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Abstract

Operator norm comparisons play a fundamental role in matrix analysis, yet existing proofs
often depend on operator means or interpolation techniques. This study provides a function-
theoretic approach to operator norm inequalities. It also extends the classical two-term
Heinz comparison to multi-term averages with arbitrary symmetric probability weights. Our
approach translates each operator norm comparison into a scalar condition. The condition is
derived from functional calculus for the left and right multiplication operators. We examine
positive-definiteness and infinite divisibility through Fourier-measure representations. We
also use elementary closure properties. For positive operators and any unitarily invariant
norm, the two-term Heinz symmetrization is dominated by the binomial average when the
exponent differs from one-half by at most one divided by twice the number of terms. For
general symmetric probability weights, domination occurs exactly when the exponent lies
within a specific threshold. This threshold equals the smallest positive distance from the
midpoint to any index carrying nonzero weight. The proposed function-theoretic framework
yields necessary and sufficient thresholds to unify the binomial and general symmetric cases.
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1 Introduction
The study of operator norm inequalities plays a pivotal role in functional analysis, particularly
in the context of unitarily invariant norms and positive semidefinite operators. Among the
foundational results in this area is the Heinz-type inequality∥∥∥H1/2XK1/2

∥∥∥ ≤ 1
2∥HX +XK∥,

This inequality was first established in 1979 [1]. It was later generalized to arbitrary unitarily
invariant norms, i.e., a norm satisfying ∥UX∥ = ∥X∥ = ∥XV ∥ for every operator X and
unitary operators U, V. We denote such norms by |||·||| [2]. Such inequalities not only deepen the
understanding of matrix and operator means but also connect deeply with other mathematical
structures, such as the geometry of positive definite matrices, functional calculus, and the theory
of positive-definite and infinitely divisible functions. These connections have been rigorously
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Function-Theoretic Operator Norm Inequalities

explored in a series of works [3], [4], [5], [6], [7], [8], [9] and this line of study has remained active
and has continued to develop over the past decade [10], [11], [12], [13], [14], [15], [16], [17], [18].

Most existing approaches to Heinz-type operator-norm inequalities rely on interpolation and
operator means. These tools are powerful, but they often conceal the mechanism behind norm
domination and make sharp parameter thresholds difficult to read from the argument. They
also lack a simple, checkable, and necessary-and-sufficient criterion that works uniformly for all
unitarily invariant norms. When binomial weights are replaced by general symmetric probability
weights—beyond Kosaki’s binomial case—the literature offers no transparent test. In particular,
it does not reveal exactly when a two-term Heinz symmetrization is dominated by an n-term
symmetric average.

Our objective is to provide a function-theoretic route to these inequalities that (i) yields
sharp ranges by a direct positive-definite test and (ii) extends the binomial result to arbitrary
symmetric weights via a simple, computable threshold. Concretely:

• We introduce a translation principle that converts norm domination into positive-definiteness
(and, where needed, infinite divisibility) of explicit scalar ratios. The proof uses Böchner’s
theorem and functional calculus.

• We give a new proof of the operator norm inequality in [9] with sharp range
∣∣∣a− 1

2

∣∣∣ ≤ 1
2n ,

valid for every unitarily invariant norm |||·|||.
• We extend this to general symmetric probability weights c = (c0, . . . , cn) for positive ci’s

and obtain a criterion
∣∣∣a− 1

2

∣∣∣ ≤ δc, where δc = min
{∣∣∣mn − 1

2

∣∣∣ : cm > 0
}

.
The present article contributes a novel perspective on a well-known result in [9] by introducing

an alternative proof strategy grounded in the framework of positive definiteness and infinite
divisibility. We adopt a function-theoretic approach inspired by our previous work [19], which
characterizes norm inequalities through the lens of analytic function behavior. Specifically, our
objective is to provide a new proof of Kosaki’s operator inequality using a sequence of analytical
tools: Böchner’s theorem on positive-definite functions, the characterization of infinitely divisible
functions. Our approach demonstrates that the operator inequality in question holds if and only
if a corresponding function derived from operator parameters exhibits positive definiteness.

Here we give a concise mathematical formulation (the detailed arguments and formulations
are deferred to Section 2). Let LH and RK denote left and right multiplication on matrices; for
a two-variable function Mf (s, t) = tf(s/t) we write Mf (LH , RK) via joint functional calculus on
the commuting pair (LH , RK). Lemma 1 shows that f, g ∈ S+

1 (0,∞),

|||Mf (LH , RK)X||| ≤ |||Mg(LH , RK)X||| for all H,K > 0

holds if and only if f(ex)/g(ex) is positive definite on R. We apply this to the Heinz sym-
metrization Sa(H,K)X = 1

2
(
HaXK1−a +H1−aXKa

)
and to n-term averages Bc(H,K)X =∑

m cmH
m/nXK(n−m)/n. The positive definite test then yields the sharp binomial range

∣∣∣a− 1
2

∣∣∣ ≤
1

2n and, in full generality, the criterion
∣∣∣a− 1

2

∣∣∣ ≤ δc. Full proofs appear in Section 3.

2 Analytical Preliminaries
We collect the foundational results and analytical tools required to rigorously give a new proof of
Kosaki’s operator norm inequality [9].

We first recall the classical Fourier–measure characterization, which furnishes the bridge from
positive-definite functions to the integral representations used in our proofs.

Theorem 1 ([5]). If f is a positive-definite function and continuous at 0, then there exists a
finite positive measure µ on R such that f(x) =

∫∞
−∞ eixtdµ(t).
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A function f : R −→ C is called positive definite if, for every integer N ∈ N, real numbers
x1, x2, · · · , xN , and complex numbers α1, α2, · · · , αN , the inequality

N∑
i,j=1

αiαjf(xi − xj) ≥ 0

holds. Equivalently, the matrix [f(xi − xj)]Ni,j=1 ≥ 0.
The following are well-known properties of positive-definite functions.

Proposition 1. 1. For any positive definite functions f1, f2 and α > 0, then αf1, f1 + f2 and
f1f2 are all positive definite functions.

2. Let f1, f2, · · · be a sequence of positive definite functions. If limn fn = f pointwise, then f
is a positive definite function.

The ideas of Section 1 extend to two-variable functions M(s, t). For example

α− 1
α

· sα − tα

sα−1 − tα−1 = Mα(s, t), (s, t > 0 and α ∈ R).

The above two variable function is valid for all α ∈ R. For instance, if α = 0, we can show using
L’Hôpital’s rule or Taylor—more precisely, the Maclaurin—expansion at α = 0.

M0(s, t) =


st ln(s/t)
s− t

, s ̸= t,

s, s = t.

This scalar formulation provides the prototype for the operator setting. Each function Mα(s, t)
induces an operator mean Mα(LH , RK) via functional calculus on the commuting pair (LH , RK)
(see below). Consequently, the operator norm inequalities introduced in the beginning of Section 1
correspond to the positive definiteness of the ratio M1/2(s,t)

M2(s,t) [5].
Let M : (0,∞) × (0,∞) −→ (0,∞) be nondecreasing and satisfy the following properties:

• M(s, t) = M(t, s)
• M(αs, αt) = αM(s, t) for all α > 0
• min{s, t} ≤ M(s, t) ≤ max{s, t}.

For such a function M, we define a new function f by

f(t) = M(t, 1),

and thus obtain the identity

M(s, t) = tM(s/t, 1) = tf(s/t).

It is straightforward to verify that f(t) = tf(1/t), f(1) = 1 and for all t ≥ 1 satisfies f(t) ≤ t.
This function f will serve as a key object in analyzing positive definiteness properties relevant to
the main inequality under investigation.

A continuous scalar function M : (0,∞) × (0,∞) → (0,∞) that satisfies the symmetry and
homogeneity conditions naturally extends to operators through the commuting pair (LH , RK),
where

LH(X) = HX and RK(X) = XK.

Since LH and RK commute when H,K > 0, we may define

M(LH , RK)X
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via the spectral functional calculus applied to the joint spectrum of (LH , RK). In this setting,
the study of operator norm inequalities reduces to analyzing scalar identities of the form

M(s, t) = tf(s/t),

where f lies in the class

S+
1 (0,∞) = {f : (0,∞) → R : continuous, f(1) = 1, f(t) = tf(1/t)}.

Hence, functional calculus provides the precise mechanism that translates norm inequalities
between operators into positivity questions about scalar functions, which subsequently test
through positive definiteness and infinite divisibility [19].

For any f, g ∈ S+
1 (0,∞), we define a partial order f ≺ g if and only if the function

φ(x) = f(ex)
g(ex)

is positive definite on R.
A function f : R −→ C is said to be infinitely divisible if, for every real number α > 0, the

function fα remains a positive definite function.
The following are well-known properties of infinitely divisible functions.

Proposition 2. 1. For any infinitely divisible function f1, f2, then f1f2 is an infinitely divis-
ible function.

2. Let f1, f2, · · · be a sequence of infinitely divisible functions. If limn fn = f pointwise, then
f is an infinitely divisible function.

The next theorem gives a sharp non–positive-definiteness criterion for specific hyperbolic-sine
products, which we will use later to exclude certain parameter ranges.

Theorem 2 ([19]). If p = 2n+ 1 with n > 1, then the function

sinh
(

p+1
p x

) (
sinh 1

px
)n

sinh x
(
sinh p−1

p x
)n

is not positive definite.

The following majorization-based test provides a sufficient condition ensuring that products
of sinh-ratios are infinitely divisible.

Theorem 3 ([19]). Let n ∈ N, α = (a1, a2, · · · , an), β = (b1, b2, · · · , bn) ∈ (0,∞)n. If

k∑
i=1

aσ(i) ≤
k∑

i=1
bτ(i)

for any 1 ≤ k ≤ n and for some permutations σ, τ on {1, 2, · · · , n} such that aσ(i) ≥ aσ(i+1) and bτ(i) ≥
bτ(i+1) for any indices i, then the function

n∏
i=1

bi sinh(aix)
ai sinh(bix)

is an infinitely divisible function.
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3 Main Results and Analytical Proofs

Our goal now is to give a new proof and approach that for any unitarily invariant norm |||·||| , the
norm inequality

1
2

∣∣∣∣∣∣∣∣∣HaXK1−a +H1−aXKa
∣∣∣∣∣∣∣∣∣ ≤ 1

2n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
m=0

(
n

m

)
H

m
n XK

n−m
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

holds if and only if 1
2

(
1 − 1

n

)
≤ a ≤ 1

2

(
1 + 1

n

)
for all unitarily invariant norms with m,n ∈

N, H,K and X are matrices with H,K > 0 [9].
To bridge operator inequalities and scalar function properties, we use functional calculus for

the commuting pair (LH , RK). The next lemma is the translation principle: the norm domination
between Mf (LH , RK) and Mg(LH , RK) is equivalent to the positive-definiteness of f(ex)

g(ex) on R.

Lemma 1. Given f, g ∈ S+
1 (0,∞), for any unitarily invariant norm |||·||| and any square N ×N

matrices H,K, and X with H,K > 0, the norm inequality

|||Mf (LH , RK)X||| ≤ |||Mg(LH , RK)X|||

holds if and only if f ≺ g.

Proof. At first, we will proceed for the “if” part, that is, we have f ≺ g. By Theorem 1, we then
have a finite positive (probability) measure µ on R such that

f (ex)
g (ex) =

∫ ∞

−∞
eixsdµ(s).

If H,K > 0, we let H =
∑N

j=1 λiPi and K =
∑N

j=1 ζiQi are the spectral decomposition, then
Mf (H,K)X =

∑N
j,k=1Mf (λj , ζk)PjXQk. Consider that

Mf (H,K)X =
N∑

j,k=1
Mf (λj , ζk)PjXQk

=
N∑

j,k=1
ζkf(λj/ζk)PjXQk

=
N∑

j,k=1
ζkg(λj/ζk)

∫ ∞

−∞
eis log(λj/ζk)dµ(s)PjXQk

=
∫ ∞

−∞

N∑
j,k=1

Mg(λj , ζk)(λj/ζk)isPjXQk dµ(s)

=
∫ ∞

−∞

N∑
j,k=1

(λj)isMg(λj , ζk)(ζk)−isPjXQk dµ(s)

=
∫ ∞

−∞
H is(Mg(H,K)X)K−is dµ(s).

Take a unitarily invariant norm on both sides and since the total mass of µ equals 1, we obtain

|||Mf (LH , RK)X||| ≤ |||Mg(LH , RK)X||| .

For the “only if” part, since the usual operator norm is unitarily invariant norm, we have that

∥Mf (LH , RK)X∥ ≤ ∥Mg(LH , RK)X∥
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for any square N × N matrices H,K, and X with H,K > 0. Let λ1, λ2, · · · , λN > 0 and
aij = Mf (λi, λj)

Mg (λi, λj) . Since M•(x, y) = M•(y, x) and M•(1, 1) = 1, then the matrix A = [aij ]Ni,j=1 is

self-adjoint and the diagonal entries are all 1. Let

H =



λ1

λ2 0
λ3

0 . . .
λN


,

then by the assumption we have

∥A ◦X∥ =
∥∥∥∥∥Mf (λi, λj) ◦ 1

Mg(λi, λj) ◦X
∥∥∥∥∥

=
∥∥∥∥∥Mf (H,H) ◦ 1

Mg(H,H) ◦X
∥∥∥∥∥

≤
∥∥∥∥∥Mg(H,H) ◦ 1

Mg(H,H) ◦X
∥∥∥∥∥

=
∥∥∥[1]Ni,j=1 ◦X

∥∥∥
= ∥X∥ ,

where ◦ is the Hadamard product of matrices and [1]Ni,j=1 is the N×N matrices with all the entries
are 1. The dual norm of the usual norm is a trace norm ∥ • ∥1, which is equal to the sum of all
absolute values of the eigenvalues. Since the trace norm is isometric under the Hadamard product,
we obtain ∥A ◦X∥1 ≤ ∥X∥1. Let X = X0 = [1]Ni,j=1 , then ∥A ◦X0∥1 = ∥A∥1 ≤ ∥X0∥1 = N. If
α1, α2, · · · , αN are the eigenvalues of A, then

N∑
i=1

|αi| = ∥A∥1 ≤ N = TrA =
N∑

i=1
αi,

which means that every single αi must be non-negative, which implies A > 0. From here,

0 ≤ A =
(
Mf (λi, λj)
Mg(λi, λj)

)N

i,j=1

=
(
f (λi/λj)
g (λi/λj)

)N

i,j=1

=

f
(
elog λi−log λj

)
g
(
elog λi−log λj

)
N

i,j=1

.

So, we conclude that f ≺ g.

We recall that for any a, b ∈ R, the function

b sinh(ax)
a sinh(bx)

is positive definite whenever b ≥ a. [19]
The next lemma supplies the negative counterpart to Theorem 3, identifying a parameter

regime where positive-definiteness necessarily fails.
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Lemma 2 ([19]). Let n ∈ N, i = 1, 2, · · · , n and ai, bi ∈ R. If max{|ai|} > max{|bi|}, then

n∏
i=1

bi sinh(aix)
ai sinh(bix)

is not positive definite.

Proof. We may assume that ai, bi > 0, a1 > 1, a1 ≥ a2 ≥ · · · ≥ an and 1 = b1 ≥ b2 ≥ · · · ≥ bn.
There exists a positive odd number p such that

a1 >
p+ 1
p− 1 and an >

1
p− 1 .

Consider that

sinh
(

p+1
p t
) (

sinh
(

1
p t
))n−1

sinh(t)
(
sinh

(
p−1

p t
))n−1 =

sinh
(

p+1
p t
) (

sinh
(

1
p t
))n−1(

sinh
(

p−1
p t
))n ×

sinh
(

p−1
p t
)

sinh(t)

and by remark prior to this lemma, Theorem 2 and Proposition 1 1. we conclude that

sinh
(

p+1
p t
) (

sinh
(

1
p t
))n−1(

sinh
(

p−1
p t
))n

is not a positive definite function. By replacing the variable, t = (p/p− 1)x, we have that the
function

sinh
(

p+1
p−1x

) [
sinh

(
1

p−1x
)]n−1

(sinh x)n

also not positive definite. Since

a1 >
p+ 1
p− 1 , a2 ≥ · · · ≥ an >

1
p− 1 and 1 = b1 ≥ · · · ≥ bn,

again by remark prior to this lemma, Proposition 1 1. and identity

sinh
(

p+1
p−1x

) (
sinh

(
1

p−1x
))n−1

(sinh x)n =
n∏

i=1

sinh(aix)
sinh(bix) ×

sinh
(

p+1
p−1x

)
sinh(a1x) ×

(
sinh

(
1

p−1x
))n−1

∏n
i=2 sinh(aix) ×

∏n
i=1 sinh(bix)
(sinh x)n

we conclude that
n∏

i=1

sinh(aix)
sinh(bix) is not positive definite function.

Now we are ready to give a new proof of the following theorem.

Theorem 4 ([9]). For any unitarily invariant norm |||·|||, the norm inequality

1
2

∣∣∣∣∣∣∣∣∣HaXK1−a +H1−aXKa
∣∣∣∣∣∣∣∣∣ ≤ 1

2n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
m=0

(
n

m

)
H

m
n XK

n−m
n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

holds if and only if 1
2

(
1 − 1

n

)
≤ a ≤ 1

2

(
1 + 1

n

)
for all unitarily invariant norms with m,n ∈

N, H,K and X are matrices with H,K > 0.
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Proof. We consider the function

gn,α(x) = 2n−1
sinh (2 |α|x)

(
sinh

(
1
nx
))n

sinh (|α|x)
(
sinh

(
2
nx
))n .

By Lemma 2, gn,α is not a positive definite function when |α| > 1
n
. Next, we consider for

0 ≤ |α| ≤ 1
n

and we have

1
n

≤ 2
n

1
n

+ 1
n

≤ 2
n

+ 2
n

...
1
n

+ 1
n

+ · · · + 1
n

≤ 2
n

+ 2
n

+ · · · + 2
n

1
n

+ 1
n

+ · · · + 1
n

+ 2|α| ≤ 2
n

+ 2
n

+ · · · + 2
n

+ |α|.

So, by Theorem 3 the function gn,α is infinitely divisible function, hence positive definite function.
This is equivalent to saying that gn,α is a positive definite function if and only if |α| ≤ 1

n
.

We set

fa,b
(
e2x
)

= ex
n∏

i=1

βi sinh(αix)
αi sinh(βix) where a = (α1, α2, · · · , αn) and b = (β1, β2, · · · , βn),

and since gn,α = gn,−α, we have

gn,α(x) =
f(2α),(α)

(
e2x
)

f(2/n,2/n,··· ,2/n),(1/n,1/n,··· ,1/n) (e2x) .

Now, consider that by putting e2x = s

t
for some s, t > 0, we have

t fa,b

(
s

t

)
= t

(
s

t

)1/2 n∏
i=1

βi sinh
(αi

2 ln s
t

)
αi sinh

(
βi
2 ln s

t

)
= (st)1/2

n∏
i=1

βi sinh
(αi

2 ln s
t

)
αi sinh

(
βi
2 ln s

t

)
and by using the identity sinh z = 1

2 (ez − e−z) , for each i, satisfies

sinh
(αi

2 ln s
t

)
sinh

(
βi
2 ln s

t

) =
(

s
t

)αi/2 −
(

t
s

)αi/2(
s
t

)βi/2 −
(

t
s

)βi/2

=
sαi/2t−αi/2

(
1 −

(
t
s

)αi
)

sβi/2t−βi/2
(
1 −

(
t
s

)βi
)

= sαi/2t−αi/2(sβi−αi) (sαi − tαi)
sβi/2t−βi/2 (sβi − tβi)

= (st)−(αi−βi)/2 · s
αi − tαi

sβi − tβi
.
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Applying that identity to the product
n∏

i=1

sinh
(αi

2 ln s
t

)
sinh

(
βi
2 ln s

t

) ,
we then have

tfa,b

(
s

t

)
= (st)

1−
∑n

i=1(αi−βi)
2

n∏
i=1

βi(sαi − tαi)
αi(sβi − tβi) .

By our definition M(x, y) = yf(x/y) in Section 2, we have that

Ma,b (s, t) = (st)
1−
∑n

i=1(αi−βi)
2

n∏
i=1

βi(sαi − tαi)
αi(sβi − tβi) .

Therefore
M(2α),(α)(s, t) = 1

2(st)
1−α

2 (sα + tα)

and

M(2/n, 2/n, · · · , 2/n︸ ︷︷ ︸
n-term

),(1/n, 1/n, · · · , 1/n︸ ︷︷ ︸
n-term

)(s, t) = 1
2n

(
s1/n + t1/n

)n

= 1
2n

n∑
m=0

(
n

m

)
sm/nt(n−m)/n.

Since gn,α is a positive definite function if and only if |α| ≤ 1
n
, then by Lemma 1

∣∣∣∣∣∣∣∣∣M(2a),(a)(LH , RK)X
∣∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣M(2/n, 2/n, · · · , 2/n)︸ ︷︷ ︸

n-term

,(1/n, 1/n, · · · , 1/n)︸ ︷︷ ︸
n-term

(LH , RK)X

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

⇒ 1
2

∣∣∣∣∣∣∣∣∣H(1+α)/2XK(1−α)/2 +H(1−α)/2XK(1+α)/2
∣∣∣∣∣∣∣∣∣ ≤ 1

2n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
m=0

(
n

m

)
Hm/nXK(n−m)/n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ .

Setting α = 2a− 1 gives

1
2

∣∣∣∣∣∣∣∣∣HaXK1−a +H1−aXKa
∣∣∣∣∣∣∣∣∣ ≤ 1

2n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

n∑
m=0

(
n

m

)
Hm/nXK(n−m)/n

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

if and only if 1
2

(
1 − 1

n

)
≤ a ≤ 1

2

(
1 + 1

n

)
.

Having settled the binomial case in Theorem 4, we now extend the domination criterion to
arbitrary symmetric probability weights, with the sharp threshold captured by δc.

Theorem 5. Let n ≥ 1 be an integer, c = (c0, c1, · · · , cn) ∈ (0,∞)n not identically zero with

cm = cn−m for all m,
n∑

m=0
cm = 1,

δc = min
{∣∣∣∣mn − 1

2

∣∣∣∣ : cm > 0
}

and Bc(H,K)X =
n∑

m=0
cmH

m/nXK(n−m)/n.

For a ∈ [0, 1], let Sa(H,K)X = 1
2
(
HaXK1−a +H1−aXKa

)
. Then, for any unitarily invariant

norm |||·||| , the inequality |||Sa(H,K)X||| ≤ |||Bc(H,K)X||| holds for all matrices H,K and X with
H,K > 0 if and only if ∣∣∣∣a− 1

2

∣∣∣∣ ≤ δc.
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Proof. For t > 0, let

fa(t) = 1
2
(
ta + t1−a

)
and gc(t) =

n∑
m=0

cmt
m
n .

Given any H,K > 0, since tfa
(

s
t

)
= 1

2
(
sat1−a + s1−ata

)
and tgc

(
s
t

)
=

n∑
m=0

cms
m
n t

n−m
n , then

Mfa (LH , RK) = Sa(H,K) and Mgc (LH , RK) = Bc(H,K).

Set t = e2x for some x ∈ R, then

fa(e2x) = 1
2
(
e2ax + e2(1−a)x

)
= 1

2
(
exe(2a−1)x + exe(1−2a)x

)
= ex 1

2
(
e(2a−1)x + e(1−2a)x

)
= ex cosh ((2a− 1)x)

= ex cosh (2βx) with β =
∣∣∣∣a− 1

2

∣∣∣∣
and

gc(e2x) =
n∑

m=0
cme

2m
n

x

= ex
n∑

m=0
e2dmx

(
dm = m

n
− 1

2

)
.

Since dn−m = −dm and by reindexing m 7→ n−m, we have the function

ψa,c(x) = cosh (2βx)∑n
m=0 cme2dmx

is an even function. By exploiting the symmetry cm = cn−m and dn−m = −dm, for a fixed m we
have

cme
2dmx + cn−me

2d(n−m)x = cm

(
e2dmx + e−2dmx

)
= 2cm cosh(2dmx).

Define a finite, positive discrete symmetrised measure

µc =
n∑

m=0
cm
δdm + δ−dm

2

where δdm is the Dirac measure at the point dm. By considering Borel function e2sx we have

n∑
m=0

cme
2dmx = 2

n∑
m=0

cm cosh (2dmx) = 2
∫
R
e2sxdµc(s),

likewise
cosh(2βx) =

∫
R
e2sxdνβ(s), with νβ = 1

2 (δβ + δ−β) .

Hence,
ψa,c(x) = 1

2

∫
R
e2sxdγ(s)
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with dγ(s) = dνβ(s)∫
R e

2sxdµc(s)
. Because both νβ and µc are even measures, positivity of dγ reduces

to a support-inclusion condition, that is

supp νβ ⊆ suppµc ⇐⇒ {±β} ⊆ {±dm : cm > 0} ⇐⇒
∣∣∣∣a− 1

2

∣∣∣∣ ≤ δc

and so by Theorem 1 and Lemma 1, we have

|||Sa(H,K)X||| ≤ |||Bc(H,K)X||| .

The quantity δc = min{ |m
n − 1

2 | : cm > 0 } measures how close the weighting grid {m/n} that
actually appears in Bc places nonzero mass to the balanced exponent 1/2. Operationally, it is
the smallest positive distance from 1/2 to an index with cm > 0. Thus, Theorem 5 asserts that
the Heinz symmetrization Sa is dominated by Bc in every unitarily invariant norm exactly when
the averaging exponent lies within this distance of 1/2, i.e.

|a− 1
2 | ≤ δc.

In the classical binomial choice cm = 2−n
(n

m

)
, the nearest non-central index satisfies |m− n

2 | = 1,
so δc = 1

2n , and the condition reduces to |a − 1
2 | ≤ 1

2n , which is precisely Kosaki’s interval
recovered in Theorem 4. More generally, if all indices with |m− n

2 | < k are absent (that is, cm = 0
there), then δc = k

n and the admissible range widens to |a− 1
2 | ≤ k

n (for instance, c0 = cn = 1
2

gives δc = 1
2 and allows all a ∈ [0, 1]).

This characterization unifies and extends Kosaki’s binomial result. In Kosaki’s approach [9],
the admissible interval

∣∣∣a− 1
2

∣∣∣ ≤ 1
2n arises via interpolation and operator means, whereas here

it emerges from the positive-definiteness of fa(ex)/gc(ex) and the support condition underlying
δc. Thus, the present framework not only recovers Kosaki’s sharp bound as the binomial case
cm = 2−n

(n
m

)
, but also clarifies its structural origin for arbitrary symmetric weights.

4 Conclusion
We have presented a function-theoretic approach—grounded in positive-definiteness and infi-
nite divisibility via Böchner’s characterization and spectral functional calculus—that yields a
streamlined proof of Kosaki-type norm domination without appealing to interpolation or operator
means. Specifically, for positive operators H,K and any unitarily invariant norm, the Heinz
symmetrization Sa is dominated by the binomial n-term average exactly when∣∣∣a− 1

2

∣∣∣ ≤ 1
2n (equivalently, a ∈ 1

2

(
1 ± 1

n

)
),

and this range is sharp. Moreover, the result extends to arbitrary symmetric probability weights
c = (c0, . . . , cn). Domination holds if and only if∣∣∣a− 1

2

∣∣∣ ≤ δc, where δc = min
{ ∣∣∣mn − 1

2

∣∣∣ : cm > 0
}
.

This unifies and generalizes the binomial case.
Promising directions include extending the present framework to non-symmetric or continuous

weight distributions and investigating quantitative stability of the domination thresholds. Further
applications to refined matrix inequalities and operator-function bounds—particularly those
arising in quantum information theory and numerical linear algebra—also appear within reach of
this positive-definite and infinitely divisible function framework.
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