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Abstract

The number of pneumonia cases in children under five in Tuban Regency presents two
significant data challenges, namely, overdispersion and spatial dependency. This study aims
to develop and apply the Generalized Poisson Spatial Autoregressive (GPSAR) model to
address both issues simultaneously. The model was estimated using a MLE-BHHH procedure
and validated using 10-fold cross-validation (CV). The results confirm the model’s validity
and superiority. The GPSAR model outperformed the non-spatial GPR model in terms
of goodness-of-fit (AIC: 1301.09 vs. 1312.67) and predictive accuracy (Out-of-Sample CV-
RMSE: 8.451 vs. 8.716). Statistically, the structural parameters for spatial lag (ρ̂ = 0.453)
and overdispersion (φ̂ = 0.312) were highly significant. Two predictor variables, exclusive
breastfeeding (X1) and complete basic immunization (X2), were also found to be statistically
significant factors. This research provides a robust regression framework for spatial count
data exhibiting overdispersion and offers new insights into pneumonia case determinants in
the region.
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1 Introduction
Pneumonia, an acute respiratory infection of the lungs, is one of the leading causes of mortality
in children under five globally, where it is recorded to have resulted in approximately 502,000
child deaths annually in 2021 [1]. This is highly prevalent because the immune systems of
children under five are not fully developed, particularly in developing countries where access to
healthcare services is limited [2], [3], [4]. In Indonesia, pneumonia remains a significant public
health problem with a high disease burden.

In modeling disease case data such as pneumonia, which constitutes count data, Poisson
Regression is the most fundamental model [5], [6], [7], [8]. The Poisson model is designed based
on the fundamental assumption of equidispersion, where the mean value is equal to the variance
value [6], [7]. However, this assumption is frequently violated [9], [10]. This is evident in this
study’s case study, as the pneumonia cases in 328 villages/urban villages in Tuban Regency
exhibit characteristics of extreme data overdispersion. Descriptive statistics show the mean
number of cases is 4.527 with a variance of 60.286, yielding a Variance-to-Mean Ratio of 13.32
(substantially greater than 1). This condition indicates that the standard Poisson model is
inadequate.
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To address the issue of overdispersion, Generalized Poisson Regression (GPR) emerges as
a more flexible alternative to the equidispersion assumption, as it is capable of handling data
characteristics exhibiting either overdispersion or underdispersion [11], [12]. When modeling
count data exhibiting the severe overdispersion found in this study (Variance-to-Mean Ratio =
13.32), Negative Binomial (NB) regression is often considered a primary alternative to Poisson
[8]. Nevertheless, this study selects the Generalized Poisson Regression (GPR) foundation due to
its theoretical flexibility. Unlike NBR, which is specifically designed to handle overdispersion,
the GPR model can inherently accommodate data with characteristics of both overdispersion
(φ > 0) and underdispersion (φ < 0).

Furthermore, the empirical justification for not employing more complex zero-inflated models
(e.g., ZIP or ZINB) is supported by diagnostic tests conducted in this research. The test indicated
that the observed number of zeros (85) is not statistically significantly different (p-value = 0.42)
from the expected number of zeros (78) under the baseline model. Therefore, GPR was chosen
as a parsimonious yet flexible framework.

However, the GPR model, much like the Poisson model, assumes that the observation units
in this case, the villages/urban villages in Tuban Regency are independent. This assumption is
also often unrealistic for geographical data [13], [14], [15]. This phenomenon, known as spatial
dependency, aligns with Tobler’s First Law of Geography: “everything is related to everything
else, but near things are more related than distant things” [14], [16], [17], [18], [19]. The empirical
justification for this is also reinforced by the results of the Moran’s I test on the pneumonia
case data, which yielded a p<0.001, statistically indicating a highly significant positive spatial
dependency pattern.

To address spatial dependency in data experiencing overdispersion, the literature provides
several established methods, such as spatial Negative Binomial or spatial Poisson-lognormal
models. These approaches typically address dependency by incorporating spatially structured
random effects (often using Conditional Autoregressive (CAR) priors) [20], [21].

In addition to these methods, the spatial autoregressive (SAR) framework is frequently used
[22], [23]. The SAR model, which incorporates a spatial lag component, has proven effective in
capturing spillover effects and spatial interdependence in various fields [24], [25], [26]. Recent
spatial modeling in Tuban Regency by Sutikno et al. (2025) [27] has successfully addressed spatial
dependency using a Multivariate Spatial Autoregressive (MSAR) framework. However, their
approach assumed a normal distribution, which may not fully capture the discrete nature and
extreme overdispersion of pneumonia cases. To our knowledge, the integration of the Generalized
Poisson structure with spatial lag dependency (the GPSAR model) is still relatively limited in
the public health literature.

Driven by this methodological gap and the strong empirical findings from the data, this
research aims to develop and apply the Generalized Poisson Spatial Autoregressive (GPSAR)
model to determine the factors that significantly influence the incidence of pneumonia in children
under five in Tuban Regency, East Java, Indonesia. The predictor variables used include five
public health indicators: (1) the percentage of infants receiving exclusive breastfeeding, (2) the
percentage of children under five who received complete basic immunization, (3) the percentage
of children under five who received vitamin A, (4) the percentage of pregnant women attending
prenatal classes, and (5) the percentage of households with access to clean water. Specifically,
this research will: (1) derive the parameter estimation procedure using MLE-BHHH, (2) develop
the hypothesis testing procedure using MLRT, and (3) apply the model to the empirical data on
childhood pneumonia.

2 Methods
In this section, we outline the methodological framework used to develop and validate the GPSAR
model. The components are structured sequentially, beginning with the data description, followed
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by the model formulation, estimation procedure, and hypothesis testing. Each subsection builds
upon the previous one to provide a coherent methodological foundation.

2.1 Data

This study utilizes secondary data from 2023, obtained from the Tuban Regency Government
and the Center for Regional Potential Studies and Community Empowerment (PDPM) ITS. The
observation units comprise 311 villages and 17 urban villages, totaling 328 observation units
across Tuban Regency.

The spatial weight matrix (W) was constructed using a digital map (SHP) of administrative
boundaries. Specifically, a first-order queen contiguity matrix of size n × n (where n = 328) was
defined, where two units are considered neighbors if they share any common boundary point
(vertex or edge). This definition offers greater flexibility than rook contiguity, which relies solely
on shared boundaries. Only immediate neighbors were assigned non-zero weights (wij = 1 for
neighbors, wii = 0) [27].

Subsequently, the matrix was row-standardized to ensure row sums of unity, assigning each
neighbor a weight of 1/mi (where mi is the neighbor count for unit i). This standardization
facilitates the interpretation of the spatial parameter (ρ) as the average spatial influence. Crucially,
no isolated units ("islands") were detected in the study area; consequently, every row in W
contains at least one non-zero entry, thereby preventing singularity in the model estimation. The
dimensions of the resulting matrix (328 × 328) are strictly consistent with the unit of analysis
[28].

2.2 Generalized Poisson Regression Model

The GPSAR model is an extension of the Generalized Poisson Regression (GPR) model, which
was developed by Famoye [12], and can be expressed as follows:

P (Y = yi|xi) =
[

µi

1 + φµi

]yi (1 + φyi)yi−1

yi!
exp

(
−µi(1 + φyi)

1 + φµi

)
, yi = 0, 1, 2, ... (1)

where yi is the response variable and φ is the dispersion parameter of y. When φ = 0, the GPR
model is reduced to the standard Poisson regression model. Meanwhile, if φ < 0 or φ > 0, the
GPR model exhibits underdispersion or overdispersion. To relate the expected value µi to the
linear predictor ηi = xT

i β, a link function for the GPR model is established, expressed as follows.

µi = µ(xi) = qi exp(xT
i β) (2)

Where qi is the exposure variable, xi is the vector of predictor variables and β is the parameter
vector of the GPR model for the response variable.

xi(p+1)×1 =
[
1 x1i · · · xpi

]T
β(p+1)×1 =

[
β0 β1 · · · βp

]T
(3)

i = 1, 2, ..., n.

2.3 Generalized Poisson Spatial Autoregressive (GPSAR) Model

The SAR model for continuous data differs from the model for count data. The SAR model for
count data was previously developed by Lambert [29]. An essential component in modeling SAR
for count data is the spatial autoregressive link function.

To ensure notational clarity, we first define the linear predictor as an n × 1 vector, η = Xβ.
The spatially lagged predictor is then A−1η, where A = (I − ρW). The link function for the
i-th observation, including the exposure component, is defined as:

µi = qi exp
(
(A−1η)i

)
(4)
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which can be written in full as µi = qi exp
((

(I − ρW)−1Xβ
)

i

)
. Here, qi is the exposure variable,

A−1 is the inverse of matrix A, and (A−1η)i denotes the i-th element of the resulting n × 1
vector. ρ is the spatial lag coefficient, W is the row-standardized Queen Contiguity weight
matrix (as defined in Section 2.1), X is the n × (p + 1) matrix of predictor variables, and β is
the (p + 1) × 1 vector of regression coefficients. This notation clarifies that the i-th element of
the spatially transformed linear predictor is used.

Subsequently, the GPSAR model, which is a combination of the GPR model in equation (1)
and the SAR link function in equation (4), yields a model that can be expressed in the following
form.

P (Y = yi|xi) =
[

µGP SAR
i

1 + φµGP SAR
i

]yi (1 + φyi)yi−1

yi!
exp

(
−µGP SAR

i (1 + φyi)
1 + φµGP SAR

i

)
, yi = 0, 1, 2, ...

(5)
with µGP SAR

i = qi exp
(
(A−1Xβ)i

)
as in equation (4), where yi is the response variable and φ is

the dispersion parameter of y.

3 Results and Discussion
This section presents the empirical findings of the study. We begin by reporting the parameter
estimation results of the GPSAR model, followed by hypothesis testing, model interpretation,
and performance evaluation. Each subsection provides complementary insights to support the
overall discussion.

3.1 Parameter Estimation of the GPSAR Model

The method used to estimate the parameters of the GPSAR model is the Maximum Likelihood
Estimation (MLE) method by maximizing the likelihood function. The parameters to be
estimated are β, ρ, and φ. The estimation steps are as follows. It is important to note that the
spatial autoregressive parameter ρ is constrained to a theoretical domain that ensures the matrix
A = (I −ρW) remains invertible. This domain is defined as |ρ| < 1/λmaxW, where λmaxW is the
spectral radius of the matrix W. For a row-standardized W matrix (as used in this application,
this bound simplifies to |ρ| < 1 [30]. During the optimization procedure (i.e., MLE-BHHH), this
parameter domain was strictly enforced, either by constraining the search space or by performing
an invertibility check on A at each numerical iteration. This step is necessary to ensure the
resulting parameter estimate ρ̂ is valid, stable, and mathematically sound.

First, take n random samples, (yi, xi) with i = 1, 2, ..., n. Then, the likelihood function for
the GPSAR model is formed, which can be expressed as follows.

L(•) =
n∏

i=1
P (Y = yi|xi) =

n∏
i=1

[
µGP SAR

i

1 + φµGP SAR
i

]yi (1 + φyi)yi−1

yi!
exp

(
−µGP SAR

i (1 + φyi)
1 + φµGP SAR

i

)
(6)

We will maximize the likelihood function by differentiating it with respect to the parameter
θ =

[
β ρ φ

]
. However, to simplify the process of maximizing the likelihood function, a

logarithmic transformation is applied to the function, because the parameter value that maximizes
the log-likelihood function is also the parameter value that maximizes the likelihood function
itself. The form of the log-likelihood function can be expressed as follows.

ln L(•) =
n∑

i=1

[
yi ln µGP SAR

i

1 + φµGP SAR
i

+ (yi − 1) ln(1 + φyi) − ln yi! − µGP SAR
i (1 + φyi)
1 + φµGP SAR

i

]
(7)

Subsequently, equation (7) is partially differentiated with respect to the parameter vector
θ =

[
βT ρ φ

]T
. The resulting gradient vectors are as follows.
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∂ ln L(•)
∂β

=
n∑

i=1

{[
yi − µGP SAR

i

(1 + φµGP SAR
i )2

]
·
(
(A−1X)i

)T
}

(8)

∂ ln L(•)
∂ρ

=
n∑

i=1

{[
yi − µGP SAR

i

(1 + φµGP SAR
i )2

]
·
(
A−1WA−1Xβ

)
i

}
(9)

∂ ln L(•)
∂φ

=
n∑

i=1

[
− yiµ

GP SAR
i

1 + φµGP SAR
i

+ (yi − 1)yi

1 + φyi
− µGP SAR

i (yi − µGP SAR
i )

(1 + φµGP SAR
i )2

]
(10)

To ensure notational clarity in the equations above, the subscript i when applied outside
parentheses denotes the i-th element of a vector or the i-th row of a matrix. Specifically, the first
term,

(
A−1X

)
i (in equation 8), refers to the i-th row of the n × (p + 1) matrix resulting from

the multiplication A−1X. Similarly, the second term,
(
A−1WA−1Xβ

)
i (in equation 9), refers to

the i-th scalar element of the n × 1 vector that results from the full matrix-vector multiplication.
Since the form above is not in closed form, the Berndt-Hall-Hall-Hausman (BHHH) iteration

is subsequently used. This iteration is the preferred choice because its process does not require
the second derivative when obtaining its Hessian matrix. The steps to perform the BHHH
iteration are as follows.

1. Determine the initial values for all GPSAR model parameters, θ = [β ρ φ]T .
2. Form the gradient vector: g(θ(m)) = [(∂ln L(•)

∂β )T (∂ln L(•)
∂ρ )(∂ln L(•)

∂φ )]T

3. Form the Hessian matrix: H∗(θ(m)) = −
∑n

i=1 gi(θ(m))gi(θ(m))T where gi(θ(m)) is the
gradient vector of the i-th observation.

4. Start the iteration at m = 0 using the following equation: θ̂
(m+1) = θ̂

(m)−H∗−1(θ̂(m))g(θ̂(m))
The iteration stops if ||θ̂(m+1) − θ̂

(m)|| ≤ ϵ where ϵ is a very small positive number ap-
proaching 0.

5. Repeat the iteration from step 2 onwards with m = m + 1.

3.2 Hypothesis Testing of the GPSAR Model

Hypothesis testing for the GPSAR model parameters is conducted simultaneously and partially.
The simultaneous hypothesis test uses the MLRT method, and the partial test uses the Wald
Test method. To determine the joint influence of the predictor variables on the response variable,
a simultaneous test is performed. The hypotheses for the simultaneous test in the GPSAR model
are as follows. H0 : β1 = β2 = · · · = βp = 0 and H1: at least one βk ̸= 0, k = 1, 2, ..., p

Consider Ω as the parameter set under the full model with Ω = {β, ρ, φ} and ω as the
parameter set under the null hypothesis (H0 : β1 = · · · = βp = 0), where ω = {β0ω, ρω, φω}.

The log-likelihood for the full model, ln L(Ω̂), has the same form as equation (7). The
log-likelihood under the null hypothesis, ln L(ω), is specified as follows:

ln L(ω) =
n∑

i=1

[
yi ln µGP SAR

iω

1 + φωµGP SAR
iω

+ (yi − 1) ln(1 + φωyi) − ln yi! − µGP SAR
iω (1 + φωyi)
1 + φωµGP SAR

iω

]
(11)

To define the mean µGP SAR
iω under the null model, we first define the autoregressive matrix

under the null as Aω = (I − ρωW). The mean µGP SAR
iω is now correctly and consistently specified

as:
µGP SAR

iω = qi exp
((

A−1
ω 1β0ω

)
i

)
Here, 1 is an n×1 vector of ones. This definition ensures dimensional consistency and specification
accuracy.

Parameter estimation under the null hypothesis is performed by differentiating ln L(ω) with
respect to β0ω, ρω, and φω. This yields the internally consistent gradient vectors:
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∂ ln L(ω)
∂β0ω

=
n∑

i=1

{[
yi − µGP SAR

iω

(1 + φωµGP SAR
iω )2

]
·
(
A−1

ω 1
)

i

}
(12)

∂ ln L(ω)
∂ρω

=
n∑

i=1

{[
yi − µGP SAR

iω

(1 + φωµGP SAR
iω )2

]
·
(
A−1

ω WA−1
ω 1β0ω

)
i

}
(13)

∂ ln L(ω)
∂φω

=
n∑

i=1

[
− yiµ

GP SAR
iω

1 + φωµGP SAR
iω

+ (yi − 1)yi

1 + φωyi
− µGP SAR

iω (yi − µGP SAR
iω )

(1 + φωµGP SAR
iω )2

]
(14)

Since the form above is not in closed form, the BHHH iteration is subsequently performed.
Following this, Ω̂ = {β̂, ρ̂, φ̂} and ω̂ = {β̂∂ω, ρ̂ω, φ̂ω} are obtained, which are then substituted
into the following test statistic:

G2
GP SAR = 2[ln L(Ω̂) − ln L(ω̂)] (15)

In L(Ω̂) is obtained by substituting the parameter estimation results under the population into
equation (7), and In L(ω̂) is obtained by substituting the parameter estimation results under
the null hypothesis into equation (11). The critical region for the hypothesis test is as follows.
α = P (G2

GP SAR > χ2
(α,df)) G2

GP SAR will follow a chi-square distribution as n → ∞ such that the
rejection region for H0 is G2

GP SAR > χ2
(α,df) with df = n(Ω) − n(ω) = [(P + 1) + 2] − [1 + 2] = p

After the simultaneous parameter hypothesis testing is performed and a decision to reject H0
is obtained, partial parameter hypothesis testing is then conducted. Partial hypothesis testing
for the parameter ρ is performed first, with the following hypotheses. H0 : ρ = 0 H1 : ρ ̸= 0 The
test statistic used for the above hypothesis test, using the Wald test, is

Wρ = ( ρ̂

se(ρ̂))2 ∼ χ2
(α,1) (16)

The decision criterion is to reject H0 if Wρ > χ2
(α,1). The hypotheses used for the partial

parameter test βk are as follows. H0 : βk = 0 H1 : βk ≠ 0 Subsequently, the partial significance
test for the parameter βk is conducted using the following test statistic.

Wβk
= ( β̂k

se(β̂k)
)2 ∼ χ2

(α,1) (17)

The decision criterion is to reject H0 if Wβk
> χ2

(α,1). Subsequently, the partial significance test
for the parameter φ has the following hypotheses H0 : φ = 0 H1 : φ ≠ 0 Subsequently, the partial
significance test for the parameter φ is conducted using the following test statistic.

Wφ = ( φ̂

se(φ̂))2 ∼ χ2
(α,1) (18)

The decision criterion is to reject H0 if Wφ > χ2
(α,1). Subsequently, the standard error for

each parameter can be obtained from the square root of the main diagonal elements of the
variance-covariance matrix, which is generally defined as Cov(θ̂) = −(H∗−1(θ̂)).

3.3 Application

3.3.1 Descriptive Statistics
The regression model proposed in this study involves five predictor variables relevant to public
health indicators: (X1) Percentage of infants receiving exclusive breastfeeding, (X2) Percentage
of children under five who received complete basic immunization, (X3) Percentage of children
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under five who received vitamin A, (X4) Percentage of pregnant women attending prenatal
classes, and (X5) Percentage of households with access to clean water.

In accordance with the spatial analysis framework used, the unit of analysis in this study is
the village/urban village level, encompassing all 328 valid observation units in Tuban Regency.
Demographic characteristics (such as the population of children under five, which is used as an
exposure variable qi) vary substantially across each observation unit.

Table 1: Descriptive statistics of the response variable (Number of Pneumonia cases)

Variable Min Max Mean Std. Deviation Variance
Pneumonia Cases 0 115 4.527 7.776 60.286

Descriptive statistical analysis was conducted on the dependent variable (Y = Number of
Pneumonia cases) based on the 328 observation units (Table 1). A preliminary review revealed
extreme data variability, with a range from 0 (case-free areas) to a maximum of 115 cases. The
data exhibits a mean of 4.527 but a variance of 60.286. The resulting Variance-to-Mean Ratio
(VMR) of 13.32 indicates strong overdispersion, confirming that a standard Poisson model is
inappropriate.

As a further diagnostic step to validate the model selection, a formal test for zero-inflation was
conducted . This test determines whether a more complex zero-inflated (ZI) model is necessary.
The diagnostic test (conducted using the DHARMa package in R) compares the observed number
of zeros in the data (nobs = 85) against the expected number of zeros (npred = 78) simulated
from the baseline model. The result of this test yielded a p-value = 0.42. As this p-value is
substantially greater than the α = 0.05 significance level, the null hypothesis (that the data is
not zero-inflated) cannot be rejected. This finding statistically justifies the decision to use the
Generalized Poisson (GP) distribution for this analysis, as a more complex zero-inflated structure
is not required.

Subsequently, the distribution pattern of pneumonia cases in children under five can be
visualized as shown in Figure 1 below.

Figure 1: Distribution Map of the Number of Pneumonia Cases
Data Sources: PDPM ITS

This choropleth map visualizes the spatial distribution of the number of Pneumonia cases
across 328 observation units (villages/urban villages) in Tuban Regency, which clearly illustrates
two crucial data characteristics. First, extreme heterogeneity is observed, wherein the majority
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of areas exhibit a very low number of cases (0-10 cases, marked in light yellow), yet several
specific villages stand out as ’hotspots’ with an extremely high number of cases (dark red).
This visual finding has been statistically confirmed as extreme overdispersion, where the data
show a mean value (4.527) that is substantially smaller than its variance (60.286), resulting in a
Variance-to-Mean Ratio of 13.32. Second, the map also indicates a pattern of spatial clustering,
whereby villages with high cases tend to be geographically proximate, rather than randomly
dispersed. This visual pattern has also been statistically validated via the Moran’s I test, which
yielded a p < 0.001, indicating the presence of very strong and significant positive spatial
dependency. Consequently, the visual findings from this map fully support the methodological
justification for utilizing a model that can simultaneously address overdispersion (GPR) and
spatial dependency (SAR).

3.3.2 Application of the Generalized Poisson Spatial Autoregressive (GPSAR) Model to
Pneumonia Cases in Children Under Five in Tuban Regency

Following the data exploration, the GPSAR model was subsequently applied to the data. The
parameter estimation results for all parameters are summarized in Table 2. The table includes
parameter estimates, standard errors, p-values, and the 95% Confidence Intervals (CIs) for all
parameters.

Table 2: Parameter Estimation Results of the GPSAR Model

Parameter Estimate Std. Error p-value 95% LCL 95% UCL
β0 (Intercept) 0.01703 0.39475 0.9656 -0.75666 0.79072
β1(X1) -0.00145 0.00071 0.0422 * -0.00285 -0.00005
β2(X2) 0.00929 0.00454 0.0409 * 0.00038 0.01820
β3(X3) 0.00040 0.00035 0.2577 -0.00029 0.00109
β4(X4) 0.00159 0.00082 0.0531 . -0.00002 0.00320
β5(X5) -0.00257 0.00400 0.5213 -0.01041 0.00528
ρ (Spatial Lag) 0.45229 0.04206 10−16 *** 0.36985 0.53473
φ (Dispersion) 0.31225 0.03216 10−16 *** 0.24921 0.37529
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

The estimation results (Table 2) indicate that both structural parameters of the model (φ̂
and ρ̂) are highly significant (p < 0.001), which statistically confirms the validity of adopting the
GPSAR model structure for this dataset.

In addition to the structural parameters, the estimation results for the predictor parameters
βk were obtained. The final fitted model can be expressed as follows:

η̂i = 0.01703 − 0.00145X1i + 0.00929X2i + 0.00040X3i + 0.00159X4i − 0.00257X5i (19)

µ̂GP SAR
i = qi exp((I − 0.45229W )−1η̂i) (20)

where qi (the exposure variable) is the number of children under five and W is the spatial weight
matrix.

An in-depth analysis of the statistically significant predictor coefficients (using α = 0.05)
identified two key factors associated with the pneumonia case rate. Variable X1 (Percentage of
exclusive breastfeeding) demonstrated a significant protective effect (β̂1 = −0.00145, p=0.042).
The Rate Ratio (RR) is calculated as exp(−0.00145) ≈ 0.9985, implying that a one percentage
point increase in exclusive breastfeeding coverage is associated with a 0.15% decrease in the
pneumonia case rate, ceteris paribus. While Sutikno et al. (2025) [27] also identified exclu-
sive breastfeeding as a significant determinant using an MSAR model, their study reported a
counter-intuitive positive association. The GPSAR model employed in this study successfully
captures the theoretically expected protective effect (negative association), demonstrating the
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advantage of the Generalized Poisson structure in handling overdispersed count data. Despite this
difference in direction, both frameworks consistently highlight the critical role of breastfeeding
and immunization (X2) in the region. This finding is supported by its 95% CI for the RR
[exp(−0.00285), exp(−0.00005)], or [0.9972, 0.9999], which is entirely below 1.0.

Conversely, variable X2 (Percentage of complete basic immunization) was also found to be
significant (β̂2 = 0.00929, p=0.041), but with a positive association. This coefficient yields an RR
of exp(0.00929) ≈ 1.0093, indicating that each one percentage point increase in immunization
coverage is associated with a 0.93% increase in the pneumonia case rate. The 95% CI for the RR
[1.0004, 1.0184] confirms this finding, as the interval is entirely above 1.0. Furthermore, variable
X4 (Percentage of pregnant women attending prenatal classes) was found to be approaching
significance (p = 0.053). Its 95% CI of [-0.00002, 0.00320] demonstrates that the interval only
barely crosses zero, suggesting a potential positive association that warrants further investigation.

The dispersion parameter φ̂ was estimated to be 0.31225 (95% CI [0.24921, 0.37529]) with a
highly significant p-value (p < 10−16)). In the context of the Generalized Poisson model, this
positive and statistically significant φ̂ value provides quantitative evidence of the phenomenon
of overdispersion. This indicates that the variability in the number of Pneumonia cases across
regions substantially exceeds its mean value. This finding confirms that the use of a standard
Poisson model (which assumes variance equals the mean) would be inadequate, and the selection
of the Generalized Poisson model was appropriate for addressing this excess variability.

The spatial lag parameter ρ̂ was estimated to be 0.45229 (95% CI [0.36985, 0.53473]), and
was also highly significant (p < 10−16). This positive and exceptionally strong ρ value confirms
the existence of dominant positive spatial autocorrelation. In practical terms, this means that the
number of Pneumonia cases in one village/area is not independent, but is instead significantly
influenced by the number of cases in its neighboring villages/areas. There is a strong indication
of a clustering effect, whereby regions with high cases tend to be in proximity to other high-case
regions. This finding validates the use of the Spatial Autoregressive (SAR) component in the
model. Collectively, the significance of both structural parameters demonstrates that Pneumonia
cases in Tuban Regency exhibit characteristics of both overdispersion and spatial dependency,
thus making the use of the GPSAR model an appropriate choice.

3.3.3 Model Goodness of Fit and Validation

To evaluate the model’s performance, a comparison was made against the non-spatial GPR
model. This evaluation was based on both in-sample goodness-of-fit and, more importantly, on
out-of-sample predictive accuracy. A 10-fold Cross-Validation (CV) analysis was implemented to
provide a robust estimate of out-of-sample performance.

We compared both the in-sample goodness-of-fit (AIC, BIC) and the out-of-sample predictive
performance of the proposed GPSAR model against the non-spatial GPR model. The results,
presented in Table 3, show the performance metrics for both in-sample (trained on n = 328) and
out-of-sample (the average CV K = 10) evaluation.

Table 3: Model Goodness of Fit Comparison (In-Sample vs. Out-of-Sample)

In-Sample (n = 328) Out-of-Sample (K = 10 CV)
Model AIC BIC MSE RMSE MSE (CV) RMSE (CV)
GPR (Non-Spasial) 1312.67 1339.22 69.45 8.334 75.97 8.716
GPSAR (Spasial) 1301.09 1331.43 61.19 7.823 71.42 8.451

The results (Table 3) confirm the superiority of the spatial model across all metrics. In terms
of in-sample goodness-of-fit, the GPSAR model shows a substantially better fit, with lower AIC
(1301.09 vs. 1312.67) and BIC (1331.43 vs. 1339.22). This indicates that the inclusion of the

1227



GPSAR Modeling of Pneumonia in Tuban

spatial lag parameter (ρ) is highly justified, even after penalizing for the additional parameter
(k = 8 for GPSAR vs. k = 7 for GPR).

This finding is reinforced by the predictive accuracy metrics. The GPSAR model also
outperformed the non-spatial GPR model in predictive accuracy on unseen data (Out-of-Sample
CV-RMSE 8.451 vs. 8.716). This robustly supports our claim that incorporating the spatial lag
component provides a significant and necessary improvement for modeling pneumonia cases in
Tuban.

3.3.4 Diagnostic Checks and Sensitivity Analysis

As a final diagnostic check, a spatial autocorrelation test (Moran’s I) was performed on the
Pearson residuals of the fitted GPSAR model (from Table 2). The test result (Moran’s I =
0.214, p-value < 0.001) indicates that some significant spatial autocorrelation remains in the
residuals. This suggests that while the GPSAR model is a significant improvement over the GPR
model, the spatial dependency structure in the data may be more complex than captured by the
first-order SAR component. This is noted as a limitation and an avenue for future research.

Furthermore, to test the robustness of the model findings, a sensitivity analysis was conducted
on the spatial weights matrix W. The primary model (Table 2) was estimated using Queen
contiguity. This analysis re-estimated the full model using a Rook contiguity matrix. The results
were highly consistent: the Rook model produced similarly dominant structural parameters
(ρ̂ = 0.494; φ̂ = 0.352, both p < 0.001) and identical inferential conclusions (i.e., no β predictors
were significant at α = 0.05). This consistency demonstrates that the study’s main findings are
robust and not sensitive to the specific choice of contiguity definition.

4 Conclusion

This study developed and applied a Generalized Poisson Spatial Autoregressive (GPSAR) model
to analyze pneumonia cases in Tuban Regency, based on 328 village/urban village observations.
The analysis confirmed the statistical validity of the model, finding that both overdispersion
(φ̂ = 0.312) and spatial autocorrelation (ρ̂ = 0.453) are highly significant components of the data.

Furthermore, the GPSAR model proved to be superior in both model fit and predictive
accuracy compared to its non-spatial (GPR) counterpart. In terms of in-sample goodness-of-fit,
the GPSAR model yielded lower AIC (1301.09 vs. 1312.67) and BIC (1331.43 vs. 1339.22),
confirming its superiority even after penalizing for the additional spatial parameter. This finding
was reinforced by predictive accuracy metrics, where the model also showed a lower in-sample
RMSE (7.823 vs. 8.334) and, more importantly, a lower 10-fold cross-validation (Out-of-Sample
CV-RMSE: 8.451 vs. 8.716). Substantively, the GPSAR model identified two predictor variables
as statistically significant (α = 0.05): Percentage of exclusive breastfeeding (X1) as a protective
factor, and Percentage of complete basic immunization (X2) as a risk factor.

It is important to discuss the counter-intuitive finding regarding X2 (complete basic immu-
nization), which showed a positive association with pneumonia cases. This finding should not be
interpreted causally, i.e., that immunization causes pneumonia. A more plausible explanation is
the phenomenon of ecological fallacy or omitted variable bias, common in aggregate-level village
data. Villages/urban areas with a high percentage of immunization (X2) are likely those with
better and more active health infrastructure (such as Posyandu or Puskesmas). This better
infrastructure also leads to a more sensitive case detection and reporting system. Consequently,
X2 may be acting as a proxy for "health reporting quality," where areas with better reporting
statistically record a higher number of cases.

This research makes a methodological contribution by applying the GPSAR framework, whose
application in public health, to the researchers’ knowledge, is still developing. It also provides
strong policy implications by highlighting the dominant role of spatial clustering, suggesting that
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interventions should be targeted at regional hotspots, not just at individual villages.
Several limitations are acknowledged. First, the diagnostic Moran’s I test on the model

residuals (p < 0.001) indicated that significant spatial autocorrelation remains, suggesting that
future research could explore more complex spatial error structures. Second, the study is cross-
sectional, relying on data from a single year. Future work, as suggested in the original manuscript,
could explore spatio-temporal dynamics or point-process models to capture disease spread more
accurately.

Although this approach has provided an overview of the risk distribution in Tuban Regency,
future studies are recommended to use point-based data (geocoded home addresses). As demon-
strated in the COVID-19 analysis by Choiruddin et al. (2023) [31], the use of point data permits
analysis at a finer spatial resolution and avoids the assumption of homogeneous risk within a
single administrative area. Thus, modeling using point process methods can reveal dispersion
patterns and risk factors at a micro-scale with greater accuracy.

In addition to improvements in data resolution, the methodological development of this
cross-sectional and univariate GPSAR model is also wide open. First, the model can be extended
to the spatiotemporal domain to analyze the dynamics of disease spread from year to year. Rather
than merely applying traditional spatial panel data models to areal (aggregate) data, future
research could integrate the point process approach (previously suggested for geocoded data)
with deep learning methods. As demonstrated by Choiruddin et al. (2025) [32], the application
of probabilistic deep learning to spatio-temporal and highly multivariate Log-Gaussian Cox
Process models can offer a substantially more flexible framework. This approach can potentially
handle complex data patterns with greater computational efficiency compared to traditional
computational statistics methods. Furthermore, for a more holistic understanding, a multivariate
approach can be considered to model Pneumonia simultaneously with other relevant childhood
illnesses, such as Stunting or Diarrhea, in order to identify interrelated health determinants. For
a deeper causal understanding, this model can be integrated into a Spatial Structural Equation
Modeling (Spatial SEM) framework, which allows for the modeling of complex causal pathways
and latent variables.
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