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Abstract

Tuberculosis—Diabetes Mellitus (TB-DM) coinfection increases morbidity, treatment failure,
and healthcare costs. This study analyzes TB-DM transmission dynamics and identifies
effective prevention strategies using a ten-compartment mathematical model that distinguishes
non-diabetic and diabetic populations, each classified into susceptible, latent, active, treatment,
and recovered classes. Numerical analysis verifies that the disease-free equilibrium is stable
when the basic reproduction number is less than one, whereas an endemic equilibrium
exists when it exceeds one. Using baseline parameter values, the reproduction number is
estimated as 3.592, indicating persistent TB-DM transmission. An optimal control framework
is formulated to evaluate two time-dependent interventions: reducing TB transmission
through case detection and contact tracing, and preventing diabetes onset in non-diabetic
individuals through metabolic monitoring. Numerical simulations demonstrate that the
combined implementation of both control strategies significantly reduces TB-DM incidence
while minimizing intervention costs. These findings support the importance of integrated,
time-varying TB-DM control programs for public health.
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1. Introduction

Tuberculosis (TB) remains a serious global health problem despite intensive prevention, detection,
and treatment efforts. The disease is caused by infection with the bacterium Mycobacterium
tuberculosis (Mtb), which spreads through the air [1]. TB infection consists of two stages: latent
TB and active TB. Individuals with latent TB do not show symptoms and do not transmit the
disease, while individuals with active TB show symptoms and have the potential to transmit
the disease. If latent TB is left untreated, there is a possibility that the infection will develop
into active TB. According to the WHO, five countries account for 56% of global TB cases: India
(26%), Indonesia (10%), China (6.8%), the Philippines (6.8%), and Pakistan (6.3%).

The treatment of Mtb infection typically lasts between four and nine months, depending
on the treatment regimen [2]. Standard therapy for drug-susceptible TB consists of isoniazid,
rifampicin, pyrazinamide, and ethambutol. Poor adherence to treatment increases the risk of
mortality, relapse, and the emergence of drug-resistant TB strains. These adverse outcomes
are more prevalent among individuals with compromised immune systems, particularly those
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with diabetes mellitus (DM). DM is a major comorbidity that increases susceptibility to TB
and worsens disease outcomes, with diabetic individuals facing a two- to threefold higher risk of
developing active TB compared with non-diabetic individuals [3].

Mathematical models play an important role in understanding the dynamics of infectious
disease spread, including TB-DM coinfection, through nonlinear differential equation systems.
Several previous studies have examined the relationship between TB and DM. [4] constructed
a TB-DM model considering immunization factors, while [5] discussed TB-DM modeling in
Indonesia. [6] assumed the possibility of natural healing for DM patients infected with active
TB. The transmission dynamic of TB among diabetic patients in India was described by
[7]. Furthermore, [8] conducted an optimal control analysis on a TB spread model with a
case study in the city of Surabaya. [9] employed Pontryagin’s Minimum Principle together
with the forward—backward sweep procedure to determine the optimal control solutions. In
addition, [10] incorporated six optimal controls in the TB-DM co-dynamics model: healthy
lifestyle (diabetes prevention), prevention of diabetes complications through regular check-ups
and personal hygiene, TB treatment for non-diabetic individuals, TB treatment for diabetic
individuals without complications, TB treatment for diabetic individuals with complications,
and prevention measures against activation of TB.

To better understand TB—DM coinfection dynamics and to identify effective control strategies,
this study extends the TB model proposed by [6]. The proposed model explicitly distinguishes
TB treatment compartments for non-diabetic and diabetic individuals, reflecting differences in
treatment response and clinical management between these groups [11]. The primary objective
of this study is not only to analyze the disease dynamics, but also to determine optimal control
strategies that reduce TB-DM transmission while accounting for implementation costs. Specifi-
cally, two control measures are considered: a TB transmission prevention control incorporating
case detection, isolation, contact tracing, behavioral education, and environmental protection
measures, and a DM prevention control for individuals at risk of or affected by TB focusing on
metabolic and lifestyle interventions. The study evaluates and compares single and combined
control strategies to identify the most cost-effective approach for reducing the burden of TB-DM
coinfection. Accordingly, this work develops a TB-DM coinfection model and assesses effective
optimal control strategies through mathematical analysis and numerical simulations.

2. Methods

The research method began with a literature study related to mathematical models of tuberculosis-
diabetes mellitus coinfection with optimal control. The research stages included: (1) constructing
a compartmental TB-DM coinfection model based on epidemiologically justified assumptions; (2)
determining the equilibrium points and deriving the basic reproduction number using the next-
generation matrix method; (3) analyzing the dynamic behavior of the model through linearization
and evaluation of the Jacobian matrix; (4) adding optimal control to the model; (5) formulating
and solving the optimal control problem using Pontryagin’s minimum principle; (6) performing
numerical simulations using the fourth-order Runge-Kutta method and the Forward-Backward
Sweep method; and (7) drawing conclusions based on the results of the analysis and simulations.

3. Results and Discussion

3.1. Tuberculosis-Diabetes Mellitus (TB-DM) Coinfection Model

This study modifies the TB model developed by [6] by adding treatment compartments for TB and
TB-DM coinfection. Hence, this study proposes a TB-DM model comprising 10 compartments,
namely the non-diabetic susceptible individual compartment Sp(t), the non-diabetic latent
individual compartment Ly (t), the non-diabetic active TB individual compartment [7(t), the
non-diabetic treated individual compartment Jp(t), the compartment of recovered from TB (non-
diabetic) Rr(t), the compartment of susceptible diabetic individuals Spr (), the compartment
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of latent diabetic individuals Lpp(t), the compartment of active diabetic TB individuals Ipp(t),
the compartment of treated diabetic individuals Jpr(t), and the compartment of recovered from
TB (but still diabetic) Rpr(t).

The treatment compartments Jr and Jpr represent non-diabetic and diabetic individuals
who are currently receiving anti-tuberculosis therapy. Incomplete and irregular TB treatment
can lead to relapse, causing patients to return to the latent infection stage. In contrast, the
recovered compartments Ry and Rpr represent individuals who have successfully completed the
treatment and are considered non-infectious.

There are several assumptions for constructing the TB-DM model in this study, including;:

1.

Due to the extremely low incidence of neonatal diabetes (approximately 1 in 90,000 births
[12]), the birth rate A is assumed to contribute only to St.

. All individuals experience natural mortality at rate u. Additionally, I face TB-induced

mortality dq, while Ipp face do, with do > d; reflecting more severe outcomes in TB-DM
patients [13]. Treated individuals also experience disease-related mortality: ds for Jp and
dy for Jpr, with dg > ds.

TB transmission occurs through effective contact with active cases. The force of infection
is \g = %, where € > 1 denotes the increased infectiousness of diabetic TB cases.
Susceptible individuals acquire infection at rates Ag (non-diabetic) and g (diabetic), with

6 > 1 capturing diabetes-related immune susceptibility [14].

Newly infected non-diabetic individuals enter Ly with probability ¢; and progress directly to
I with probability (1 — ¢1). Similarly, newly infected diabetics enter Lpp with probability
g2 and progress to Ipr with probability (1 — g2).

. Individuals in S, L7, J7, and R can develop diabetes and move to the corresponding

diabetic classes at rate «. This transition represents the onset of diabetes driven by
individual metabolic risk factors rather than infectious transmission. TB infection can
induce stress-related hyperglycemia, and for people with underlying vulnerabilities, such
as advanced age, obesity, family history of diabetes, high-sugar diet, or impaired glucose
regulation, this condition may contribute to the development of diabetes [15]. Active TB
individuals Iy can also develop diabetes at an elevated rate 7o (7 > 1), reflecting the
additional metabolic burden associated with active TB.

Diabetes is a chronic condition with no cure. While glycemic control is achievable, in-
dividuals do not return to a non-diabetic state. Therefore, transitions from diabetic to
non-diabetic compartments are excluded from the model. This biological irreversibility
justifies the distinct clinical pathways for TB—DM patients.

Latent individuals in compartment Ly progress to I7 at rate §; or are detected and start
treatment (move to Jr) at rate ;. Similarly, latent diabetic individuals in Lpp progress
to Ipr at rate 0o or are detected and start treatment at rate 1. Due to diabetes-related
immune impairment and delayed case detection, we assume 052 > 01 and 72 < 7.

Active TB individuals are detected and start treatment at rates v (I — Jr) and 7
(Ipr — Jpr). Although the standard treatment for drug-susceptible TB is identical for
both groups, the TB-DM guidelines report slower response and higher risk of complications
among diabetic patients [11]; thus the model assumes vo < 7.

Treated individuals may recover or relapse. Those in Jr complete treatment and move to
Ry at rate pyry, or experience treatment failure/relapse (returning to Ly) at rate (1 —pq)ry.
Similarly, Jpr individuals move to Rpr at rate parg or relapse to Lpr at rate (1 — pa)ra.
Clinical evidence suggests ps < p;.

Eq. (1) shows a compartment diagram that illustrates the dynamics of TB-DM coinfection.
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Figure 1: TB-DM Compartment Diagram

Based on the above assumptions, the transmission dynamics of TB-DM coinfection are
described by the following system of differential equations:

dsS

d_tT =A— XSt — (v + p)St,

dLr

= @ ST — (1 +m +p+ @)Ly + (1 = p1)rJr,

dIt

= (1 —q)AgSt + 01 Ly — (ta+ p + dy + 1) I,

dJ

d_l;T =y Ir+mLy—(r1+p+ds+a)Jr,

dR

d_tT =piriJr — (a + p)Rr,
s (1)

7 = OlST — QABSDT - MSDTa
dL

dfT =alr+ QQQABSDT — (002 +m2 + u)Lpr + (1 — p2)raJpr,
dl

dlZT = ralr + 0(1 — ¢2)A\gSpr + 062 Lpr — (2 + p + d2) DT,
dJ

d[t)T = aJr +v2Ipr +n2Lpr — (7‘2 +pu+ d4)JDTa
dR

dfT = aRy + par2Jpr — pRpr,

with
Ir+¢l

N

The initial conditions are Sp(0) > 0, Lp(0) > 0, Ip(0) > 0, Jr(0) > 0, Rp(0) >
0, Spr(0) >0, Lpr(0) >0, Ipr(0) >0, Jpr(0) >0, Rpr(0)> 0, and all param-
eters are assumed to be positive.

3.2. Dynamic Analysis
The equilibrium point of model Eq. (1) is a constant solution obtained when

dSp _dLy _dly _dJr _dRp _dSpr _dLpr _dIpr _dJpr _ dRpr _

dt  dt dt dt  dt dt dt dt dt dt 0-
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Table 1: Parameter Values

Parameter Meaning Value Units

A Natural birth rate %BQN individuals/year

B Transmission rate 0.7 1/year

€ Transmission adjustment factor or relative 1.1 -
transmission effectiveness of infectious individ-
uals with DM

! Rate of transition of individuals from non- 0.009 1/year
diabetic to diabetic status

T Risk factor for activation/transition of latent 1.01 -
TB to infectious TB in individuals with DM

1] Natural death rate 1/72.39 1/year

Q1,92 Proportion of individuals who enter the latent 0.9; 0.9 -
stage after exposure, with 0 < ¢1,q2 <1

P1, P2 Proportion of individuals who recover after 0.8; 0.7 -
treatment, with 0 < py,po <1

01, 0o Progression rate from latent TB to active TB  0.16; 0.1711 1/year

11, M2 Treatment initiation rates for latent TB indi- 0.01147; 0.00947 1/year
viduals (non-diabetic, diabetic)

Y1, 7Y2 Treatment rate of non-diabetic and diabetic 0.095; 0.075 1/year
individuals, respectively

dy,ds, Disease-induced mortality rates 0.083; 1.25 x 0.083; 1/year

ds,dy 0.05; 1.25 x 0.05

0 TB risk amplification factor 1.01 -

71,72 Recovery rate after treatment for non-diabetic  0.094; 0.08 1/year
and diabetic individuals, respectively

N Total Population 271686 individuals

so that it is obtained

with kil =

o+ i, k2
ks =ri+u+ds+a, ke=00a+n+u,

A~ AsSp — k1Sp =0
@ gST — koLt + k3Jr =0

(1 —=q1)A\gST +01Lp — kI =0

ylr +mLy — ksJr =0

piriJr — kiR =0

aSt — 0 gSpr — uSpr =0

alLt + 08¢ gSpr — ke Lpr + krJpr =0

Tadp +6(1 — QQ))\,BSDT + 06oLpr — ksIpr =0
aJr + velpr +mn2Lpr — koJpr =0

aRp + pereJpr — uRpr =0

=0 +m+p+a,

ks = (1 — p1)r1,
k7 = (1—p2)ra,

ks = yo+p+da,

3.2.1. Disease-Free Equilibrium Point and Basic Reproduction Number

ks = o + p + di + 71,

kg = ro+p+dy.

If Ag = 0 is substituted into system Eq. (2), then the disease-free equilibrium point is obtained

as:

XO = (S Ly 19, I R Sty L I T, Br) =

ki’

A A
7. anvovov °
kip

,0,0,0,0).

Let z € {Lp, Iy, Jp, Lpr, IpT, JpT} denote the infected compartments of system Eq. (1).
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dz
Hence, for each infected state variable z, the dynamics can be written as i F —V with

@St ] koL — k3Jr
(1—q1)ST ksl — 61 L1
pBUren) | 0|, | wlevkdowi
N 0q2Spr —aLr + keLpr — k7 Jpr
0(1 — g2)Spr —rady — 05, Lpr + kslpr
L 0 | | —aJr —v2Ipr + keJpr —m2Lpr |

The Jacobian matrices F' and V are obtained by computing the partial derivatives of the entries
of F and V with respect to Ly, Ir, Jr, Lpr, Ipr, Jpr at XY, namely:

0 Qi 00 QLEM 0
0 I-g)p 0 0 (Q-—q)ep O
A0 0 000 0 0
0y _
FXT) = Nkp |0 6pa 0 0 6gea 0] 09
0 61—g)a 0 0 6(1—gq)eax O
0 0 00 0 0
[ ko 0 —k3 0 0 T
01 ky 0 0 0
-m -7 ks 0 0
0
V(X )_ —Q 0 0 k‘ﬁ 0 —k‘?
—T 0 —952 kg 0
I 0 —a —m =72 k|

The next generation matrix is defined as G = F(X°) V~1(X?). Thus, the basic reproduction
number Ry is given by the spectral radius of the next generation matrix G.

Ap

Rop= "
0 ,uNk:1m1m4

(9a5m1m2 + pumsmy + pae(d20ms + Tm3m6))

with
my = d1ks(Ta + p+di) + (6171 + mka)(prr + o + p+ds) + kikaks
ma = (1 — q2)(par2 + p + da)nz + (1 — q2) v + 082) kg
m3 = d1q1ks + (1 — q1)(61 + p+ a)ks + (1 — q)m(pir1 + o + p + ds)
my = para(002y2 + m2ks) + 0dora (1t + d2) + pksre + keks(p + da)
ms = q1((0171 + Nika)kr 4 kakskg) + (1 — q1)v1(kokr 4 k3kg)
me = (062 + p)kg + n2(p2ra + p + dy)

Hence, the basic reproduction number R represents the expected number of secondary active
TB cases generated by a single infectious individual introduced into a fully susceptible population
consisting of both diabetic and non-diabetic individuals. The value of Rg reflects the combined
effects of TB transmission, increased infectiousness of TB—-DM cases, heightened susceptibility
among diabetic individuals, progression from latent to active TB, treatment initiation, recovery,
relapse, and disease-induced mortality, which together determine the overall transmission potential
of TB-DM coinfection.
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3.2.2. Endemic Equilibrium Point

Based on equations Eq. (2), the following equilibrium point is obtained. The endemic equilibrium
point is denoted by X* = (S}, L¥, I3, J5, Ry, SHrs Lyyr, Iy Jhr, Riyp), with

A

Sp=———,

T X+ ke
I AqiksAs + (1 —p)mri (A5 + k)17

T (A + k) (nuprry + ds + k) + (01 + k)ks)
Iz Amg)\E

T mi(\ + k)
g Lrm+ Iim

TE T

* plrlt];ﬂ
Ry = P11

T ot

al

SHhr = ,
PTG + k) (ON5 + 1)
NsAa
mama(ON; + ) (N5 + k1)

Lpr = (()\29 + ) (qu761(ds + k1)k7ya + T0171k7v2 + q16171 kRS

+ quikakrks + (1 — qu)v1kakrks + (1 — q1)(1 — p1)v1riksky + qikakskgkg

+ T(l — ql)((dg + kl)kQ + (771]?1 + kl)Tl)kTm) + 0mq (q2k8k9 + 72(1 — q2)k7)>,

aANG((ON + p) (Tmgme + 0dams) + 0ma (062kg + (1 — q2) (kg + (pare + 1+ da)n2)))

br = myma(ON5 + p) (N + k1) ’
o (@maAN; + ((61 + p+ a)ks + mi(ds + o+ p) +pirim) (A + k1)) (veL b + meLir)
pr (A + k) (m(pir + a+ p+ds) + (61 + p+ a)ks)ko
N (A5 + k1)ankoI7)
(X5 + k1) (m(prr + o+ p+ds) + (01 + p+ a)ks) kg
" OéR% +p2T2JBT
RDT = .

I

Theorem 3.1 (Existence and Uniqueness of the Endemic Equilibrium). The system Eq. (1)
has a unique endemic equilibrium point X* if Rg > 1. Moreover, no endemic equilibrium
exists when Rg < 1.

Proof. The endemic equilibrium X* exists if and only if Aj > 0, where Aj denotes the
positive root of the following quadratic equation:

H(N5) = w2(Np)? + wiXj + wo, (3)
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with
woy = Nkl,um%m4(1 - Ro),

9 <A592a5m2
w) = mj T

Wy = NHm%m4.

+ m4N(M + 9k1(1 = RO))) )

Accordingly, ws is always positive, w; can be positive or negative, and wg is negative when
Ro > 1. Based on Eq. (3), the condition for the existence of X* is as follows:

i. There exists one endemic equilibrium when Ry > 1,
ii. There is no endemic equilibrium when Ry < 1 and w; > 0.

Therefore, system Eq. (1) has a unique endemic equilibrium point when Ry > 1. O

3.2.8. Local Stability of the Equilibrium Point

Since system Eq. (1) is autonomous and nonlinear, the local stability of its equilibrium points
is investigated through linearization. The Jacobian matrix of system Eq. (1) evaluated at an
arbitrary equilibrium point is given by

_ S S -
P _B5r 0 0 0 0 _BeSr 0 0
&y 5%
(1 —q1)BST (1 —q1)BeSt
1—g)ds & LD IPRT g 0 0 0 0 L dorEeT 0
I—aq)rg & N 4 N
0 un 7 —ks 0 0 0
J = 0 0 0 pir1  —ki 0
= 08S 0BeS
a 0 —% 0 0 —Og—pu O —% 0 0
0 0
0 a Lfv b 0o 0 0g2)s  —ks 7’12’3; b kr 0
0(1 = ¢2)BS 0(1 — s
ra+ 2= 9)B5pr q;)ﬁ DT 0 0(1—q)rs 05, U a2)beSpr qj\)fﬂg DT ks 0 0
0 a 0 0 72 2 —ko
L 0 0 0 0 « 0 0 0 par2 —p |

The eigenvalues of J(X") and J(X*) are obtained by solving the corresponding characteristic
equations, which are of high degree and difficult to solve analytically. Therefore, numerical
analysis of eigenvalues is necessary to assess stability.

Theorem 3.2 (Local Stability of the Disease-Free Equilibrium). The disease-free equilibrium
X0 of system Eq. (1) is locally asymptotically stable if Ro < 1 and unstable if Rg > 1. [16]

The stability of the endemic equilibrium X* when Ry > 1 is examined numerically in the
following subsection using parameter values from Eq. (1).

3.2.4. Numerical Analysis of the Equilibrium Points

To complement the analytical results and examine the stability of the endemic equilibrium,
numerical computations are performed using the parameter values listed in Eq. (1). Two cases
are considered: Rg < 1 to verify Eq. (3.2), and R > 1 to investigate the existence and stability
of the endemic equilibrium.

Case 1: Numerical verification for Ry < 1. To verify Theorem 1 (stability of the DFE when
Ro < 1), we set 8 = 0.1, which gives Rg = 0.513. The corresponding disease-free equilibrium is

X° = (164507.63,0,0,0,0,107178.37, 0,0, 0, 0).

The eigenvalues of the Jacobian matrix evaluated at X° are:
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A= —0.023 +8.88 x 10784, Ay = —0.226 + 0.0567, A3 = —0.014, ;= —0.014, X5 = —0.049,
Ao = —0.023 — 8.88 x 10783, Ay = —0.226 — 0.056i Ag = —0.120, Mg = —0.174, Ao = —0.302.

All eigenvalues have negative real parts, confirming numerically that the disease-free equilibrium
is locally asymptotically stable when Ry < 1.

Case 2: For Ry > 1. Using the full set of baseline parameters from Table 1 (with g = 0.7),
we obtain Rg = 3.592 > 1. The endemic equilibrium is computed as

X* = (65558.4, 11079.2, 9947.1, 6426.6, 21183.6, 12142.3, 2694.4, 3106.8, 2023.9, 22005.9).

The eigenvalues of the Jacobian matrix evaluated at X* are:

A1 = —0.022 + 0.0534,, Ao = —0.229 + 0.0564, A3 = —0.143 +0.025, M\; = —0.014, A5 = —0.023,
Ao = —0.022 — 0.0537, A7 = —0.229 — 0.056i Ag = —0.143 — 0.02/, Mg = —0.049, A19 = —0.356.

All eigenvalues again have negative real parts. Hence, for this representative parameter set
yielding Ry > 1, the numerical computation indicates that the endemic equilibrium is locally
asymptotically stable.

The numerical results corroborate the theoretical threshold behavior: when Ry < 1 the
disease-free equilibrium is stable and the disease dies out, while for Ry > 1 a unique endemic
equilibrium exists and is numerically stable for the considered parameter values. This persistent
endemic state under baseline parameters motivates the design of control strategies analyzed in
the subsequent section.

3.3. Optimal Control Characterization

The optimal control strategy aims to reduce the number of individuals infected with tuberculosis
and TB-DM coinfection while minimizing the associated implementation costs. The objective
functional is defined as

ty B B
J(u1,u2) = /0 (AIIT + AoIpr + AzJr + AsJpr + %u% + 22u§> dt (4)

with nonnegative initial conditions. Ay, As, A3, and A4 are positive weight constants associated
with the infected compartments I, Ipr, Jr, and Jpr, respectively. By and By are positive
weight constants associated with the control measures u; (TB transmission reduction) and ug
(diabetes prevention), respectively. The optimal control problem is to find admissible control
functions (uj,u3) that minimize

T, u3) = mingJ (wn, u2) .

with U = {(ul,uz) ‘ 0<uy; <1, te [O,tf], 1= 1,2}.
To characterize an optimal solution, we begin by defining the Hamilton function as follows:

B B
H = Ayt + AsIpr + AsJr + AaJpr + %u% + gug

+ A (A= (1 —u)AgSr — (1 —u2)a+ p)Sr),

+ X2 (g1 (1 —u)AgS — (61 +m +p+ (1 —ug)a)Ly + (1 — p1)riJr),
+A3((1—q1)(I —u)AgSr+ 61 Ly — (7(1 —w2)ae+ p+ di +m1)Ir),

+ X (It +mLr — (r1+ p+ds + (1 —u2)a)Jr),

+ A5 (prr1dr — (1 — uz)a+ p)Rr)

+ X6 (1 —u2)aSt — 0(1 — u1)\gSpr — uSpr) ,

+ A7 (1 —w2)aLy + 0g2(1 — u1)A\gSpr — (862 + 2 + ) Lpr + (1 — p2)radpr) ,
+ A8 (7(1 —u2)odr + 6(1 — q2)(1 — w1)A\gSpr + 002 Lpr — (v2 + p+ do2)Ipr) |

—~
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+ X (1 —w2)adr +vy2Ilpr + m2Lpr — (ro + p+ da)JJpr) ,
+ Mo (1 — wg)aRy + poreJpr — pRpT) -

where \;(t), i =1,...,10 are the costate variables associated with the state variables Sp, Ly,
Ir, Jp, Ry, Spr, Lpr, IpT, JpT, RpT, respectively.

Using the conditions from Pontryagin’s minimum principle [9], we obtain the state system,
the costate system, and optimal control solution. The state system is derived by taking the
partial derivatives of the Hamiltonian H with respect to each costate variable, as follows

dSr
dt
dLr
dt
dly
dt
dJr
dt
dR
7: = p1T1JT — ((1 — ’U,Q)Oé + M)RT,
(5)

=A—(1- ul))\ﬁST — (1 —ug)ae + p)Sr,
=q(1 —u)AgSr — (61 + m + p+ (1 —uz)a) Ly + (1 — p1)r1J7,
= (1 — ql)(l — ul)/\gST + 61 L1 — (7‘(1 — ’U,Q)Oé + u+ di + ’yl)IT,

= vy +mLr — (1 + p+ds+ (1 —ug)a)Jr,

dfl?T = (1 —ug)aSt — 0(1 = w1)AgSpr — pSpr,

dI:ZItDT = (1 —u2)alr + 0g2(1 — u1)A\gSpr — (002 +n2 + ) Lpr + (1 — p2)r2Jpr,
diz? =7(1 —uz)alr +0(1 — ¢2)(1 — u1)AsSpr + 002 Lpr — (32 + 1+ d2) I pr,
d{ll;T = (1 —w)adr +v2lpr +meLpr — (r2 + p+da) Jpr,

The costate system is derived by taking the partial derivatives of the Hamiltonian H with respect
to each state variable, yielding the following expressions:

d\ oOH
G = oy, =M (= u)As+ (- w)at ) = hogr (1 - w)Ag
— )\3(1 — ql)(l — ul)/\g — )\6(1 — UQ)Oé

d\ oOH
2 = A2(01 + 11+ p+ (1 —ug)a) — A3d1 — Aamn — Ar(1 — ug)ax

dt 0Lt

d\s _ 0H _ n MB(A—u)Sr AeqiB(l —ui)Sr  A3(l—q1)B(1 —u1)Sr
dt ol ! N N N

)\696(1 — ul)SDT

+)\3((1—u2)7'a+u+d1+’)’1)_)\4’)/1+ N

_ MIgB(1 —w)Spr | (9(1 — q2)B(1 —u1)Spr
N ® N

+(1— UQ)TOé)

d\ OH
— = = Ay = a1 —pu)r1 + Ma(r1 + e+ ds + (1 —up)a) — Asprry — Ao(1 — up)a
dt oJr
dXs oOH
E = —@ = )\5((1 — Uz)a + ,LL) - )\10(1 - ’LLQ)O(
d\ oH
- = X6 (0(1 — u1) Az + ) — ArBga(1 — ur)Ag — AB(1 — g2) (1 — ur) g
dt OSpr
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dM7 OH
& = BLon A7(002 + p+ m2) — Agbda — Mg
dAs _ OH A MBe(l —w)Sr  AoqufBe(l —ui)St A3(1 —q1)Be(l —w)Sr
dt dlpr 2 N N N
n Xe0pe(1 —u1)Spr n A0qaBe(l —u1)Spr  As(1 — g2)Be(1 — w1)Spr
N N N
+ As(72 + o+ d2) — Aoye
dA OH
ar _ = —Ay — (1 —p2)ra + Ag(r2 + o+ dy) — Aiopara
dt o0Jpr
dho _ OH
dt  ORpr 1ol

with transversality condition A;(ty) =0, i=1,2,3...10.

OH
The optimal controls u; and us are characterized by the stationary conditions — = 0 and

6u1
a—H = 0, yielding
Ouo
ut Ag(20Spr (A7 — Ag) + 0SpT(As — A6) + q1.ST(A2 — A3) + S7(A3 — A1)
f =
By
ot = a(TIT(Ag — A3) + Jr(Xg — Ag) + Lr(A7 — X2) + Rr(Ag — As) + S7(Xe — A1)
§ =
By

Hence, the optimal controls u;, ¢ = 1,2, subject to the bounds 0 < w; < 1, are characterized by

u] = min {max {O,ui} ) 1}

uy = min {max {O,UE} ) 1}

3.4. Numerical Simulation of the Optimal Control Strategies

To evaluate the effectiveness of the proposed optimal control strategies, system Eq. (5) was

numerically solved using a combination of the fourth-order Runge-Kutta method and the Forward-
Backward Sweep algorithm. The time variable is measured in years because tuberculosis and
TB-DM coinfection are chronic diseases with slow progression and long treatment durations. Ad-
ditionally, all model parameters are defined on an annual basis, ensuring dimensional consistency
and alignment with epidemiological data.

The simulations were carried out using the initial conditions S7(0) = 190250, Lp(0) =
16500, Ip(0) = 10576, Jp(0) = 3500, Rp(0) = 810, Spr(0) = 44870, Lpr(0) =
4000, Ipr(0) = 1000, Jpr(0) = 100, Rpr(0) = 80, together with the parameter val-
ues listed in Eq. (1). The weight constants in the objective functional were chosen as
Ay =10, Ay =20, A3 =1, Ay = 1, By = 40000, Bs = 200. Simulation results of sys-
tem Eq. (5) under different control strategies, namely no control, u; only, us only, and combined
controls (u1,us), are presented in Eq. (2) and Eq. (3).

Under the ui-only strategy, which reduces the effective contact rate 3, a substantial
reduction is observed in TB-only compartments. Eq. (2)(b)-(e) show that Ly, I, Jr, and Ry
decrease significantly compared to the no-control scenario. A reduction is also observed in the
TB-DM compartments ( Eq. (2)(g)—(j)); however, the magnitude of reduction is smaller than
that achieved under the combined control strategy. Meanwhile, Eq. (2)(a) and Eq. (2)(f) show
a marked increase in the susceptible compartments St and Spr, reflecting reduced new TB
infections due to transmission control.
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Figure 2: Simulation result of the model Eq. (5) under different strategies: no control, u; control only,
ug control only, and combined controls (u1,us)

In contrast, the us-only strategy targets the reduction of the diabetes onset rate @ among
TB-infected individuals. Eq. (2)(a)—(e) indicate only minor changes in St, Lz, Ir, Jr, Rr
compartments, suggesting that uo alone is not effective in suppressing TB transmission. However,
Eq. (2)(f)=(j) show a marked reduction in Spr, Lpr, Ipr, Jpr, Rpr compartments, confirming
that the us-only strategy primarily mitigates TB-DM progression rather than TB itself.

Under the combined control strategy (ui,uz), the largest reduction is observed in all infection-
related compartments. As shown in Eq. (2)(b)—(e) and Eq. (2)(g)—(j), the compartments
of Ly, Ip,Jr, Ry and their TB-DM counterparts Lpr, Ipr, Jpr, RpT decrease significantly.
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Conversely, Eq. (2)(a) and Eq. (2)(f) show increased levels of Sy and Spr, indicating effective
suppression of new infections and disease progression.
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Figure 3: Simulation result of the corresponding optimal control profiles

The corresponding optimal control profiles are illustrated in Eq. (3). Eq. (3)(a) represents
the uj-only strategy, where ug(t) = 0 for all ¢. The control u(¢) is applied at its maximum level
during the early intervention period and gradually decreases as time approaches t = 28.4 years.
In Eq. (3)(b), the control u;(t) does not appear because it is identically zero over the entire time
interval, corresponding to the ug-only strategy. The profile ug(t) = 1 for t € [0,39.7] indicates
that maintaining the maximum level of diabetes prevention is optimal throughout most of the
intervention period, reflecting the high susceptibility of TB-infected individuals to diabetes and
the relatively lower cost associated with us. Eq. (3)(c) depicts the combined control strategy,
in which both w;(t) and us(t) are applied simultaneously at their maximum levels during the
early phase. The control u;(t) begins to decline at approximately ¢ = 27.6 years, while wua(t)
remains maximal for a longer duration and starts to decrease at approximately ¢t = 37.9 years.
This behavior indicates that TB transmission control can be gradually relaxed once the infection
burden is reduced, whereas diabetes prevention among TB-infected individuals requires sustained
intervention.

Table 2: Objective function values under different control strategies

uy only ug only combined controls (uy,us)
2.771 x 108 | 1.766 x 107 2.656 x 106

Furthermore, Eq. (2) presents the objective function values obtained under different control
strategies. Since the aim of this study is to minimize the objective function given in Eq. (4),
the combined control strategy (uj,us) yields the smallest objective function value among all
considered strategies.

Overall, the combined control strategy (ui,u2) is the most effective among all considered
scenarios, as it simultaneously minimizes TB and TB-DM infections while optimizing the total
intervention cost. These results are in concordance with established public health evidence,
which underscores that case detection, isolation, contact tracing, behavioral education, and
environmental protective interventions constitute core components of effective TB prevention [17].
Moreover, the findings are supported by [18] who demonstrated that lifestyle modifications among
individuals with DM, such as increased physical activity, smoking cessation, and reduced alcohol
consumption, can lower the risk of TB among individuals with diabetes mellitus. Consequently,
the integration of these control measures can be regarded as a highly effective and evidence,
based approach for mitigating TB-DM transmission and enhancing the efficiency of disease
control programs.

4. Conclusion

This study developed a ten-compartment mathematical model to analyze the transmission
dynamics of TB-DM coinfection. The analytical results show that the disease persists when
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Ro > 1, which is consistent with the numerical estimate Rg = 3.592, confirming the potential for
endemic persistence. Optimal control analysis incorporating two interventions, TB transmission
reduction (u;) and diabetes prevention among non-diabetic individuals (uz2), demonstrated
that the combined strategy yields the most effective outcome. Numerical simulations showed
that simultaneous implementation of both controls achieves the lowest objective function value
(2.656 x 10°), significantly reduces infected populations, and maintains higher susceptible levels
compared to single-control approaches. These findings highlight the importance of integrated
TB and DM prevention strategies to support more effective public health policies.
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