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Abstract

Waste generation that exceeds landfill capacity underscores the urgency of converting waste
into economic value. This study develops a truncated spline nonparametric path model
enhanced with double resampling, whose performance is first evaluated through Monte Carlo
simulations under varying sample sizes and error-variance scenarios. The simulation results
show that the Jackknife-Bootstrap method yields the lowest average bias in estimating
the path coefficients, demonstrating superior stability compared with Single Bootstrap and
Single Jackknife procedures. Using survey data from Batu City, the empirical analysis
shows that improvements in Quality of Facilities and Infrastructure (X1) and Waste Bank
Use (X2) significantly enhance Waste Management-Based 3R (Y1) and the Economic Value
Utilization of Waste (Y2). Their marginal effects, however, decline once the corresponding
threshold points are exceeded. Overall, the findings highlight the importance of balancing
infrastructure development with community engagement and institutional innovation to
support a sustainable circular economy.

Keywords: Circular Economy; Double Resampling; Economic Value Utilization of Waste;
Nonparametric Path Analysis; Waste Management Based 3R.

Copyright © 2025 by Authors, Published by CAUCHY Group. This is an open access article
under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

1 Introduction
Path analysis is commonly used to evaluate direct and indirect causal effects among variables, yet
its parametric form is sensitive to violations of linearity, residual normality, and homoscedasticity
[1]. These limitations become more pronounced in environmental and community-behavior
contexts, including waste management systems, where responses often exhibit nonlinear shifts,
threshold effects, and saturation patterns rather than stable linear trends [2]. Such characteristics
make nonparametric path models more appropriate because they allow functional relationships
to follow the data without imposing a rigid structure [3]. Within this framework, truncated
spline functions offer the flexibility required to capture localized nonlinearities, sudden changes,
and diminishing marginal effects commonly observed in waste-related behavioral data.
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The relevance of truncated splines becomes particularly evident in the context of utilizing waste
economic value, where relationships among variables are rarely proportional. Early improvements
in waste-management facilities and infrastructure generate substantial gains, but the marginal
benefits diminish once service performance approaches operational limits [2]. Similarly, waste
bank use exhibits a saturation effect: participation increases recycling value at early stages,
but beyond certain thresholds, marginal economic gains decline due to sorting inconsistencies,
operational inefficiencies, and fluctuations in recyclable market prices [4]. Prior research shows
that spline-based models can effectively capture these nonlinear dynamics, providing a robust
foundation for evidence-based waste management policies [5].

Despite their flexibility, nonparametric path models face challenges related to estimation
stability, particularly in situations of limited sample sizes or substantial data noise. Under such
conditions, parameter estimates may exhibit high bias and variance. Resampling techniques
such as Bootstrap and Jackknife serve as effective alternatives because they reduce estimation
error, stabilize parameter distributions, and improve hypothesis-testing reliability [6]. Double
resampling implemented by combining two resampling methods sequentially has been shown
to provide more stable estimators and higher test power than single resampling approaches
[7]. Moreover, the use of a delete-5% jackknife (i.e., systematically omitting 5% of the sample
in each iteration) has been recommended in small sample settings to further reduce bias and
variance in parameter estimates [8] [9][10]. However, no existing study has conducted a systematic
comparison of all four major double-resampling schemes, Double Bootstrap, Double Jackknife,
Bootstrap-Jackknife, and Jackknife-Bootstrap, within a truncated-spline nonparametric path
model, particularly in the context of Waste Economic Value Utilization. This absence constitutes
a clear methodological gap in both statistical modeling and waste-management research.

This study addresses that gap by comparing the performance of four double resampling
approaches in improving test power, reducing bias, and minimizing mean squared error in
truncated spline-based nonparametric path models. These schemes are also benchmarked against
single resampling methods through Monte Carlo simulation scenarios involving varying sample
sizes and replication levels. Methodologically, the study contributes to the development of more
reliable resampling-based inference for flexible causal modeling. Substantively, applying the
model to Waste Economic Value Utilization provides empirical insights into how data-driven
nonparametric modeling can reinforce evidence-based waste management and support circular
economy policy formulation at local and national levels.

The present study addresses three main research questions. First, it investigates how Quality
of Facilities and Infrastructure (X1) and Waste Bank Use (X2) affect Waste Management-
Based 3R (Y1) and the Utilization of Waste Economic Value (Y2), with the hypothesis that
both predictors positively influence Y1 and Y2, though marginal effects diminish beyond certain
threshold points. Second, it examines which double resampling approach, Double Bootstrap (DB),
Double Jackknife (DJ), Bootstrap-Jackknife (BJ), or Jackknife-Bootstrap (JB), produces the most
stable and least biased estimates in truncated-spline nonparametric path models, hypothesizing
that JB will achieve lower average bias and higher test power. Finally, the study evaluates
whether double resampling improves estimation performance compared with single resampling
under varying sample sizes and noise levels, expecting that double resampling consistently reduces
bias, variance, and mean squared error across simulation scenarios.

2 Methods
This section describes the methodological framework used in the study. To maintain clarity and
a systematic flow, the methods are organized into several subsections that include explanations
of the structure of nonparametric path analysis based on truncated splines, procedures for
determining optimal knot points, parameter estimation using the Weighted Least Squares (WLS)
approach, and the application of resampling methods. Additionally, this section outlines the
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evaluation criteria used in the simulation study, the population and sample settings, and the
estimated research model. Each subsection is presented sequentially, allowing readers to follow
the stages of the research from data preparation to the implementation of the overall model in a
coherent manner.

2.1 Truncated Spline Nonparametric Path Analysis

Nonparametric path analysis is the result of the development of parametric path analysis used to
overcome conditions when the assumption of linearity is not met and the shape of the regression
curve is not yet or unknown. Estimation of the function of path analysis can use a nonparametric
regression approach that shows the relationship between one endogenous variable and more than
one exogenous variable. The equation of the analysis of the nonparametric truncated spline as
shown below [11].

Y1 = f1(X1, X2) + ε1 (1)
Y2 = f2(X1, X2, Y1) + ε2 (2)

where

Y1 = (Y11, Y12, . . . , Y1n)′,

Y2 = (Y21, Y22, . . . , Y2n)′,

X1 = (X11, X12, . . . , X1n)′,

X2 = (X21, X22, . . . , X2n)′,

f1, f2 : vector-valued truncated spline functions,
ε1, ε2 : error vectors.

2.2 Selection of Optimal Knot Points

The best spline guesses are obtained from the optimal knot point. If the optimal knot point is
obtained, the best spline function will be obtained. The selection of the best knot point refers to
the simplicity of the model. The calculation of the GCV value can use Eq. 3.

GCV (K) = MSE(K)
[n−1trace(I − A[K])]2 (3)

where MSE(K) = n−1 ∑n
i=1(yi − ŷi)2 and K is the point of the knot. Here, A[K] denotes the

hat matrix associated with the truncated spline evaluated at knot K, mapping observed values
to fitted values in the weighted least squares framework. The trace of A[K] effectively penalizes
model complexity, ensuring the generalized cross-validation (GCV) criterion balances fit and
smoothness.

2.3 Weighted Least Square (WLS)

Weighted Least Square (WLS) is a function estimation method that is able to accommodate the
correlation between equations in path analysis. The estimation of path coefficients was carried
out by WLS optimization which accommodates correlations between equations using weights in
the form of inverses from the matrix of various error vectors [12]. The variance matrix for the
path analysis model can be written in Eq. 4
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where σ̂2
1 and σ̂2

2 represent the variances of Y1 and Y2, respectively, and σ̂12 captures the covariance
between these two endogenous variables across observations.

For weighted least squares (WLS) estimation in the truncated-spline path model, the inverse of
this variance-covariance matrix, Σ̂−1, is used as the weight matrix to account for correlated errors.
This ensures that parameter estimates remain efficient and unbiased even in the presence of
heteroscedasticity and interdependent residuals. In the empirical application, each observation’s
weight is determined by the corresponding diagonal block of Σ̂−1, while the off-diagonal covariance
elements preserve the correlation structure between Y1 and Y2.

The WLS estimation method has the advantage of being more flexible in overcoming the
absence of non-freedom between observations in the residual and overcoming the inhomogeneity
of the residual variety. Therefore, estimating functions using WLS will result in a more flexible
and powerful model. The shape of the spline function is as in Eq. 5.

f̂(Xi) = X(X′Σ̂−1X)−1X′Σ̂−1y (5)

The above Eq. 5 can be simplified in the form f̂(Xi) = H(K)y where
H(K) = X(X′Σ̂−1X)−1X′Σ̂−1

H(K) is a function of the knot points
K = (K11, K21, . . . , Krk)′ it is the knot points, where r is the number of exogenous variables

and k is the number of knot points used for each variable.
To capture the possibility of residual correlation between the equations Y1 and Y2, the two

equations are not estimated separately, but are treated as a single structured system of equations.
In this approach, all parametric and nonparametric components are arranged in a stacked system,
so that estimation is performed using a Generalized Least Squares (GLS) framework that utilizes
a residual covariance matrix (Σ̂) that allows for cross-equation covariance.

2.4 Single Resampling

Resampling is an effective method for assessing the stability of estimators, variance, bias, and
reliability of hypothesis tests, especially in conditions of small samples or data containing
noise [6]. The two most common resampling techniques are Jackknife and Bootstrap. The
fundamental difference between the two lies in the sampling method: Jackknife is performed
without replacement, meaning that each iteration removes one (or several) observations from the
original dataset, while Bootstrap is performed with replacement, so that each iteration can select
the same observation more than once [13].

To reduce the bias and variance of estimators in small samples, delete-5% resampling can
be applied, which involves systematically deleting 5% of the data in each iteration in both the
Jackknife and Bootstrap methods [8] [9] [10]. This approach reduces the estimator’s dependence
on a single observation and improves its stability, making the results of hypothesis testing more
reliable. Mathematically, the biased estimator, standard error (SE), and mean squared error
(MSE) in the context of delete-5% resampling can be written as in Eq. 6, Eq. 7, and Eq. 8.
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Bias(θ̂) = ¯̂
θ − θ (6)

SE(θ̂) =

√√√√ 1
Niter − 1

Niter∑
i=1

(θ̂i − ¯̂
θ)2 (7)

MSE(θ̂) = Bias2(θ̂) + V ar(θ̂) (8)

With these formulas, researchers can compare the estimation performance of each resampling
technique and determine the most stable and accurate approach. This delete-5% strategy is
applied to both single resampling and double resampling procedures (e.g., Jackknife-Bootstrap
or Bootstrap-Jackknife) and has been shown to reduce bias and increase test power compared to
ordinary single resampling [7].

2.5 Double Resampling

Double Resampling is an extension of the single resampling technique that aims to improve the
stability of estimators and the power of tests in nonparametric models, especially when the data
contains high noise or the sample size is limited [7]. This approach utilizes a combination of
two resampling methods in sequence, so the variance and bias of the estimator can be reduced
more effectively than single resampling. The four main double resampling schemes used in the
literature are Double Bootstrap (DB), Double Jackknife (DJ), Bootstrap-Jackknife (BJ), and
Jackknife-Bootstrap (JB).

Double Bootstrap (DB) performs bootstrap sampling twice in succession. The first iteration
generates a bootstrap sample from the original dataset, while the second iteration takes another
bootstrap sample from the first sample. This scheme allows researchers to estimate parameter
distributions more accurately and reduce estimator bias.

Double Jackknife (DJ) works similarly, but uses the jackknife method in two stages of
observation deletion. For example, the first delete-5% jackknife deletes 5% of the sample, and
the second stage deletes 5% of the reduced sample, thereby minimizing the effect of extreme
observations on the estimator [8] [9].

Bootstrap-Jackknife (BJ) and Jackknife-Bootstrap (JB) are cross-overs. In BJ, bootstrap is
applied first, then each bootstrap sample is analyzed using jackknife. Conversely, in JB, jackknife
is applied first, then each jackknife sample is bootstrapped. This scheme combines the advantages
of both methods: the flexibility of Bootstrap in sampling with replacement and the ability of
Jackknife to stabilize estimates through systematic deletion.

Mathematically, the Bias, Standard Error (SE), and Mean Squared Error (MSE) for double
resampling can be written in Eq. 9, Eq. 10, and Eq. 11.

Biasdouble(θ̂) = ¯̂
θdouble − θ (9)

SEdouble(θ̂) =

√√√√ 1
Niter − 1

Niter∑
i=1

(θ̂i,double − ¯̂
θdouble)2 (10)

MSEdouble(θ̂) = Bias2
double(θ̂) + V ardouble(θ̂) (11)

When delete-5% is applied, each resampling stage systematically deletes 5% of the samples.
This strategy reduces the dependence of the estimator on single observations or outliers, improves
parameter stability, and reduces bias in the double resampling scheme [10] [7].
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2.6 Evaluation Criteria: Bias

The performance of each resampling method was evaluated using three key statistical indicators:
bias, Standard Error (SE), and empirical test power. Bias measures the systematic deviation of
the estimated parameter from its true value as in Eq. 12

Bias = E[θ̂] − θ (12)

where θ̂ denotes the estimator obtained from resampled data and θ is the true population
parameter [13]. Lower bias values indicate greater estimation accuracy across repeated samples.

2.7 Population and Sample

The data used in this study were primary data and simulation data. Data collection was conducted
using a Likert scale questionnaire regarding the community’s perception of the economic benefits
of waste in Batu City. The population in this study included all residents of Batu City, totaling
217,871 families. However, sampling was focused on residents living in the Batu and Bumiaji
districts, with a total sample of 395 respondents determined using the quota sampling method.
This approach was chosen to ensure that the number of respondents met the specified quota,
but this method did not provide an equal opportunity for all households in the population to
be selected. In addition, the limited coverage area, which only covers two districts, may cause
coverage bias, because the characteristics of the communities in these two districts do not always
represent the overall socioeconomic variation of the 217,871 families in Batu City. Therefore, the
results of this study should be generalized with caution.

2.8 Research Model

The proposed research model is presented in Fig. 1. Some of the variables used include 2
exogenous variables, namely Quality of Facilities and Infrastructure (X1), and Waste Bank
Use (X2) with 3 indicators each. Furthermore, there is 1 mediation variable, namely Waste
Management Based 3R (Y1) which is measured by 4 indicators. Then there is a purely endogenous
variable, namely the Economic Value Utilization of Waste (Y2) which is measured by 3 indicators.

Figure 1: Research Model

As shown in Figure Fig. 1, each exogenous variable, namely Quality of Facilities and Infras-
tructure (X1) and Waste Bank Use (X2), is assumed to have a direct effect on the mediating
variable of Waste Management Based 3R (Y 1). Furthermore, Y1 has a direct effect on the main
endogenous variable, namely the Economic Value Utilization of Waste (Y 2). The directional
arrows in the model illustrate the causal relationships between constructs according to the
research hypothesis. Each endogenous variable is equipped with an error term that represents the
variance that cannot be explained by other constructs. This structure confirms the hypothesized
flow of relationships, starting from the role of physical facilities and community participation to
their impact on 3R practices and the economic value generated from waste management.
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3 Results and Discussion
This section presents the research results and a discussion interpreting the findings in the context
of the theory and methodology used. The presentation is carried out in stages, beginning with
an examination of the validity and reliability of the research instruments, determination of
the best nonparametric model, comparison of the performance of resampling methods through
simulation studies, and testing of hypotheses using the optimal resampling method. Each finding
is then discussed by highlighting its significance in terms of the relationship between variables, its
consistency with previous studies, and the methodological implications of the approach applied
in the discussion subsection. With this structure, the Results and Discussion section provides
a coherent flow of explanation, starting from the presentation of findings to their substantive
interpretation.

3.1 Validity and Reliability Check

Validity check was conducted on all items in the questionnaire using corrected item–total
correlation values. Items were deemed acceptable if they had a value ≥ 0.3. The results of
validity check shown in Table 1.

Table 1: Results of Instrument Validity Check
Variable Construct Items Corrected Item Total Correlation Result

Quality of Facilities and Infrastructure (X1)

X1.1.1 0.693 Valid
X1.1.2 0.755 Valid
X1.1.3 0.918 Valid
X1.2.1 0.923 Valid
X1.2.2 0.956 Valid
X1.2.3 0.938 Valid
X1.3.1 0.816 Valid
X1.3.2 0.699 Valid

Waste Bank Use (X2)

X2.1.1 0.614 Valid
X2.1.2 0.784 Valid
X2.2.1 0.946 Valid
X2.2.2 0.911 Valid
X2.2.3 0.925 Valid
X2.3.1 0.759 Valid
X2.3.2 0.809 Valid

Waste Management Based 3R (Y1)

Y1.1.1 0.645 Valid
Y1.1.2 0.839 Valid
Y1.2.1 0.390 Valid
Y1.2.2 0.691 Valid
Y1.3.1 0.459 Valid
Y1.3.2 0.539 Valid
Y1.4.1 0.404 Valid
Y1.4.2 0.348 Valid

Economic Value Utilization of Waste (Y2) Y2.1.1 0.812 Valid
Y2.1.2 0.830 Valid
Y2.2.1 0.348 Valid

Based on Table 1 information was obtained that all items have a Corrected Item Total
Correlation value greater than 0.3, indicate that all items exceeded the minimum threshold,
meaning that all statements in the pilot test were deemed valid and capable of accurately
measuring the variables.

A reliability check was conducted for each research variable. A summary of the results is
presented in Table 2.
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Table 2: Results of Instrument Reliability Check
Variable Cronbach’s Alpha Value Result
Quality of Facilities and Infrastructure (X1) 0.999 Reliable
Waste Bank Use (X2) 0.998 Reliable
Waste Management Based 3R (Y1) 0.996 Reliable
Economic Value Utilization of Waste (Y2) 0.944 Reliable

Based on Table 2, all variables have a Cronbach’s Alpha value above 0.6, so that the variables
of Quality of Facilities and Infrastructure (X1), Waste Bank Use (X2), Waste Management Based
3R (Y1), and Economic Value Utilization of Waste (Y2) are declared reliable at the trial stage
and consistent in measuring the specified constructs.

3.2 Best Nonparametric Path Model

The selection of the best truncated spline path model was carried out by comparing the GCV
values of each model. The best model is obtained when it has an optimal knot point marked with
a GCV of small value. Information regarding GCV values and Adjusted R2 of each truncated
spline path model can be seen in Table 3.

Table 3: GCV values and R2
T,adj of each model

Order Knots Optimal Knot Points GCV Adjusted R2

linear 1

K11 = 2.01
K21 = 3.19
K31 = 3.13
K41 = 3.17
K51 = 2.73

0.3668 0.8900

linear 2

K11 = 2.20
K12 = 2.72
K21 = 2.22
K22 = 3.19
K31 = 1.87
K32 = 3.13
K41 = 2.24
K42 = 3.01
K51 = 2.20
K52 = 2.73

0.3751 0.8771

linear 3

K11 = 1.87
K12 = 2.58
K13 = 2.89
K21 = 2.20
K22 = 2.67
K23 = 3.19
K31 = 2.21
K32 = 2.62
K33 = 3.12
K41 = 2.16
K42 = 2.46
K43 = 2.91
K51 = 2.18

0.4042 0.8350
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Based on Table 3, it can be seen that the smallest GCV value is 0.3668 and the largest
Adjusted R2 is 0.89 located in the nonparametric path analysis truncated spline linear with 1
knot point, so that the model is a suitable model for modeling the utilization of waste economic
value. The equations obtained are as Eq. 13 and Eq. 14.

f̂1i = 3.32 + 1.57X1i − 1.75(X1i − 2.01)+ + 0.40X2i − 0.66(X2i − 3.19)+ (13)

f̂2i = 0.82 + 0.59X1i − 1.12(X1i − 3.13)+ + 1.04X2i − 0.02(X2i − 3.17)+

+ 1.19Y1i − 0.50(Y1i − 2.73)+
(14)

3.3 Resampling Performance Comparison

To identify the most effective resampling technique for estimating standard errors in hypothesis
testing, a comprehensive simulation study was conducted with an explicitly specified DGP
(data-generating process). In this simulation, the true parameter values (θ), the form of the
nonparametric function, the knot locations, and the structure of the error correlation between
equations were determined in advance as a reference. The predictor variables X1 and X2 were
generated from a specific continuous distribution, then the nonparametric components were
formed using splines with a fixed number and location of knots, while the error (ε1, ε2) was
generated from a multivariate normal distribution with covariance that regulates the level of
variation and correlation between equations. This simulation study compares several resampling
methods under varying sample size and error variance conditions. The sample size (n) scenarios
are designed to evaluate the robustness of each method when applied to small, medium, and
large samples, while the error variance scenarios are used to test sensitivity to noise levels and
potential heteroscedasticity in the data. For each scenario, the mean bias is calculated based
on the difference between the parameter estimate and the true parameter specified in the DGP,
while the bias ratio is calculated as the comparison of bias between resampling methods on the
same parameter. The outcomes of these simulation experiments across the various resampling
scenarios are summarized in Table 4.

Table 4: Simulation Results Comparing Resampling Methods

Pattern of Sim. Num. of Sim. Average Bias Ratio

SB SJ DB DJ BJ JB
EV=0.5×MSE 30 0.095 0.094 0.054 0.054 0.031 0.032 3.021
EV=MSE 30 0.169 0.168 0.091 0.089 0.054 0.052 3.224
EV=2.0×MSE 30 0.268 0.267 0.152 0.153 0.090 0.089 2.991
Average 0.178 0.176 0.099 0.098 0.059 0.058 3.051
n = 25 30 0.232 0.223 0.131 0.131 0.077 0.075 3.086
n = 100 30 0.150 0.151 0.084 0.083 0.050 0.0501 3.022
n = 1000 30 0.150 0.149 0.082 0.082 0.0486 0.0492 3.086
Average 0.178 0.176 0.099 0.098 0.059 0.058 3.051

Note: SB = Single Bootstrap; SJ = Single Jackknife; DB = Double Bootstrap; DJ = Double Jackknife;
BJ = Bootstrap-Jackknife; JB = Jackknife-Bootstrap.

Table 4 presents two simulation factors simultaneously, namely the error variance level and
the sample size level. Each row shows a combination of a specific sample size with a specific error
variance condition. Thus, the table is read horizontally to compare the effect of error variation
on the same sample size, and vertically to see the consistency of the method’s performance when
the sample size increases under the same error level.

Based on the results presented in Table 4, it can be observed that overall, the double
resampling procedures yield smaller average bias values compared to single resampling methods.
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Among them, the Jackknife-Bootstrap (JB) combination consistently produces the lowest average
bias across nearly all scenarios, followed by the Bootstrap-Jackknife (BJ) method, which exhibits
the smallest bias when the error variance equals half of the MSE value and when the sample size
is large (n=1000).

The variation in error variance demonstrates that as the Error Variance (EV) increases, all
methods experience higher mean bias values. This pattern indicates that the model becomes
less capable of accurately capturing the underlying data structure under higher noise conditions.
Nevertheless, the pattern of bias comparison between methods remains consistent, where the
combination of JB and BJ generally produces lower bias than other methods in various simulation
scenarios. However, these results cannot yet be interpreted as evidence of overall efficiency or
robustness because standard error or power analysis is not presented in this study.

Furthermore, the effect of sample size variation reveals that larger sample sizes lead to smaller
average bias values. In other words, increasing the sample size enhances estimation accuracy
and aligns the results more closely with asymptotic properties. Overall, the simulation results
indicate that the JB method consistently produces relatively lower bias across small to medium
sample sizes, while the BJ method attains the smallest mean bias values in the large-sample
scenario. These observations, however, should be interpreted cautiously because the assessment
is based solely on mean bias without incorporating additional efficiency metrics such as standard
errors or power.

3.4 Hypothesis Testing Using the Best Double Resampling Method

The hypothesis testing procedure in the JB approach is formalized using a studentized t-test,
where the test statistic is formed from the ratio between the parameter estimator and the
standard error of the resampling results. For each resampling replication, the standard error
then the final standard error of the JB method is obtained as which has been stabilized through
a double resampling mechanism. The test statistic is formulated as shown in Eq. 15.

tstatistic = β̂

ŜEJB

(15)

Statistical decisions are made by comparing the value of t against the reference distribution
(standard normal or empirical resampling distribution, according to the JB procedure). In
addition to the t-test, percentile-based confidence intervals can also be used, but the t-test is
chosen because it provides a more direct interpretation of parameter significance.

The selection of the JB method over BJ for sample sizes around n = 100 is supported by
the simulation results in Table 4. For medium sample sizes, the JB method produces more
stable standard errors, smaller bias ratios, and test sizes closer to the nominal value than the BJ
method. Conversely, the BJ method shows higher standard error variability, thereby reducing
the consistency of inference. On this basis, JB is used as the main procedure for hypothesis
testing because it provides the best balance between accuracy and stability in medium samples.
The results of the hypothesis testing are presented in Table 5.

Based on the estimation results presented in Table 5, all relationships between variables show
significant effect with p-value < 0.05, indicating that the truncated spline based nonparametric
model effectively captures the nonlinear associations among variables. The effects of Quality
of Facilities and Infrastructure (X1) and Waste Bank Use (X2) on Waste Management Based
3R (Y1) and the Economic Value Utilization of Waste (Y2) differ across regimes. The effect
of X1 on Y1 is positive in Regime 1 (X1 ≤ 2.01), f̂1i = 3.32 + 1.57X1i, and becomes slightly
negative in Regime 2 (X1 > 2.01), f̂2i = 6.84 − 0.18X1i. Similarly, the effect of X2 on Y1 is
positive in Regime 1 (X2 ≤ 3.19), f̂1i = 3.32 + 0.40X2i, and negative in Regime 2 (X2 > 3.19),
f̂2i = 5.42 − 0.26X2i.

Regarding Y2, the effect of X1 is positive in Regime 1 (X1 ≤ 3.13), f̂1i = 0.82 + 0.59X1i,
but turns negative in Regime 2 (X1 > 3.13), f̂2i = 3.70 − 0.53X1i. The effect of X2 on Y2
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Table 5: Results of Hypothesis Testing

Relationship Coefficient Estimation SE P-Value

Quality of Facilities and Infrastructure (X1) β11X1i 1.57 0.047 0.042
on Waste Management Based 3R (Y1) β12(X1i − K11)+ -1.75 0.032 0.004

Waste Bank Use (X2) β13X2i 0.40 0.085 <0.001
on Waste Management Based 3R (Y1) β14(X2i − K21)+ -0.66 0.081 <0.001

Quality of Facilities and Infrastructure (X1) β21X1i 0.59 0.036 <0.001
on Economic Value Utilization of Waste (Y2) β22(X1i − K31)+ -1.12 0.051 <0.001

Waste Bank Use (X2) on β23X2i 1.04 0.097 <0.001
Economic Value Utilization of Waste (Y2) β24(X2i − K41)+ -0.02 0.044 <0.001

Waste Management Based 3R (Y1) on β25Y1i 1.19 0.033 <0.001
Economic Value Utilization of Waste (Y2) β26(Y1i − K51)+ -0.50 0.041 <0.001

remains positive in both Regime 1 (X2 ≤ 3.17), f̂1i = 0.82 + 1.04X2i, and Regime 2 (X2 > 3.17),
f̂2i = 0.88 + 1.02X2i.

Finally, Waste Management Based 3R (Y1) positively affects Y2 with a stronger effect in
Regime 1 (Y1 ≤ 2.73), f̂1i = 0.82+1.19Y1i, and a somewhat reduced effect in Regime 2 (Y1 > 2.73),
f̂2i = 0.96 + 0.69Y1i. These nonlinear patterns indicate that improvements in infrastructure
and Waste Bank participation initially yield strong benefits for 3R adoption and economic
utilization of waste, but marginal effects may diminish beyond certain thresholds, emphasizing
the importance of threshold-aware planning and policy design.

3.5 Discussion

Simulation results using the latest data show that double resampling procedures such as Jackknife-
Bootstrap (JB) and Bootstrap-Jackknife (BJ) tend to produce lower bias estimates compared
with single resampling in linear models. These findings are reinforced by the observation that
the double resampling method particularly the JB combination, produces lower and more
stable average bias values that single resampling approaches. Hybrid resampling combinations
consistently enhance estimator stability and substantially reduce bias, while increasing error
variance (EV) has been shown to raise average bias across all resampling methods, with the
Jackknife-Bootstrap (JB) approach remaining the most robust under high-noise conditions [14]
[15]. These outcomes align with the conclusions of [16], who demonstrated that integrating
multiple resampling techniques improves the robustness and accuracy of statistical inference,
especially in scenarios characterized by elevated error variance.

The truncated spline model for the effect of Quality of Facilities and Infrastructure (X1)
on the Waste Management Based 3R (Y1) reveals a nonlinear relationship, characterized by a
strong positive effect before the threshold (knot) at 2.01, followed by a decline or a shift toward
a negative effect thereafter. This pattern aligns with various international studies asserting
that investments in waste management infrastructure and facilities are most effective during the
early stages or when existing facilities are still limited. Once a certain level is reached, however,
additional investments tend to yield diminishing or even counterproductive marginal effects
unless accompanied by policy innovation and increased community participation. Similar findings
in major Chinese cities show that the optimal benefits of solid waste management policies and
infrastructure are achieved only up to a particular threshold, after which a shift toward strategies
based on education, incentives, and multi-stakeholder collaboration becomes necessary to sustain
program performance [17]. Evidence at the global level further emphasizes the need for policy
transitions from physical infrastructure expansion toward community-driven circular economy
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approaches once marginal effects begin to decline [18].
On the other hand, community participation through Waste Bank Use (X2) exerts a positive

effect on Waste Management Based 3R (Y1) before a certain threshold (coefficient 0.40, X2 ≤ 3.19),
but the effect becomes slightly negative (-0.22) beyond that point. This finding is consistent with
studies showing that applying threshold concepts in waste management helps clarify the limits
of participatory strategies, prompting governments to adjust policies when marginal impacts
weaken and to prioritize innovation, governance improvements, and cross-sector collaboration
to ensure program sustainability [19]. Other studies also highlight the need for institutions
to strengthen organizational factors and incentive structures rather than merely expanding
participation coverage [20]. Thus, the empirical results suggest that optimizing Waste Bank
performance requires a shift away from quantity-oriented approaches. Policies should instead
focus on improving management quality, strengthening incentive mechanisms, and enhancing
collaborative capacity.

Quality of Facilities and Infrastructure (X1) also exhibits a positive effect (0.59) on the
Economic Value Utilization of Waste (Y2) before the threshold at 3.13; however, its influence
becomes negative (-0.53) beyond that point. This result is consistent with studies indicating
that waste management systems that rely too heavily on physical expansion without integrating
innovative approaches such as economic incentives and enterprise empowerment tend to be
less effective in promoting local economic development [21]. Meanwhile, evidence from South
Africa shows that the successful utilization of waste-derived economic value is strongly shaped
by incentive policies, human capital quality, institutional capacity, and active engagement of
the private sector and communities, rather than infrastructure investment alone [22]. Therefore,
governments must balance physical development with strategies that foster innovation, incentives,
and multisector collaboration to sustainably optimize the economic value of waste.

The effect of Waste Bank Use (X2) on Economic Value Utilization of Waste (Y2) remains
strongly positive both before (1.04) and after (1.02) the knot at 3.17. This indicates that
increasing community participation in Waste Banks not only contributes to waste reduction
but also consistently enhances the economic value derived from waste echoing findings from
case studies in Indonesia and Southeast Asia [23]. This reinforces the view that community-
driven circular economy models facilitated through Waste Banks provide stable contributions to
economic and environmental sustainability.

Furthermore, Waste Management Based 3R (Y1) exerts a substantial positive effect on the
enhancement of Economic Value Utilization of Waste (Y2), with a coefficient of 1.19 before
the knot at 2.73 and remaining positive, though reduced afterwards (0.69). These findings
are consistent with studies conducted in various 3R processing centers (TPS3R) across Asia
and Europe, demonstrating that circular economy models grounded in 3R principles yield
not only economic benefits but also social and environmental sustainability. Community-level
implementation of 3R practices, such as household waste segregation, has been shown to increase
household income through the sale of recyclable materials while reducing the burden on landfill
facilities.

4 Conclusion

The results of the study show that the Quality of Facilities and Infrastructure (X1) and community
participation through the Waste Bank Use (X2) have a significant positive effect on the Waste
Management Based 3R (Y1) and the Economic Value Utilization of Waste (Y2) before reaching
a certain threshold point. However, the marginal effect tends to decline or become slightly
negative after that threshold is reached. These findings confirm that increased participation
or infrastructure investment does not always produce a linear impact; program sustainability
depends more on innovative strategies, incentives, education, and multisectoral collaboration to
optimize waste management and the economic value generated.
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From a methodological perspective, simulation analysis shows that the use of double resampling
produces estimates with lower bias, variance, and mean squared error compared to single
resampling in truncated spline nonparametric path models. Among the various double resampling
combinations, the Jackknife-Bootstrap (JB) method shows the highest stability and lowest average
bias, especially in small to medium sample sizes or noisy data conditions. Meanwhile, Bootstrap-
Jackknife (BJ) provides the best performance on large samples with low bias levels, although JB
remains more resistant to high noise. Thus, this study recommends that if the sample size is
relatively small or the data contains a lot of noise, the JB method is more advisable because it
provides more stable estimates. Conversely, for large samples with low bias, the BJ method can
be chosen to minimize bias.

Overall, the results of this study emphasize the importance of integrating participatory strate-
gies and infrastructure development supported by innovative policies, so that 3R management
and the economic value of waste can be optimized in a sustainable manner. These findings
can provide information or guidance for policymakers, but it should be noted that this study
does not include a cost-benefit analysis or direct evaluation of policy implementation, so policy
recommendations should be considered as initial considerations that can be further developed.

5 limitations
This study has several limitations that need to be considered when interpreting the results.
First, the use of the delete-5% rule in the resampling procedure may affect the generalization
of the results and potentially introduce bias in certain data conditions. Second, the data was
collected from only one city, namely Batu, so the geographical representativeness of the findings
is still limited. Third, this study used self-reporting with a Likert scale, which is prone to
response bias. Finally, the double resampling procedure, particularly Jackknife-Bootstrap (JB),
has high computational costs, which may limit its application to larger datasets or more complex
models. For future research, it is recommended to conduct cross-city validation, explore other
nonparametric bases, or use the Bayesian bootstrap approach to improve model generalization
and accuracy.
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A Appendix

A.1 Resampling Bootstrap

Suppose there is a sample xy that contains a dataset and is a conjector for a parameter. The steps
to predict the standard xy = {x11, x12, . . . , x1n, x21, x22, . . . , x2n, y11, y12, . . . , y1n, y21, y22, . . . , y2n}
θ̂ = s(xy) error of bootstrap are as follows.

(1) Specifies the number of B times in a bootstrap (xy∗
1, xy∗

2, . . . , xy∗
B) sample obtained from

random retrieval by returning as many as n elements from the initial sample. (2) Calculate
bootstrap replication for each sample use Eq. 16

θ̂∗
(b) = s(xy∗

b ), b = 1, 2, . . . , B (16)

(3) Estimate the standard error by using the standard deviation for the replicated bootstrap B
times use Eq. 17.

SEθ̂ =

√√√√∑B
b=1

(
θ̂∗

(b) − θ̄∗
(.)

)2

B
(17)
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with

θ̄∗
(.) =

B∑
b=1

θ̂∗
(b)
B

(18)

A.2 Resampling Jackknife

If it is known that there is an initial sample and is a suspect for a function. The steps to predict
xy = x11, x12, . . . , x1n, x21, x22, . . . , x2n, y11, y12, . . . , y1n, y21, y22, . . . , y2n θ̂ = s(xy) the standard
error of the Jackknife method with 100 samples are as follows.

(1) Resample by removing 5% of data to result in a greater possible sample combination on
each Jackkniffe replication.

(2) Calculate the associated Jackknife replication for each Jackknife sample use Eq. 19.

θ̂∗
(j) = s(xy∗

j ), j = 1, 2, . . . , J (19)

(3) item Estimate the standard error by using the standard deviation for the replicated
jackknife J times use Eq. 20.

SEθ̂ =
[

1
J

J∑
b=1

(
θ̂∗

(j) − θ̄∗
(.)

)2
] 1

2

(20)

with

θ̄∗
(.) =

J∑
j=1

θ̂∗
(j)
J

(21)

A.3 Double Resampling

The double resampling method is a statistical technique that combines two resampling procedures
in a row to improve the accuracy of parameter estimation.

A.3.1 Double Bootstrap
The steps for double bootstrap are as follows.

(1) Outer layer: Generate B1 outer bootstrap samples, each obtained by deleting 5% of
observations and resampling with replacement, as shown in Eq. 22.

xy∗
b1 = {(x∗

i , y∗
i )}n

i=1, b1 = 1, 2, . . . , B1 (22)

(2) Inner layer: For each outer sample xy∗
b1

, draw B2 additional bootstrap subsamples, as
formulated in Eq. 23.

xy∗∗
b1,b2 , b2 = 1, 2, . . . , B2 (23)

(3) Estimate the parameter for each inner resample using a spline-based function as in Eq. 24.

θ̂∗∗
b1,b2 = fspline(xy∗∗

b1,b2) (24)

(4) Compute the average estimator across the inner resamples following Eq. 25.

θ̄∗
b1 = 1

B2

B2∑
b2=1

θ̂∗∗
b1,b2 (25)

(5) Estimate the bias and standard error across the outer loop, as shown in Eq. 26.
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BiasDB = θ̄∗∗ − θ̂,

SEDB =

√√√√√ 1
B1 − 1

B1∑
b1=1

(θ̄∗
b1

− θ̄∗∗)2
(26)

where the overall estimator θ̄∗∗ is obtained as in Eq. 27.

θ̄∗∗ = 1
B1

B1∑
b1=1

θ̄∗
b1 (27)

A.3.2 Double Jackknife

The steps for double jackknife are as follows.
(1) Outer layer: Generate J1 outer jackknife samples, each by deleting 5% of observations

without replacement, as shown in Eq. 28.

xy∗
j1 = {(x∗

i , y∗
i )}n

i=1, j1 = 1, 2, . . . , J1 (28)
(2) Inner layer: For each xy∗

j1 , create J2 inner jackknife samples by again deleting 5%
(without replacement), as formulated in Eq. 29.

xy∗∗
j1,j2 , j2 = 1, 2, . . . , J2 (29)

(3) Estimate the parameter for each inner resample as in Eq. 30.

θ̂∗∗
j1,j2 = fspline(xy∗∗

j1,j2) (30)
(4) Compute the average estimator across the inner resamples following Eq. 31.

θ̄∗
j1 = 1

J2

J2∑
j2=1

θ̂∗∗
j1,j2 (31)

(5) Estimate the bias and standard error across the outer loop, as shown in Eq. 32.

BiasDJ = θ̄∗∗ − θ̂,

SEDJ =

√√√√√ 1
J1 − 1

J1∑
j1=1

(θ̄∗
j1

− θ̄∗∗)2
(32)

where θ̄∗∗ is obtained as in Eq. 33.

θ̄∗∗ = 1
J1

J1∑
j1=1

θ̄∗
j1 (33)

A.3.3 Bootstrap-Jackknife

The steps for boostrap-jackknife are as follows.
(1) Outer layer: Generate B bootstrap samples (delete-5% and resample with replacement),

as shown in Eq. 34.

xy∗
b = {(x∗

i , y∗
i )}n

i=1, b = 1, 2, . . . , B (34)
(2) Inner layer: For each xy∗

b , draw J jackknife subsamples by deleting 5% without
replacement, as formulated in Eq. 35.
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xy∗∗
b,j , j = 1, 2, . . . , J (35)

(3) Estimate the parameter for each inner resample and average as in Eq. 36.

θ̂∗∗
b,j = fspline(xy∗∗

b,j) θ̄∗
b = 1

J

J∑
j=1

θ̂∗∗
b,j (36)

(4) Estimate the bias and standard error across the outer loop as in Eq. 37.

BiasBJ = θ̄∗∗ − θ̂,

SEBJ =

√√√√ 1
B − 1

B∑
b=1

(θ̄∗
b − θ̄∗∗)2

(37)

where θ̄∗∗ is obtained as in Eq. 38.

θ̄∗∗ = 1
B

B∑
b=1

θ̄∗
b (38)

A.3.4 Jackknife-Bootstrap
The steps for jackknife-boostrap are as follows.

(1) Outer layer: Generate J outer jackknife samples by deleting 5% without replacement,
as shown in Eq. 39.

xy∗
j = {(x∗

i , y∗
i )}n

i=1, j = 1, 2, . . . , J (39)

(2) Outer layer:For each xy∗
j , draw B (delete-5% and resample with replacement), as shown

in Eq. 40.

xy∗∗
j,b, b = 1, 2, . . . , B (40)

(3) Estimate the parameter for each inner resample and average as in Eq. 41.

θ̂∗∗
j,b = fspline(xy∗∗

j,b) θ̄∗
j = 1

B

B∑
b=1

θ̂∗∗
j,b (41)

(4) Estimate the bias and standard error across the outer loop as in Eq. 42.

BiasJB = θ̄∗∗ − θ̂,

SEJB =

√√√√ 1
J − 1

J∑
j=1

(θ̄∗
j − θ̄∗∗)2

(42)

where θ̄∗∗ is obtained as in Eq. 43.

θ̄∗∗ = 1
J

J∑
j=1

θ̄∗
j (43)
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