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Abstract

Childhood stunting is a persistent health problem, with determining factors that often follow
complex and non-linear patterns. To capture these patterns more accurately, this study
developed a Bayesian bi-response regression model with a truncated spline approach to
analyze the non-linear effects of economic factors, dietary patterns, and the environment on
nutritional stunting and physical stunting. Sensitivity analysis was conducted to assess the
effect of variations in prior type and number of knots on model performance using Deviance
Information Criterion (DIC), Root Mean Square Error (RMSE), and prediction accuracy. The
results showed that the combination of Normal-Gamma informative prior was the most stable
and reliable, characterized by the lowest DIC and RMSE values, while the non-informative
Uniform prior caused serious model instability, especially when the number of knots increased.
The environmental variable (Y3) showed strong parameter unidentifiability, reflected in a very
wide credible interval, indicating the limitations of the truncated power basis in handling
certain data variations. Overall, these findings indicate that prior specification has a much
greater influence than the number of knots in determining model robustness, and emphasize
the importance of using informative priors and more stable spline bases in modeling the
non-linear determinants of stunting in children.
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1 Introduction

Childhood stunting remains a persistent global health issue, reflecting chronic nutritional depriva-
tion and environmental adversity during the critical growth period. Despite significant progress in
reducing malnutrition worldwide, approximately 149 million children under five remain stunted,
predominantly in low- and middle-income countries [1]. Stunting is multifactorial, influenced
by economic hardship, inadequate dietary intake, and poor environmental sanitation [2], [3].
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Understanding these complex interactions requires analytical methods capable of capturing
nonlinear and heterogeneous relationships.

Traditional parametric regression approaches often assume linear or low-order polynomial
relationships between predictors and outcomes, which may not reflect the complex dynamics
inherent in stunting data [4]. Consequently, nonparametric regression models, especially those
based on truncated splines, have gained traction because they can flexibly approximate unknown
functional forms without restrictive assumptions [5], [6]. The truncated spline method divides
the covariate domain into intervals defined by knots and fits piecewise polynomial functions,
allowing localized modeling of curvature and interactions [7].

Recent developments extend truncated spline regression into the Bayesian framework, which
allows parameter uncertainty to be fully characterized via posterior distributions and enables
the inclusion of prior knowledge about smoothness or model complexity [8], [9]. The Bayesian
nonparametric spline approach is particularly advantageous in health applications, where data
structures are complex and prior information, such as expected smoothness or variance, is
available from earlier studies [10]. However, one of the critical challenges in such modeling lies in
sensitivity to the choice of prior distributions and the number of knots used in the spline basis.

The choice of prior in Bayesian nonparametric regression, whether for spline coefficients,
variance components, or smoothing parameters, can substantially influence posterior inference,
especially when sample sizes are moderate or covariate distributions are irregular [11], [12]. Overly
informative priors may constrain the estimated regression function, while weakly informative or
improper priors may lead to overfitting or numerical instability [13]. Similarly, the number and
placement of knots directly affect model flexibility: too few knots may underfit, missing local
variations, whereas too many knots may overfit, increasing variance and computational cost [6].

In practice, these two elements, prior specification and knot configuration, are intertwined,
jointly determining model smoothness and inference robustness. Sensitivity analysis is therefore
essential to assess how alternative prior assumptions or knot selections influence posterior
estimates and predictive performance [14]. In this study, sensitivity is examined through a direct
model comparison framework using Deviance Information Criterion (DIC) and Root Mean Square
Error (RMSE), allowing the effects of different priors and knot counts to be evaluated without
relying on advanced sensitivity techniques. This approach provides a consistent and transparent
assessment of model stability across all prior—knot configurations.

However, existing studies have not examined how the stability of Bayesian truncated spline
models depends on prior specification and knot configuration. This gap is important because both
elements directly control the smoothness and flexibility of the estimated non-linear function. To
address this gap, this study provides the first systematic evaluation of prior-and—knot sensitivity
within a Bayesian truncated spline framework applied to stunting analysis.

In the context of global stunting analysis, where data often exhibit nonlinear and region-
specific relationships, the combination of Bayesian truncated spline regression and sensitivity
assessment provides a powerful modeling framework. It enables flexible estimation of nonlinear
effects of economic, dietary, and environmental factors on multiple stunting indicators (e.g.,
nutritional and physical stunting), while explicitly quantifying how results depend on prior and
model configuration choices. Such robust modeling can inform more reliable and context-sensitive
policy interventions aimed at achieving the Sustainable Development Goal (SDG) 2, which targets
the elimination of all forms of malnutrition by 2030.

Accordingly, this study aims to assess the sensitivity of Bayesian truncated spline regression
to variations in prior specification and knot configuration when modeling nutritional and physical
stunting. The analysis highlights which combinations produce stable estimates and which lead
to instability, thereby providing methodological guidance for future stunting research.
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2 Literature Review

This literature review is designed to provide a structured understanding of the key concepts
underlying this study. The discussion begins with an overview of stunting as a public health issue,
followed by a review of the socioeconomic, nutritional, and environmental factors that contribute
to the risk of stunting. Subsequent sections examine relevant methodological perspectives,
including nonlinear modeling approaches and the use of Bayesian frameworks. Together, these
sections form the conceptual and analytical foundation for the empirical investigation presented
in this study.

2.1 Stunting

Stunting is a condition in which children fail to attain expected growth because of prolonged
nutritional deficits, often exhibited as a height that falls below the —2 standard deviation threshold
for children of the same age. It affects both the nutritional status and physical development of
children. In terms of nutrition, chronic lack of essential nutrients, including proteins, vitamins,
and minerals, impairs the formation of body tissues and organ systems, limiting physical growth
and cognitive maturation. Malnourished children are also more vulnerable to infections due to
compromised immune defenses [15].

Physically, stunting is assessed using the height-for-age metric compared to standard growth
curves; children whose height is more than two standard deviations below the reference median
are classified as stunted. Continuous monitoring of children’s growth enables early detection
of growth faltering, allowing nutritional and environmental interventions to be implemented
promptly to mitigate long-term developmental damage [16].

This phenomenon arises from a combination of interrelated risk factors, including family
economic status, dietary patterns, environmental hygiene, and inadequate nutrient intake.
Household economic constraints restrict access to nutritious foods and essential health services,
limiting consumption options necessary for proper development. Dietary adequacy plays a crucial
role: a balanced diet inclusive of diverse food groups such as fruits, vegetables, proteins, and
micronutrient-rich items supports both physical growth and immune function in young children
[17]. Environmental conditions are also key: poor water quality, insufficient sanitation facilities,
and low hygiene practices increase the incidence of infections (e.g., diarrhea), which in turn
hinder nutrient absorption and impair growth [18].

2.2 Bayesian Nonparametric Regression

In Bayesian inference, all model parameters are treated as random variables characterized by
probability distributions rather than fixed quantities. Prior distributions represent initial beliefs
about the parameters before observing the data, while the likelihood function captures the
information provided by the observed data. By combining both components, the posterior
distribution provides an updated and comprehensive understanding of the parameters after data
observation [19], [20].

The response variable is assumed to follow a normal distribution conditional on the predictor
variables, regression coefficients, and variance, denoted as (Y|X, 3,02) ~ N(X3,0?). Based on
this assumption, the probability density and likelihood functions can be expressed as shown in
Equations (1) and (2). These functions describe how the data are generated according to the
model and provide the foundation for posterior estimation [21]. In Bayesian regression, variables
have distributions and probability density functions as in Equation (1).

1

1
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Based on the probability density function (1), the likelihood function can be defined as shown

in Equation (2).
exp [ — (Y; — XipB)?
202
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Y | X,8,0%) =
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Meanwhile, the posterior distribution can be expressed as shown in Equation (3).
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The posterior distribution, as formulated in Equation (3), is proportional to the product
of the likelihood and the priors of the parameters. This posterior serves as the basis for
Bayesian estimation and inference, enabling parameter estimation and uncertainty quantification
simultaneously. Building upon this foundation, the Bayesian nonparametric regression approach
introduces greater flexibility by modeling the regression function using spline-based or kernel-
based techniques. This allows the model to capture nonlinear and complex relationships between
variables without assuming a specific parametric form [22], [23].

Determination of the optimal knot point in spline regression can be done using the Generalized
Cross Validation (GCV) method, which selects the node point with the minimum GCV value to
produce the best model [24].In spline regression, GCV is often used to select the optimal number
of knots.

n~t E?:l[yi - f(xl)]Q (4)
[n~trace(] — A(K))]?
where I is the identity matrix and A = X (X7 X)71X7T.

GCV(K) =

2.3 Sensitivity Analysis

Sensitivity analysis is a rigorous evaluation procedure undertaken to assess how variation in
input parameters, model assumptions, or structure affects the resulting outputs. Through this
approach, researchers can identify which parameters or model components exert the greatest
influence on results, enabling focused attention on the critical aspects. Moreover, sensitivity
analysis plays a crucial role in testing model robustness, namely, how consistent results remain
when faced with uncertainties, specification errors, or unexpected changes. In this way, it helps
not only to understand internal model dynamics but also to increase confidence in conclusions
drawn from complex model-based decisions [25].

In the context of a Bayesian nonparametric bi-response regression using spline basis functions,
sensitivity analysis becomes especially important because the model has several properties that
can make its inference sensitive to assumptions and choices. First, Bayesian models heavily
depend on the choice of priors; altering the prior distributions can meaningfully change posterior
parameter estimates or predictions [19]. Second, nonparametric spline methods (for example,
B-splines, truncated splines, or other spline bases) are flexible in structure; the number of knots
(and their placement) can substantially influence the shape of the estimated functions. For
truncated splines, different counts of knots (e.g., K = 1,2,3) may lead to different amounts of
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local curvature or flexibility, affecting how well the model fits nonlinear patterns. In this study,
the configuration with three knots was selected based on the smallest GCV value, indicating the
optimal balance between model fit and complexity.

Truncated power splines were used in this study because of their simple form and ease
of interpretation. However, this approach is known to have the disadvantage of potential
multicollinearity between bases, especially when the number of knots increases [26]. Alternatives
such as B-splines and penalized splines offer better numerical stability, but are less transparent
in interpretation. Considering the research objective of explicitly evaluating the sensitivity of the
prior and knots, the truncated power spline is a suitable choice despite these limitations.

This study uses a truncated spline of order 1 because its functional form is more stable
for moderate sample sizes, easier to interpret, and less prone to overfitting than higher-order
spline bases [26]. After selecting the optimal knot configuration through GCV, the chosen knot
locations were held fized for all subsequent model fits; only the prior specification (Normal,
Uniform, Jeffreys, Gamma, etc.) was varied. This design isolates the effects of prior choice from
changes in knot placement and ensures a fair and consistent comparison across prior scenarios.

Therefore, the sensitivity analysis should consider:

1. Variations in prior specification: for regression coefficients, one might compare informa-
tive priors (normal distribution with a certain mean and precision) versus non-informative
(flat or wide uniform) priors. For residual variance or error variance, one may compare
informative priors (gamma for precision/inverse gamma for variance) versus non-informative
(Jeffreys prior). This yields multiple combinations (four combinations of prior choices for
regression coefficients and error variance).

2. Variations in knot counts: evaluate how changing the number of knots (e.g., K = 1,2, 3)
influences the estimated response functions. More knots allow more flexibility or local
wiggles; fewer knots enforce smoother, more global shapes.

To evaluate the sensitivity, one can compare model outputs (posterior estimates, predictive
curves) across these combinations. Performance complexity can be compared using model
comparison or fit metrics (Deviance Information Criterion, DIC), predictive error metrics (Root
Mean Squared Error, RMSE), and Prediction sensitivity (difference between expected posterior
mean and true value or reference). By doing so, the researcher can check if the conclusions remain
stable across prior and knot settings, demonstrating that inferences are not unduly dependent on
particular modeling choices.

From the literature, such approaches have been explored in the adaptive Bayesian non-
parametric regression context. For example, recent work proposes adaptive smoothing priors
that automatically adjust smoothness in response to curvature of the underlying function [27].
Moreover, fully Bayesian knotted spline methods (with priors on knot number and location, using
reversible-jump MCMC) have been advanced to infer the number and placements of knots, and
to penalize overcomplex models via priors on model complexity [28]. These approaches show that
prior choice on the knot number can impact resulting function estimates significantly; therefore,
embedding sensitivity checks is valuable for ensuring robust inference [27], [28].

In the Bayesian framework, several measures are commonly used to evaluate the goodness of
fit and predictive performance of a model. One widely used criterion is the Deviance Information
Criterion (DIC), which balances model fit and complexity. For a Bayesian bi-response regression
model, the deviance is defined based on the full parameter vector 6 = (31, 32, %), not only on /3.
Accordingly, the deviance is given by

D(0) = —2logp(Y | 0), (5)

where p(Y | 0) is the full likelihood of the bivariate normal model, which includes both regression
coefficients and the error covariance matrix .
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The DIC is then computed as -
DIC = D + pp, (6)

where D is the posterior mean deviance and pp is the effective number of parameters. These
terms are defined as

D = Eyy (D), ™
PD :D_D(é)a (8)

with @ denoting the posterior mean of the full parameter vector. This formulation ensures that
the DIC correctly accounts for all components of the bi-response model, including the regression
parameters and the error covariance structure. A smaller DIC value indicates a better trade-off
between model fit and parsimony [29].

In addition to DIC, the Root Mean Square Error (RMSE) is employed to assess the predictive
accuracy of the model. For a bivariate response regression, RMSE is formulated as in Equation (9).

1 n 2 A
RMSE = \l o SO (i — 9u)? (9)
n -
i=1[=1
Predictive sensitivity is used to evaluate the stability of model predictions under different
prior specifications. It measures how much the predicted values change when the prior is altered
from the reference (baseline) prior. A model is considered stable if changes in priors lead to only
small variations in predictions.

PS(s) = \l l zn: (?jl(s) . gl(ref)>2 (10)

=1

where gjgs) denotes the predicted value for the i-th observation under prior scenario s, gjgref)

denotes the predicted value under the reference prior, and n is the total number of observations. A
smaller value of PS(s) indicates higher predictive stability of the model under prior perturbations.

By comparing these metrics across different prior specifications and the number of knots,
researchers can determine which Bayesian model configuration yields the most stable and accurate
inference.

3 Research Methods

This section explains the methodological framework adopted in this study. It begins with a
description of the data sources and variable construction, followed by the stages of analysis
used to assess nonlinearity, estimate the Bayesian truncated spline model, and evaluate model
performance under different prior specifications and knot configurations. Together, these steps
form the systematic procedure used to address the research objectives.

3.1 Data Sources and Research Variables

This study utilizes primary data from a research grant project conducted by [30]. Data collection
took place in Sumberputih Village, Wajak District, Malang Regency, Indonesia, an area designated
as a priority location in the regional stunting prevention acceleration program. The village
was selected due to its classification as a high-risk area, making it relevant to national efforts
addressing stunting as a major public health concern.

A total of 100 respondents were surveyed, following the minimum sample size guidelines
proposed by [31] for models containing fewer than seven variables. This sample size is also
appropriate for the nonparametric Bayesian framework, as prior regularization supports stable
estimation even under moderate sample sizes [19]. The study involves five variables in total:
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three predictors Economic Level (X;), Children’s Diet (X3), and Environment (X3) and two
response variables, Nutritional Stunting (Y7) and Physical Stunting (Y2).

Both Y7 and Y5 are constructed as composite indices derived from several Likert-scale
questionnaire items. Each index represents an aggregated measure of nutritional and physical
stunting risk, respectively, obtained by averaging the corresponding item-level scores so that
higher values indicate greater risk. This mean-based construction results in approximately
continuous response scales, making the indices suitable for analysis using a Gaussian-based
Bayesian bi-response regression model.

Economy Level (X1)

Nutritional Stunting
(Y1)

Children’s Diet (X2)

Physical Stunting
(Y2)

Environmental (X3)

Figure 1: Research Model

3.2 Research Stages

The stages of research in this study are as follows:

e Conduct a linearity test using Ramsey’s RESET.

o Define the base model using truncated spline nonparametric regression of order 1 (linear)
with a maximum of 3 knots and a selected prior distribution.

e Vary the number of knots (1, 2, and 3) to observe the effect on model estimation and
goodness-of-fit.

o Test different types of prior distributions — informative (Normal and Gamma distributions)
and non-informative (Uniform and Jeffreys distributions) — to examine their influence on
parameter stability.

e Perform parameter estimation using MCMC with Gibbs Sampling, running 10000 iterations
for each model configuration.

o Evaluate changes in estimated coefficients, model fit statistics (DIC, RMSE, and predictive
sensitivity) for each scenario.

e Compare results across all configurations to assess the model’s robustness to variations in
the choice of priors and the number of knots.

e Identify the optimal combination of prior type and number of knots that produces the
most stable and accurate model performance.

4 Results

This section presents the research results in a structured manner to provide a comprehensive
understanding of the findings. The presentation begins with the validity and reliability results of
the questionnaire used, followed by the linearity test results as a preliminary step in assessing

Septi Nafisa Ulluya Zahra 1283



Sensitivity of Bayesian Truncated Spline Regression . ..

the relationship patterns between variables. Next, the results of the Bayesian truncated spline bi-
response model estimation, prior sensitivity analysis and knot configuration, as well as substantive
interpretations of non-linear patterns are explained step by step. This arrangement ensures
that readers can follow the flow of results and discussions sequentially before entering into more
detailed tables and analyses.

Table 1: Validity and Reliability of the Questionnaire

Research Variables Items Corrected Information Cronbach’s Information
Item Total Alpha
Economy Level (X7) X111 0.56 Valid 0.75 Reliable
X1.1,2 0.69 Valid
X1_2.1 0.44 Valid
X1_2_2 0.43 Valid
X1_2_3 0.53 Valid
Children’s Diet (X3) Xo11 0.45 Valid 0.78 Reliable
X2_1.2 0.52 Valid
X2_1_3 0.39 Valid
X2,2_1 0.70 Valid
X2'2.2 0.69 Valid
X2.2,3 0.62 Valid
X2_3.1 0.51 Valid
X2_3_2 0.42 Valid
X2,3_3 0.34 Valid
Environment (X3) X311 0.42 Valid 0.73 Reliable
X3.1.2 0.40 Valid
X3_1_3 0.40 Valid
X3,2_1 0.36 Valid
X3'2.2 0.40 Valid
X3.2.3 0.47 Valid
X33.1 0.40 Valid
X332 0.41 Valid
X3,3_3 0.43 Valid
Nutritional Stunting (Y7) Y711 0.41 Valid 0.73 Reliable
Y1.1_2 0.53 Valid
Y1,1_3 0.61 Valid
Y1.2'1 0.46 Valid
Y1‘2.2 0.35 Valid
Y1A2_3 0.48 Valid

Based on the analysis of Corrected Item Total Correlation and Cronbach’s Alpha, all variables
showed adequate reliability and validity. It is assessed through a Corrected Item Total Correlation
of more than 0.30 and Cronbach’s Alpha of more than 0.60. Therefore, the variables of Economic
Level, Children’s Diet, Environment, and Nutritional Stunting show that the variables are valid
and reliable.

Table 2: Linearity Test Results

No. Relationships Between Variables F Test p-value Result
Statistics
1 Economic Level (X;) — Nutritional Stunting (¥7) 27.151 <0.001  Not Linear
2 Children’s Diet (X3) — Nutritional Stunting (Y7) 14.910 <0.001  Not Linear
3 Environment (X3) — Nutritional Stunting (Y7) 3.333 <0.037  Not Linear
4 Economic Level (X;) — Physical Stunting (Y3) 23.687 <0.001 Not Linear
5 Children’s Diet (X3) — Physical Stunting (Y>2) 52.915 <0.001 Not Linear
6  Environment (X3) — Physical Stunting (Y3) 61.524 <0.001  Not Linear

Ramsey’s Regression Specification Error Test (RESET) was employed to assess the adequacy
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of linearity between each predictor and response variable prior to applying the spline-based model.
The test was conducted by estimating a simple baseline linear model for each predictor-response
relationship:

Yii = ap + BXji + ep,

where k € {1,2} corresponds to the two response variables (Y7 and Y2), and j € {1,2,3}
corresponds to the predictors X, Xo, and Xs.

For each baseline model, the RESET procedure augments the specification with powers of
the fitted values (e.g., V2, }73) and performs an F-test on their joint significance. The null
hypothesis tested is:

Hj : The linear model is correctly specified (no omitted non-linearity).

A small p-value indicates rejection of Hy, suggesting that the linear specification does not
adequately capture the relationship between the predictor and the response. As reported in
Table 2, all six relationships yielded statistically significant p-values, indicating non-linear patterns
in each predictor-response pair. These findings provide the empirical basis for adopting the
truncated spline approach in the subsequent Bayesian multivariate analysis.

4.1 MCMC Specification and Diagnostics

To ensure transparency and reproducibility, the full MCMC configuration used in estimating the
multivariate Bayesian truncated spline model is reported in Table 3. The model was fitted using
four parallel chains, each run for 10,000 iterations with a burn-in period of 2,000 iterations. No
thinning was applied, and a total of 32,000 posterior samples were retained for inference.

Table 3: MCMC Specification

Setting Value

Number of chains 4 parallel chains

Total iterations per chain 10,000 iterations

Burn-in length 2,000 iterations

Thinning None applied

Posterior samples retained 8,000 per chain (32,000 total)
Convergence diagnostics R < 1.01, ESS > 400 for all parameters
Additional checks Trace plots and autocorrelation plots inspected

All posterior summaries, hypothesis testing results, and DIC calculations in this manuscript
are based exclusively on post—burn-in samples that passed the convergence diagnostics. The
Gelman-Rubin statistic (f%) indicated excellent convergence across all parameters, while effective
sample size (ESS) values exceeded 400, confirming efficient mixing of the Markov chains. Trace
plots and autocorrelation functions further supported the stability of the posterior draws.

4.2 Bayesian Nonparametric Regression

A truncated spline nonparametric regression model on a linear order with three point knots for
three predictor variables and two response variables with Bayesian calculation are presented as
follows.

Fri = 1.278 X1; + 0.859 (X1; — 1.324)4 — 0.886 (X1; — 2.574) 4 + 0.063 (X1; — 2.887)
+0.962 Xo; + 1.375 (Xa; — 2.060), — 0.848 (Xz; — 3.407)5 — 0.862 (Xo; — 3.946),  (11)
3.255 X3; — 1.258 (X3; — 2.239) 4 + 2.111 (X3; — 2.538) — 1.546 (X3; — 2.836) ..
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foi = 0.911 X1; — 0.699 (X1; — 1.324)4 — 0.539 (X1; — 2.574) 4 + 0.364 (X1; — 2.887)
2.667 Xo; — 4.260 (Xo; — 2.060) . — 1.052 (Xo; — 3.407)4 + 0.865 (Xo; — 3.946),  (12)
+2.292 X3; + 3.100 (X3; — 2.239) 4 + 2.949 (X3; — 2.538) . — 6.901 (X3; — 2.836) ..

Table 4: Hypothesis Testing with Bayesian Approach
Credible Credible

Mean

Relation B, . Interval Interval Significance
Posterior (Lower)  (Upper)
X1 =" B1X1 1.278 -0.071 2.674 No
Xi oV Beo(Xi— Ku)s 0.859 0.138 1.581 Yes
X1 =" 63(X1 — K12)+ -0.886 -1.631 -0.161 Yes
X, -1 Ba(X1 — Kq3)+ 0.063 -0.731 0.838 No
Xo =Y B5 X2 0.962 -0.064 1.974 No
Xo— Y /BG(XQ — K21)+ 1.375 0.665 2.129 Yes
Xo— Y ﬁ’r(XQ — K22)+ -0.848 -1.608 -0.122 Yes
Xo— Y1 BS(XQ — K23)+ -0.862 -1.579 -0.140 Yes
X3 =Y ﬂng 3.255 -9.926 9.613 No
X3 — Yl ﬂlo(Xg — K31)+ -1.258 -2.173 -0.498 Yes
X3 — Yl 611(X3 — K32)+ 2.111 0.575 3.567 Yes
X3 =Y, 512(X3 — K33)+ -1.546 -2.952 0.001 No
X, =Y, B X, 0.911 0.102 1.702 Yes
X1 — YQ /BQ(Xl — K11)+ -0.699 -3.076 1.742 No
X1 — YQ BS(XI — K12)+ -0.539 -1.740 0.617 No
X1 — Y2 54(X1 — K13)+ 0.364 -0.825 1.639 No
Xo =Y, B5Xo 2.667 1.180 4.122 Yes
Xo = Y, BG(XQ — K21)+ -4.260 -6.159 -2.317 Yes
Xo =Y, ﬁ’y(Xg — K22)+ -1.052 -2.607 0.623 No
Xy =Y, Bs(Xo — Koa3) 4 0.865 -0.797 2.390 No
X3 - Y 69X3 2.292 0.890 3.673 Yes
X3 — Y2 510(X3 — K31)+ 3.100 -9.292 9.309 No
X3 > Y, Bu(Xg — K32)+ 2.949 1.322 4.609 Yes
X3 — Y2 Blg(Xg — K33)+ -6.901 -9.785 -3.892 Yes

Based on the Bayesian estimation results of the bi-response truncated spline model, several
coefficients were found to significantly influence nutritional stunting (Y7) and physical stunting
(Y2). For nutritional stunting, the significant parameters were 2 and (3 for the spline components
of X1, indicating that the economic level affects Y7 at specific knot locations rather than through
a simple linear trend. In addition, all spline components of children’s diet (X2)—namely g,
b7, and fg—were significant, showing strong nonlinear effects on nutritional stunting. The
environmental variable (X3) also exhibited significant nonlinear influences through 19 and 11,
while its linear component (g remained insignificant.

For physical stunting (Y2), the estimation results showed a significant effect from the linear
component of X (1), whereas its spline components (832, 3, f1) were not significant. The
dietary variable (X3) significantly affected Y2 through its linear term (5 and the first spline
component fg, while the remaining spline terms were not significant. Regarding environmental
conditions (X3), both the linear effect 89 and the third spline component (312 were significant.
Meanwhile, 819 was not significant, and 811 showed a strong positive effect.

These patterns confirm that the relationships between the predictors and both stunting
outcomes exhibit nonlinear behavior across specific knot points. Significant spline coefficients
indicate that the effect of each predictor changes depending on its value relative to the knot
locations, reflecting heterogeneous influences within different ranges of the data. Conversely,
insignificant coefficients imply that variations in certain predictor ranges do not exert substantial
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influence. Overall, the truncated spline approach within a Bayesian framework effectively captures
these localized nonlinearities in the predictor—response relationship.

4.3 Sensitivity Analysis

Sensitivity analysis on the choice of prior type and the number of knots has the potential to
influence Bayesian inference. The purpose of the sensitivity analysis is to examine how robust
the posterior results (posterior mean and credible interval) are to variations in prior selection
(informative vs. non-informative) and the number of knots in the truncated spline. In practice,
the sensitivity analysis will be conducted by specifying several systematic alternative scenarios: (i)
variation of priors for §; (Normal/Uniform), (ii) variation of priors for o7 or 7, (Gamma/Jeffreys),
and (iii) variation in the number of knots (1, 2, and 3). For each scenario, posterior samples will
be generated using Gibbs Sampling until sufficient burn-in is achieved, followed by comparing
the posterior summaries and model fit metrics. The results of the sensitivity analysis for the four
criteria are presented in Table 5.

Table 5: Sensitivity Analysis

Prior Distribution Prior Distribution Predictive
for Coefficient for Error Knot DIC  RMSE Sensitivity
Normal (Informative) Gamma (Informative) 1 357.8 0.621 0.0001
Normal (Informative) Gamma (Informative) 2 357.4 0.611 0.0005
Normal (Informative) Gamma (Informative) 3 356.9 0.595 0.0001
Normal (Informative) Jeffreys (Non-Informative) 1 357.8 0.621 0.0003
Normal (Informative) Jeffreys (Non-Informative) 2 357.7 0.611 0.0001
Normal (Informative) Jeffreys (Non-Informative) 3 361.8 0.596 0.0002
Uniform (Non-Informative) Gamma (Informative) 1 464.1 0.664 0.0002
Uniform (Non-Informative) Gamma (Informative) 2 367.0 0.611 0.0030
Uniform (Non-Informative) Gamma (Informative) 3 1593.0 3.011 0.0010
Uniform (Non-Informative) Jeffreys (Non-Informative) 1 369.0 0.625 0.0003
Uniform (Non-Informative) Jeffreys (Non-Informative) 2 368.0 0.611 0.0006
Uniform (Non-Informative) Jeffreys (Non-Informative) 3 13479.0 4.666 0.0009

Table 5 shows that the combination of an informative Normal prior for the spline coefficients
together with either an informative Gamma prior or the non-informative Jeffreys prior for the
error variance produces the most stable in-sample performance. This is reflected in the lowest
DIC values and consistently smaller RMSE across all knot configurations. Models with three
knots achieve the best in-sample fit, as indicated by reduced RMSE, although the DIC differences
among the 1, 2, and 3 knot specifications remain small when informative priors are used.

In contrast, models employing a non-informative Uniform prior display substantial deteriora-
tion in performance, especially as the number of knots increases. Under the Uniform—Gamma and
Uniform—Jeffreys combinations, both DIC and RMSE increase sharply at three knots, indicating
numerical instability and sensitivity to model complexity. This pattern demonstrates that the
model is considerably more sensitive to prior specification than to knot placement.

The predictive sensitivity measures reinforce this conclusion. Under the Normal-Gamma
and Normal-Jeffreys priors, predictive sensitivity remains near zero, which indicates that fitted
values are robust to small perturbations in the prior. Conversely, Uniform priors generate much
larger predictive sensitivity—particularly in the three-knot model—showing that small changes
in prior assumptions lead to substantial shifts in predictions. This confirms that moderately
informative priors are essential for maintaining robustness in the bi-response spline setting.

The superior performance of the Normal-Gamma prior arises because the informative Normal
prior provides regularization for the spline coefficients, preventing excessive fluctuation of the
truncated basis functions, while the Gamma, prior places controlled structure on the error variance.
These priors enhance posterior stability and reduce multicollinearity among spline terms, which
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is important in flexible models that include multiple knots. In contrast, the Uniform prior offers
no regularization, resulting in inflated posterior variance and a tendency to overfit random noise
rather than capturing the underlying nonlinear structure.

From a substantive perspective, these results underscore the importance of stable nonlinear
estimation in the analysis of nutritional and physical stunting. The Normal-Gamma prior
yields reliable nonlinear patterns—such as threshold effects in dietary indicators and diminishing
influence of economic conditions—ensuring that these effects reflect meaningful relationships
rather than artifacts of model instability. Conversely, the poor performance of the Uniform prior
demonstrates that insufficient regularization can lead to misleading conclusions, especially in
spline models with higher flexibility.

Overall, Table 5 confirms that prior specification plays a more critical role than the number of
knots. When informative priors are used, increasing the number of knots from one to three results
in only minor changes in DIC and RMSE and maintains low predictive sensitivity, indicating
stable model behavior. In contrast, non-informative Uniform priors become increasingly unstable
as knot complexity increases, highlighting the necessity of appropriate prior selection for robust
inference in the study of child stunting.

5 Discussion

The results of the Bayesian bi-response truncated spline regression reveal nuanced and distinctly
nonlinear influences of economic, dietary, and environmental factors on both nutritional stunting
(Y1) and physical stunting (Y2). The significance of specific spline components indicates that the
effects of predictors vary across the covariate range rather than remaining constant. For instance,
the effect of economic level becomes more pronounced only within certain spline segments, whereas
dietary quality exhibits a consistently strong association with nutritional stunting across all spline
components. These patterns support existing evidence that nonparametric spline approaches are
effective for capturing localized nonlinearities that linear models would overlook [32]. From a
substantive perspective, such nonlinear shapes align with well-established mechanisms in stunting
research, such as diminishing returns in economic improvements and threshold effects in dietary
adequacy.

The sensitivity analysis further highlights the critical role of prior specification in Bayesian
spline modeling. The combination of an informative Normal prior for regression coefficients and
a Gamma prior for error variance outperformed other configurations in terms of DIC, RMSE,
and predictive sensitivity, and maintained stable performance even as the number of knots
increased. This is consistent with recent literature showing that informative priors help regulate
coefficient magnitudes and stabilize posterior estimation in flexible Bayesian smoothing models
[24]. In contrast, the use of non-informative Uniform priors resulted in substantial performance
deterioration, particularly when three knots were included. The marked increase in DIC and
RMSE suggests that without sufficient regularization, the truncated spline basis becomes overly
flexible and susceptible to overfitting or numerical instability [28]. These findings reinforce the
idea that prior selection has a stronger influence on model robustness than knot configuration
alone.

Differences between the Gamma and Jeffreys priors for the error variance also illustrate how
hyperprior structure affects estimation. The Gamma prior imposed clearer constraints on the
variance component, improving convergence and reducing posterior uncertainty, whereas the
Jeffreys prior, being flat and fully data-driven, produced greater variability especially under
higher spline flexibility. This is aligned with recent Bayesian smoothing studies emphasizing
the importance of variance hyperpriors in managing model complexity [32]. Taken together,
the results indicate that while increasing spline complexity through additional knots can reduce
prediction error, the type of prior plays a more decisive role in ensuring estimation stability and
producing interpretable nonlinear effects.
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An important empirical finding is the instability of the environmental factor (X3), which
shows wide credible intervals and inconsistent significance across prior knot combinations. This
pattern likely reflects the inherently variable and long-term nature of environmental exposures,
which are difficult to capture precisely in a cross-sectional spline framework. The instability
also suggests potential parameter unidentifiability stemming from the truncated power basis,
particularly when combined with weak priors. Given this limitation, more numerically stable
spline bases such as B-splines or penalized splines may offer improved reliability for modeling
environmental determinants of stunting. Future research should also consider alternative model
specifications or longitudinal designs to better capture cumulative environmental effects.

Overall, these findings underscore that robust and interpretable estimation of nonlinear
relationships in stunting research depends critically on appropriate prior specification. The
Normal Gamma prior combination consistently delivers stable, accurate, and theoretically
plausible results, making it a suitable choice for applied analyses of nutritional and physical
stunting where predictor effects are expected to vary across the covariate space.

6 Conclusion

This study shows that the Bayesian bi-response truncated spline regression model is capable
of capturing non-linear relationship patterns between economic factors, dietary patterns, and
the environment on nutritional stunting and physical stunting. Sensitivity analysis confirms
that model performance is much more influenced by prior specifications than by the number
of knots used. Informative priors, particularly the Normal Gamma combination, consistently
produce more stable estimates, lower DIC and RMSE, and Predictive sensitivity, while Uniform
priors tend to cause estimation instability, especially when the number of knots increases. These
findings emphasize the importance of regularization through appropriate priors in Bayesian spline
modeling.

However, the results also reveal limitations in modeling environmental factors (X3), as
evidenced by very wide credible intervals and unstable inferences across various prior and knot
configurations. This indicates potential parameter unidentifiability associated with the use of
truncated spline bases, particularly in cross-sectional data designs. Thus, further research is
recommended to consider the use of more stable spline bases, such as B-splines or penalized
splines, or to apply alternative model structures to produce more reliable estimates.

From an application perspective, these results emphasize the importance of robust statistical
approaches in analyzing the determinants of stunting, given that the relationships between
variables are nonlinear and sensitive to model specifications. The use of appropriate informative
priors can help produce more accurate inferences and support the development of more targeted
interventions in efforts to reduce stunting. Further research could also be directed towards the
development of adaptive priors, hierarchical Bayesian frameworks, or the application of models
to spatial and longitudinal data to capture the more complex dynamics of stunting.
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