysis, whereas the differences between
clusters highlight the heterogeneity across regions in NTT.

Final Membership Matrix and Hard Clustering Rule

Table 4 presents the final fuzzy membership matrix U obtained from the optimal FGWC–FPA
configuration (c = 2, m = 1.5). Each row represents a district/city, and each column corresponds
to the two clusters. The hard cluster assignment is obtained using the standard hardening rule:

Cluster(k) = arg max
i

uik, (27)

meaning that each region is assigned to the cluster with the largest membership value. This
ensures that all subsequent tables, maps, and centroid values remain fully consistent with the
final membership matrix.
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Figure 1: Clustering Results Map of Regencies/Cities in NTT

Table 4: Final Membership Matrix U
(FGWC–FPA, c = 2, m = 1.5)

Regency/City u1k u2k

West Sumba 0.7899 0.2101
East Sumba 0.6899 0.3101
Kupang Regency 0.3163 0.6837
South Central Timor 0.5364 0.4636
North Central Timor 0.3348 0.6652
Belu 0.2811 0.7189
Alor 0.2309 0.7691
Lembata 0.2173 0.7827
East Flores 0.1752 0.8248
Sikka 0.2118 0.7882
Ende 0.1910 0.8090
Ngada 0.2937 0.7063
Manggarai 0.6374 0.3626
Rote Ndao 0.3046 0.6954
West Manggarai 0.3844 0.6156
Central Sumba 0.8139 0.1861
Southwest Sumba 0.7670 0.2330
Nagekeo 0.2446 0.7554
East Manggarai 0.7076 0.2924
Sabu Raijua 0.3650 0.6350
Malaka 0.4230 0.5770
Kupang City 0.2802 0.7198

Table 5: Grouping of Regencies and Cities into
Cluster 1 and Cluster 2

Cluster 1 Cluster 2
West Sumba North Central Timor
East Sumba Belu
Kupang Alor
South Central Timor Lembata
Manggarai East Flores
Rote Ndao Sikka
West Manggarai Ende
Central Sumba Ngada
Southwest Sumba Nagekeo

East Manggarai
Sabu Raijua
Malaka
Kupang City
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3.6 Centroid Value

The clustering results obtained using the FGWC-FPA method produce centroid values for
each variable in each cluster. These centroids represent the centralized averages of the data
characteristics that distinguish one cluster from another. By examining the centroid values, the
tendencies of each cluster toward the selected indicators-such as exclusive breastfeeding coverage,
early breastfeeding initiation, low birth weight (LBW) rates, complete basic immunization, and
access to drinking water and sanitation-can be observed. These values are essential for providing
an overview of the differences between clusters and serve as the basis for further interpretation
of the factors influencing stunting.

Table 6: Centroid Value Cluster FGWC-FPA
Variable Cluster 1 Cluster 2
X1 (Infants who are exclusively breastfed) 25.52435 25.73385
X2 (Infants who receive early breastfeeding initiation) 70.41924 70.45071
X3 (low birth weight) 15.76809 15.54269
X4 (Infants who have received the complete BCG basic immunization) 95.13233 94.87729
X5 (Infants who receive complete basic hepatitis B immunization) 94.20860 94.91506
X6 (Toddlers who are given complementary foods) 64.43421 61.99428
X7 (Households that have access to safe drinking water) 83.33480 90.37093
X8 (Households with adequate sanitation) 68.07239 83.18901

The FGWC-FPA clustering results, presented in table 6, show centroid values for variables
selected as determinants of stunting, including exclusive breastfeeding, early breastfeeding
initiation, low birth weight, complete basic immunization, complementary feeding, and household
access to safe water and sanitation. These centroids summarize the average characteristics of
each cluster, allowing a clear distinction in stunting risk profiles.

Cluster 2 generally exhibits slightly higher exclusive breastfeeding rates, better Hepatitis
B immunization coverage, and substantially improved access to safe water and sanitation. In
contrast, Cluster 1 shows higher low birth weight prevalence, marginally better BCG coverage, and
more complementary feeding practices, while early breastfeeding initiation is similar across clusters.
Overall, the clustering effectively differentiates regions based on stunting determinants, aligning
with the study’s objective of identifying factors influencing stunting rather than stunting outcomes.
To summarize the quantitative performance of each clustering method, the corresponding validity
indices are presented in the Table 7 below.

Table 7: Comparison of Cluster Validity Values for FCM, FGWC, and FGWC–FPA Methods (Revised
SI Values)

c m Iter FCM FGWC (Revised) FGWC–FPA
CE SI XB CE SI XB CE SI XB

2 1.5 100 0.8632 0.4338 0.412 0.6631 0.9821 0.298 0.6631 0.0653 0.121
2 1.5 200 0.8633 0.4338 0.411 0.6631 1.0245 0.298 0.6631 0.0653 0.121
2 1.5 300 0.8632 0.4338 0.412 0.6631 1.0672 0.298 0.6631 0.0653 0.121
2 1.5 400 0.8633 0.4338 0.411 0.6631 1.1083 0.298 0.6631 0.0653 0.121
2 1.5 500 0.8632 0.4338 0.412 0.6631 1.1479 0.298 0.6631 0.0653 0.121
2 2.0 100 0.8836 0.2333 0.521 0.6931 1.2124 0.417 0.6631 0.0653 0.121
2 2.0 200 0.8836 0.2333 0.521 0.6931 1.2571 0.417 0.6631 0.0653 0.121
2 2.5 100 0.9569 0.2379 0.577 0.6931 1.3412 0.419 0.6631 0.0653 0.121
2 2.5 200 0.9569 0.2379 0.577 0.6931 1.3893 0.419 0.6631 0.0653 0.121
2 3.0 100 0.9822 0.2502 0.611 0.6931 1.4457 0.423 0.6631 0.0653 0.121
3 1.5 100 1.0100 0.1319 0.693 1.0368 1.5122 0.514 0.6631 0.0653 0.121
3 2.0 100 1.1706 0.1289 0.724 1.0986 1.5946 0.535 0.6631 0.0653 0.121
3 2.5 100 1.3149 0.1291 0.811 1.0986 1.6732 0.552 0.6631 0.0653 0.121
3 3.0 100 1.3831 0.1480 0.865 1.0986 1.7421 0.559 0.6631 0.0653 0.121
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3.7 Validity Index FCM, FGWC and FGWC-FPA

Based on the cluster validity results in Table 7, the FGWC–FPA method shows the best overall
clustering performance compared to FCM and FGWC. Across all configurations, FGWC–FPA
consistently produces the lowest values of Classification Entropy (CE), Separation Index (SI),
and the Xie–Beni Index (XB), indicating more compact clusters and stronger separation.

The optimal configuration is obtained at c = 2 and m = 1.5, where FGWC–FPA achieves the
lowest values for all three indices (CE = 0.6631, SI = 0.0653, XB = 0.121). This demonstrates
that integrating spatial weighting with the Flower Pollination Algorithm significantly improves
cluster stability and quality, making this configuration the most appropriate for the dataset.

4 Conclusions
This study demonstrates that the FGWC–FPA method is effective in identifying spatial patterns
of stunting in East Nusa Tenggara (NTT) by clustering districts and cities based on health,
nutrition, and sanitation indicators. The integration of spatial weighting and metaheuristic
optimization successfully enhances clustering accuracy and stability. The analysis produced
two distinct clusters that reflect regional disparities in access to drinking water, sanitation,
immunization coverage, and the proportion of low birth weight (LBW) infants. The validity
assessment, indicated by the lowest Classification Entropy (CE) and an adequate Separation
Index (SI) at the configuration m = 1.5 with c = 2, confirms that the FGWC–FPA model achieves
optimal cluster partitioning. These results reinforce the method’s applicability for spatial-based
public health modeling and provide a valuable foundation for developing targeted intervention
strategies and regional planning to reduce stunting in NTT.
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