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Abstract

Tuberculosis–Diabetes Mellitus (TB–DM) coinfection increases morbidity, treatment failure,
and healthcare costs. This study analyzes TB–DM transmission dynamics and identifies
effective prevention strategies using a ten-compartment mathematical model that distinguishes
non-diabetic and diabetic populations, each classified into susceptible, latent, active, treatment,
and recovered classes. Numerical analysis verifies that the disease-free equilibrium is stable
when the basic reproduction number is less than one, whereas an endemic equilibrium
exists when it exceeds one. Using baseline parameter values, the reproduction number is
estimated as 3.592, indicating persistent TB–DM transmission. An optimal control framework
is formulated to evaluate two time-dependent interventions: reducing TB transmission
through case detection and contact tracing, and preventing diabetes onset in non-diabetic
individuals through metabolic monitoring. Numerical simulations demonstrate that the
combined implementation of both control strategies significantly reduces TB–DM incidence
while minimizing intervention costs. These findings support the importance of integrated,
time-varying TB–DM control programs for public health.
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1. Introduction
Tuberculosis (TB) remains a serious global health problem despite intensive prevention, detection,
and treatment efforts. The disease is caused by infection with the bacterium Mycobacterium
tuberculosis (Mtb), which spreads through the air [1]. TB infection consists of two stages: latent
TB and active TB. Individuals with latent TB do not show symptoms and do not transmit the
disease, while individuals with active TB show symptoms and have the potential to transmit
the disease. If latent TB is left untreated, there is a possibility that the infection will develop
into active TB. According to the WHO, five countries account for 56% of global TB cases: India
(26%), Indonesia (10%), China (6.8%), the Philippines (6.8%), and Pakistan (6.3%).

The treatment of Mtb infection typically lasts between four and nine months, depending
on the treatment regimen [2]. Standard therapy for drug-susceptible TB consists of isoniazid,
rifampicin, pyrazinamide, and ethambutol. Poor adherence to treatment increases the risk of
mortality, relapse, and the emergence of drug-resistant TB strains. These adverse outcomes
are more prevalent among individuals with compromised immune systems, particularly those
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with diabetes mellitus (DM). DM is a major comorbidity that increases susceptibility to TB
and worsens disease outcomes, with diabetic individuals facing a two- to threefold higher risk of
developing active TB compared with non-diabetic individuals [3].

Mathematical models play an important role in understanding the dynamics of infectious
disease spread, including TB-DM coinfection, through nonlinear differential equation systems.
Several previous studies have examined the relationship between TB and DM. [4] constructed
a TB-DM model considering immunization factors, while [5] discussed TB-DM modeling in
Indonesia. [6] assumed the possibility of natural healing for DM patients infected with active
TB. The transmission dynamic of TB among diabetic patients in India was described by
[7]. Furthermore, [8] conducted an optimal control analysis on a TB spread model with a
case study in the city of Surabaya. [9] employed Pontryagin’s Minimum Principle together
with the forward–backward sweep procedure to determine the optimal control solutions. In
addition, [10] incorporated six optimal controls in the TB–DM co-dynamics model: healthy
lifestyle (diabetes prevention), prevention of diabetes complications through regular check-ups
and personal hygiene, TB treatment for non-diabetic individuals, TB treatment for diabetic
individuals without complications, TB treatment for diabetic individuals with complications,
and prevention measures against activation of TB.

To better understand TB–DM coinfection dynamics and to identify effective control strategies,
this study extends the TB model proposed by [6]. The proposed model explicitly distinguishes
TB treatment compartments for non-diabetic and diabetic individuals, reflecting differences in
treatment response and clinical management between these groups [11]. The primary objective
of this study is not only to analyze the disease dynamics, but also to determine optimal control
strategies that reduce TB–DM transmission while accounting for implementation costs. Specifi-
cally, two control measures are considered: a TB transmission prevention control incorporating
case detection, isolation, contact tracing, behavioral education, and environmental protection
measures, and a DM prevention control for individuals at risk of or affected by TB focusing on
metabolic and lifestyle interventions. The study evaluates and compares single and combined
control strategies to identify the most cost-effective approach for reducing the burden of TB–DM
coinfection. Accordingly, this work develops a TB–DM coinfection model and assesses effective
optimal control strategies through mathematical analysis and numerical simulations.

2. Methods
The research method began with a literature study related to mathematical models of tuberculosis-
diabetes mellitus coinfection with optimal control. The research stages included: (1) constructing
a compartmental TB–DM coinfection model based on epidemiologically justified assumptions; (2)
determining the equilibrium points and deriving the basic reproduction number using the next-
generation matrix method; (3) analyzing the dynamic behavior of the model through linearization
and evaluation of the Jacobian matrix; (4) adding optimal control to the model; (5) formulating
and solving the optimal control problem using Pontryagin’s minimum principle; (6) performing
numerical simulations using the fourth-order Runge-Kutta method and the Forward–Backward
Sweep method; and (7) drawing conclusions based on the results of the analysis and simulations.

3. Results and Discussion
3.1. Tuberculosis-Diabetes Mellitus (TB-DM) Coinfection Model
This study modifies the TB model developed by [6] by adding treatment compartments for TB and
TB–DM coinfection. Hence, this study proposes a TB-DM model comprising 10 compartments,
namely the non-diabetic susceptible individual compartment ST (t), the non-diabetic latent
individual compartment LT (t), the non-diabetic active TB individual compartment IT (t), the
non-diabetic treated individual compartment JT (t), the compartment of recovered from TB (non-
diabetic) RT (t), the compartment of susceptible diabetic individuals SDT (t), the compartment
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of latent diabetic individuals LDT (t), the compartment of active diabetic TB individuals IDT (t),
the compartment of treated diabetic individuals JDT (t), and the compartment of recovered from
TB (but still diabetic) RDT (t).

The treatment compartments JT and JDT represent non-diabetic and diabetic individuals
who are currently receiving anti-tuberculosis therapy. Incomplete and irregular TB treatment
can lead to relapse, causing patients to return to the latent infection stage. In contrast, the
recovered compartments RT and RDT represent individuals who have successfully completed the
treatment and are considered non-infectious.

There are several assumptions for constructing the TB–DM model in this study, including:
1. Due to the extremely low incidence of neonatal diabetes (approximately 1 in 90,000 births

[12]), the birth rate Λ is assumed to contribute only to ST .
2. All individuals experience natural mortality at rate µ. Additionally, IT face TB-induced

mortality d1, while IDT face d2, with d2 ≥ d1 reflecting more severe outcomes in TB-DM
patients [13]. Treated individuals also experience disease-related mortality: d3 for JT and
d4 for JDT , with d4 ≥ d3.

3. TB transmission occurs through effective contact with active cases. The force of infection
is λβ = β(IT +εIDT )

N , where ε > 1 denotes the increased infectiousness of diabetic TB cases.
Susceptible individuals acquire infection at rates λβ (non-diabetic) and θλβ (diabetic), with
θ > 1 capturing diabetes-related immune susceptibility [14].

4. Newly infected non-diabetic individuals enter LT with probability q1 and progress directly to
IT with probability (1 − q1). Similarly, newly infected diabetics enter LDT with probability
q2 and progress to IDT with probability (1 − q2).

5. Individuals in ST , LT , JT , and RT can develop diabetes and move to the corresponding
diabetic classes at rate α. This transition represents the onset of diabetes driven by
individual metabolic risk factors rather than infectious transmission. TB infection can
induce stress-related hyperglycemia, and for people with underlying vulnerabilities, such
as advanced age, obesity, family history of diabetes, high-sugar diet, or impaired glucose
regulation, this condition may contribute to the development of diabetes [15]. Active TB
individuals IT can also develop diabetes at an elevated rate τα (τ > 1), reflecting the
additional metabolic burden associated with active TB.

6. Diabetes is a chronic condition with no cure. While glycemic control is achievable, in-
dividuals do not return to a non-diabetic state. Therefore, transitions from diabetic to
non-diabetic compartments are excluded from the model. This biological irreversibility
justifies the distinct clinical pathways for TB–DM patients.

7. Latent individuals in compartment LT progress to IT at rate δ1 or are detected and start
treatment (move to JT ) at rate η1. Similarly, latent diabetic individuals in LDT progress
to IDT at rate θδ2 or are detected and start treatment at rate η2. Due to diabetes-related
immune impairment and delayed case detection, we assume θδ2 ≥ δ1 and η2 ≤ η1.

8. Active TB individuals are detected and start treatment at rates γ1 (IT → JT ) and γ2
(IDT → JDT ). Although the standard treatment for drug-susceptible TB is identical for
both groups, the TB–DM guidelines report slower response and higher risk of complications
among diabetic patients [11]; thus the model assumes γ2 < γ1.

9. Treated individuals may recover or relapse. Those in JT complete treatment and move to
RT at rate p1r1, or experience treatment failure/relapse (returning to LT ) at rate (1−p1)r1.
Similarly, JDT individuals move to RDT at rate p2r2 or relapse to LDT at rate (1 − p2)r2.
Clinical evidence suggests p2 ≤ p1.

Eq. (1) shows a compartment diagram that illustrates the dynamics of TB-DM coinfection.
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Figure 1: TB-DM Compartment Diagram

Based on the above assumptions, the transmission dynamics of TB–DM coinfection are
described by the following system of differential equations:

dST

dt
= Λ − λβST − (α + µ)ST ,

dLT

dt
= q1λβST − (δ1 + η1 + µ + α)LT + (1 − p1)r1JT ,

dIT

dt
= (1 − q1)λβST + δ1LT − (τα + µ + d1 + γ1)IT ,

dJT

dt
= γ1IT + η1LT − (r1 + µ + d3 + α)JT ,

dRT

dt
= p1r1JT − (α + µ)RT ,

dSDT

dt
= αST − θλβSDT − µSDT ,

dLDT

dt
= αLT + θq2λβSDT − (θδ2 + η2 + µ)LDT + (1 − p2)r2JDT ,

dIDT

dt
= ταIT + θ(1 − q2)λβSDT + θδ2LDT − (γ2 + µ + d2)IDT ,

dJDT

dt
= αJT + γ2IDT + η2LDT − (r2 + µ + d4)JDT ,

dRDT

dt
= αRT + p2r2JDT − µRDT ,

(1)

with

λβ = β(IT + εIDT )
N

and N = ST + LT + IT + JT + RT + SDT + LDT + IDT + JDT + RDT .

The initial conditions are ST (0) ≥ 0, LT (0) ≥ 0, IT (0) ≥ 0, JT (0) ≥ 0, RT (0) ≥
0, SDT (0) ≥ 0, LDT (0) ≥ 0, IDT (0) ≥ 0, JDT (0) ≥ 0, RDT (0) ≥ 0, and all param-
eters are assumed to be positive.

3.2. Dynamic Analysis
The equilibrium point of model Eq. (1) is a constant solution obtained when

dST

dt
= dLT

dt
= dIT

dt
= dJT

dt
= dRT

dt
= dSDT

dt
= dLDT

dt
= dIDT

dt
= dJDT

dt
= dRDT

dt
= 0.
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Table 1: Parameter Values
Parameter Meaning Value Units
Λ Natural birth rate 1

72.39 N individuals/year
β Transmission rate 0.7 1/year
ε Transmission adjustment factor or relative

transmission effectiveness of infectious individ-
uals with DM

1.1 -

α Rate of transition of individuals from non-
diabetic to diabetic status

0.009 1/year

τ Risk factor for activation/transition of latent
TB to infectious TB in individuals with DM

1.01 -

µ Natural death rate 1/72.39 1/year
q1, q2 Proportion of individuals who enter the latent

stage after exposure, with 0 ≤ q1, q2 ≤ 1
0.9; 0.9 -

p1, p2 Proportion of individuals who recover after
treatment, with 0 ≤ p1, p2 ≤ 1

0.8; 0.7 -

δ1, δ2 Progression rate from latent TB to active TB 0.16; 0.1711 1/year
η1, η2 Treatment initiation rates for latent TB indi-

viduals (non-diabetic, diabetic)
0.01147; 0.00947 1/year

γ1, γ2 Treatment rate of non-diabetic and diabetic
individuals, respectively

0.095; 0.075 1/year

d1, d2,
d3, d4

Disease-induced mortality rates 0.083; 1.25 × 0.083;
0.05; 1.25 × 0.05

1/year

θ TB risk amplification factor 1.01 -
r1, r2 Recovery rate after treatment for non-diabetic

and diabetic individuals, respectively
0.094; 0.08 1/year

N Total Population 271686 individuals

so that it is obtained

Λ − λβST − k1ST = 0
q1λβST − k2LT + k3JT = 0

(1 − q1)λβST + δ1LT − k4IT = 0
γ1IT + η1LT − k5JT = 0

p1r1JT − k1RT = 0
αST − θλβSDT − µSDT = 0

αLT + θq2λβSDT − k6LDT + k7JDT = 0
ταIT + θ(1 − q2)λβSDT + θδ2LDT − k8IDT = 0

αJT + γ2IDT + η2LDT − k9JDT = 0
αRT + p2r2JDT − µRDT = 0

(2)

with k1 = α + µ, k2 = δ1 + η1 + µ + α, k3 = (1 − p1)r1, k4 = τα + µ + d1 + γ1,
k5 = r1 +µ+d3 +α, k6 = θδ2 +η2 +µ, k7 = (1−p2)r2, k8 = γ2 +µ+d2, k9 = r2 +µ+d4.

3.2.1. Disease-Free Equilibrium Point and Basic Reproduction Number
If λβ = 0 is substituted into system Eq. (2), then the disease-free equilibrium point is obtained
as:

X0 = (S0
T , L0

T , I0
T , J0

T , R0
T , S0

DT , L0
DT , I0

DT , J0
DT , R0

DT ) =
( Λ

k1
, 0, 0, 0, 0,

αΛ
k1µ

, 0, 0, 0, 0
)

.

Let z ∈ {LT , IT , JT , LDT , IDT , JDT } denote the infected compartments of system Eq. (1).
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Hence, for each infected state variable z, the dynamics can be written as dz

dt
= F − V with

F = β(IT + εIDT )
N



q1ST

(1 − q1)ST

0
θq2SDT

θ(1 − q2)SDT

0


and V =



k2LT − k3JT

k4IT − δ1LT

−γ1IT + k5JT − η1LT

−αLT + k6LDT − k7JDT

−ταIT − θδ2LDT + k8IDT

−αJT − γ2IDT + k9JDT − η2LDT


.

The Jacobian matrices F and V are obtained by computing the partial derivatives of the entries
of F and V with respect to LT , IT , JT , LDT , IDT , JDT at X0, namely:

F (X0) = Λβ

Nk1µ



0 q1µ 0 0 q1εµ 0
0 (1 − q1)µ 0 0 (1 − q1)εµ 0
0 0 0 0 0 0
0 θq2α 0 0 θq2εα 0
0 θ(1 − q2)α 0 0 θ(1 − q2)εα 0
0 0 0 0 0 0


and

V (X0) =



k2 0 −k3 0 0 0
−δ1 k4 0 0 0 0
−η1 −γ1 k5 0 0 0
−α 0 0 k6 0 −k7

0 −τα 0 −θδ2 k8 0
0 0 −α −η2 −γ2 k9


.

The next generation matrix is defined as G = F (X0) V −1(X0). Thus, the basic reproduction
number R0 is given by the spectral radius of the next generation matrix G.

R0 = Λβ

µNk1m1m4

(
θαεm1m2 + µm3m4 + µαε(δ2θm5 + τm3m6)

)
with

m1 = δ1k5(τα + µ + d1) + (δ1γ1 + η1k4)(p1r1 + α + µ + d3) + k1k4k5

m2 = (1 − q2)(p2r2 + µ + d4)η2 + ((1 − q2)µ + θδ2)k9

m3 = δ1q1k5 + (1 − q1)(δ1 + µ + α)k5 + (1 − q1)η1(p1r1 + α + µ + d3)
m4 = p2r2(θδ2γ2 + η2k8) + θδ2r2(µ + d2) + µk8r2 + k6k8(µ + d4)
m5 = q1((δ1γ1 + η1k4)k7 + k4k5k9) + (1 − q1)γ1(k2k7 + k3k9)
m6 = (θδ2 + µ)k9 + η2(p2r2 + µ + d4)

Hence, the basic reproduction number R0 represents the expected number of secondary active
TB cases generated by a single infectious individual introduced into a fully susceptible population
consisting of both diabetic and non-diabetic individuals. The value of R0 reflects the combined
effects of TB transmission, increased infectiousness of TB–DM cases, heightened susceptibility
among diabetic individuals, progression from latent to active TB, treatment initiation, recovery,
relapse, and disease-induced mortality, which together determine the overall transmission potential
of TB–DM coinfection.
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3.2.2. Endemic Equilibrium Point
Based on equations Eq. (2), the following equilibrium point is obtained. The endemic equilibrium
point is denoted by X∗ = (S∗

T , L∗
T , I∗

T , J∗
T , R∗

T , S∗
DT , L∗

DT , I∗
DT , J∗

DT , R∗
DT ), with

S∗
T = Λ

λ∗
β + k1

,

L∗
T =

Λq1k5λ∗
β + (1 − p1)γ1r1(λ∗

β + k1)I∗
T

(λ∗
β + k1)(η1(p1r1 + d3 + k1) + (δ1 + k1)k5) ,

I∗
T =

Λm3λ∗
β

m1(λ∗
β + k1) ,

J∗
T = L∗

T η1 + I∗
T γ1

k5
,

R∗
T = p1r1J∗

T

k1
,

S∗
DT = αΛ

(λ∗
β + k1)(θλ∗

β + µ) ,

L∗
DT =

λ∗
βΛα

m1m4(θλ∗
β + µ)(λ∗

β + k1)
(
(λ∗

βθ + µ)(q1τδ1(d3 + k1)k7γ2 + τδ1r1k7γ2 + q1δ1γ1k7k8

+ q1η1k4k7k8 + (1 − q1)γ1k2k7k8 + (1 − q1)(1 − p1)γ1r1k8k9 + q1k4k5k8k9

+ τ(1 − q1)((d3 + k1)k2 + (η1p1 + k1)r1)k7γ2) + θm1(q2k8k9 + γ2(1 − q2)k7)
)
,

I∗
DT =

αΛλ∗
β((θλ∗

β + µ)(τm3m6 + θδ2m5) + θm1(θδ2k9 + (1 − q2)(µk9 + (p2r2 + µ + d4)η2)))
m1m4(θλ∗

β + µ)(λ∗
β + k1) ,

J∗
DT =

(q1η1αΛλ∗
β + ((δ1 + µ + α)k5 + η1(d3 + α + µ) + p1r1η1)((λ∗

β + k1))(γ2I∗
DT + η2L∗

DT )
(λ∗

β + k1)(η1(p1r1 + α + µ + d3) + (δ1 + µ + α)k5)k9

+
(λ∗

β + k1)αγ1k2I∗
T )

(λ∗
β + k1)(η1(p1r1 + α + µ + d3) + (δ1 + µ + α)k5)k9

,

R∗
DT = αR∗

T + p2r2J∗
DT

µ
.

Theorem 3.1 (Existence and Uniqueness of the Endemic Equilibrium). The system Eq. (1)
has a unique endemic equilibrium point X∗ if R0 > 1. Moreover, no endemic equilibrium
exists when R0 < 1.

Proof. The endemic equilibrium X∗ exists if and only if λ∗
β > 0, where λ∗

β denotes the
positive root of the following quadratic equation:

H(λ∗
β) = w2(λ∗

β)2 + w1λ∗
β + w0, (3)
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with
w0 = Nk1µm2

1m4(1 − R0),

w1 = m2
1

(
Λβθ2αεm2

µ
+ m4N(µ + θk1(1 − R0))

)
,

w2 = Nθm2
1m4.

Accordingly, w2 is always positive, w1 can be positive or negative, and w0 is negative when
R0 > 1. Based on Eq. (3), the condition for the existence of X∗ is as follows:

i. There exists one endemic equilibrium when R0 > 1,

ii. There is no endemic equilibrium when R0 < 1 and w1 > 0.

Therefore, system Eq. (1) has a unique endemic equilibrium point when R0 > 1. □

3.2.3. Local Stability of the Equilibrium Point
Since system Eq. (1) is autonomous and nonlinear, the local stability of its equilibrium points
is investigated through linearization. The Jacobian matrix of system Eq. (1) evaluated at an
arbitrary equilibrium point is given by

J =



−λβ − k1 0 −
βST

N
0 0 0 0 −

βεST

N
0 0

q1λβ −k2
q1βST

N
k3 0 0 0

q1βεST

N
0 0

(1 − q1)λβ δ1
(1 − q1)βST

N
− k4 0 0 0 0

(1 − q1)βεST

N
0 0

0 η1 γ1 −k5 0 0 0 0 0 0
0 0 0 p1r1 −k1 0 0 0 0 0

α 0 −
θβSDT

N
0 0 −θλβ − µ 0 −

θβεSDT

N
0 0

0 α
θq2βSDT

N
0 0 θq2λβ −k6

θq2βεSDT

N
k7 0

0 0 τα +
θ(1 − q2)βSDT

N
0 0 θ(1 − q2)λβ θδ2

θ(1 − q2)βεSDT

N
− k8 0 0

0 0 0 α 0 0 η2 γ2 −k9 0
0 0 0 0 α 0 0 0 p2r2 −µ



.

The eigenvalues of J(X0) and J(X∗) are obtained by solving the corresponding characteristic
equations, which are of high degree and difficult to solve analytically. Therefore, numerical
analysis of eigenvalues is necessary to assess stability.

Theorem 3.2 (Local Stability of the Disease-Free Equilibrium). The disease-free equilibrium
X0 of system Eq. (1) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. [16]

The stability of the endemic equilibrium X∗ when R0 > 1 is examined numerically in the
following subsection using parameter values from Eq. (1).

3.2.4. Numerical Analysis of the Equilibrium Points
To complement the analytical results and examine the stability of the endemic equilibrium,
numerical computations are performed using the parameter values listed in Eq. (1). Two cases
are considered: R0 < 1 to verify Eq. (3.2), and R0 > 1 to investigate the existence and stability
of the endemic equilibrium.

Case 1: Numerical verification for R0 < 1. To verify Theorem 1 (stability of the DFE when
R0 < 1), we set β = 0.1, which gives R0 = 0.513. The corresponding disease-free equilibrium is

X0 = (164507.63, 0, 0, 0, 0, 107178.37, 0, 0, 0, 0).

The eigenvalues of the Jacobian matrix evaluated at X0 are:
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λ1 = −0.023 + 8.88 × 10−8i, λ2 = −0.226 + 0.056i, λ3 = −0.014, λ4 = −0.014, λ5 = −0.049,
λ6 = −0.023 − 8.88 × 10−8i, λ7 = −0.226 − 0.056i λ8 = −0.120, λ9 = −0.174, λ10 = −0.302.

All eigenvalues have negative real parts, confirming numerically that the disease-free equilibrium
is locally asymptotically stable when R0 < 1.

Case 2: For R0 > 1. Using the full set of baseline parameters from Table 1 (with β = 0.7),
we obtain R0 = 3.592 > 1. The endemic equilibrium is computed as

X∗ =
(
65558.4, 11079.2, 9947.1, 6426.6, 21183.6, 12142.3, 2694.4, 3106.8, 2023.9, 22005.9

)
.

The eigenvalues of the Jacobian matrix evaluated at X∗ are:

λ1 = −0.022 + 0.053i,, λ2 = −0.229 + 0.056i, λ3 = −0.143 + 0.02i, λ4 = −0.014, λ5 = −0.023,
λ6 = −0.022 − 0.053i, λ7 = −0.229 − 0.056i λ8 = −0.143 − 0.02i, λ9 = −0.049, λ10 = −0.356.

All eigenvalues again have negative real parts. Hence, for this representative parameter set
yielding R0 > 1, the numerical computation indicates that the endemic equilibrium is locally
asymptotically stable.

The numerical results corroborate the theoretical threshold behavior: when R0 < 1 the
disease-free equilibrium is stable and the disease dies out, while for R0 > 1 a unique endemic
equilibrium exists and is numerically stable for the considered parameter values. This persistent
endemic state under baseline parameters motivates the design of control strategies analyzed in
the subsequent section.

3.3. Optimal Control Characterization
The optimal control strategy aims to reduce the number of individuals infected with tuberculosis
and TB–DM coinfection while minimizing the associated implementation costs. The objective
functional is defined as

J(u1, u2) =
∫ tf

0

(
A1IT + A2IDT + A3JT + A4JDT + B1

2 u2
1 + B2

2 u2
2

)
dt (4)

with nonnegative initial conditions. A1, A2, A3, and A4 are positive weight constants associated
with the infected compartments IT , IDT , JT , and JDT , respectively. B1 and B2 are positive
weight constants associated with the control measures u1 (TB transmission reduction) and u2
(diabetes prevention), respectively. The optimal control problem is to find admissible control
functions (u∗

1, u∗
2) that minimize

J(u∗
1, u∗

2) = min
U

{J(u1, u2)},

with U = {(u1, u2) | 0 ≤ ui ≤ 1, t ∈ [0, tf ], i = 1, 2}.
To characterize an optimal solution, we begin by defining the Hamilton function as follows:

H = A1IT + A2IDT + A3JT + A4JDT + B1
2 u2

1 + B2
2 u2

2

+ λ1 (Λ − (1 − u1)λβST − ((1 − u2)α + µ)ST ) ,

+ λ2 (q1(1 − u1)λβST − (δ1 + η1 + µ + (1 − u2)α)LT + (1 − p1)r1JT ) ,

+ λ3 ((1 − q1)(1 − u1)λβST + δ1LT − (τ(1 − u2)α + µ + d1 + γ1)IT ) ,

+ λ4 (γ1IT + η1LT − (r1 + µ + d3 + (1 − u2)α)JT ) ,

+ λ5 (p1r1JT − ((1 − u2)α + µ)RT ) ,

+ λ6 ((1 − u2)αST − θ(1 − u1)λβSDT − µSDT ) ,

+ λ7 ((1 − u2)αLT + θq2(1 − u1)λβSDT − (θδ2 + η2 + µ)LDT + (1 − p2)r2JDT ) ,

+ λ8 (τ(1 − u2)αIT + θ(1 − q2)(1 − u1)λβSDT + θδ2LDT − (γ2 + µ + d2)IDT ) ,
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+ λ9 ((1 − u2)αJT + γ2IDT + η2LDT − (r2 + µ + d4)JDT ) ,

+ λ10 ((1 − u2)αRT + p2r2JDT − µRDT ) .

where λi(t), i = 1, . . . , 10 are the costate variables associated with the state variables ST , LT ,
IT , JT , RT , SDT , LDT , IDT , JDT , RDT , respectively.

Using the conditions from Pontryagin’s minimum principle [9], we obtain the state system,
the costate system, and optimal control solution. The state system is derived by taking the
partial derivatives of the Hamiltonian H with respect to each costate variable, as follows

dST

dt
= Λ − (1 − u1)λβST − ((1 − u2)α + µ)ST ,

dLT

dt
= q1(1 − u1)λβST − (δ1 + η1 + µ + (1 − u2)α)LT + (1 − p1)r1JT ,

dIT

dt
= (1 − q1)(1 − u1)λβST + δ1LT − (τ(1 − u2)α + µ + d1 + γ1)IT ,

dJT

dt
= γ1IT + η1LT − (r1 + µ + d3 + (1 − u2)α)JT ,

dRT

dt
= p1r1JT − ((1 − u2)α + µ)RT ,

dSDT

dt
= (1 − u2)αST − θ(1 − u1)λβSDT − µSDT ,

dLDT

dt
= (1 − u2)αLT + θq2(1 − u1)λβSDT − (θδ2 + η2 + µ)LDT + (1 − p2)r2JDT ,

dIDT

dt
= τ(1 − u2)αIT + θ(1 − q2)(1 − u1)λβSDT + θδ2LDT − (γ2 + µ + d2)IDT ,

dJDT

dt
= (1 − u2)αJT + γ2IDT + η2LDT − (r2 + µ + d4)JDT ,

dRDT

dt
= (1 − u2)αRT + p2r2JDT − µRDT ,

(5)

The costate system is derived by taking the partial derivatives of the Hamiltonian H with respect
to each state variable, yielding the following expressions:

dλ1
dt

= − ∂H

∂ST
= λ1 ((1 − u1)λβ + (1 − u2)α + µ) − λ2q1(1 − u1)λβ

− λ3(1 − q1)(1 − u1)λβ − λ6(1 − u2)α

dλ2
dt

= − ∂H

∂LT
= λ2

(
δ1 + η1 + µ + (1 − u2)α

)
− λ3δ1 − λ4η1 − λ7(1 − u2)α

dλ3
dt

= − ∂H

∂IT
= −A1 + λ1β(1 − u1)ST

N
− λ2q1β(1 − u1)ST

N
− λ3(1 − q1)β(1 − u1)ST

N

+ λ3((1 − u2)τα + µ + d1 + γ1) − λ4γ1 + λ6θβ(1 − u1)SDT

N

− λ7θq2β(1 − u1)SDT

N
− λ8

(
θ(1 − q2)β(1 − u1)SDT

N
+ (1 − u2)τα

)
dλ4
dt

= − ∂H

∂JT
= −A3 − λ2(1 − p1)r1 + λ4(r1 + µ + d3 + (1 − u2)α) − λ5p1r1 − λ9(1 − u2)α

dλ5
dt

= − ∂H

∂RT
= λ5((1 − u2)α + µ) − λ10(1 − u2)α

dλ6
dt

= − ∂H

∂SDT
= λ6 (θ(1 − u1)λβ + µ) − λ7θq2(1 − u1)λβ − λ8θ(1 − q2)(1 − u1)λβ
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dλ7
dt

= − ∂H

∂LDT
= λ7(θδ2 + µ + η2) − λ8θδ2 − λ9η2

dλ8
dt

= − ∂H

∂IDT
= −A2 + λ1βε(1 − u1)ST

N
− λ2q1βε(1 − u1)ST

N
− λ3(1 − q1)βε(1 − u1)ST

N

+ λ6θβε(1 − u1)SDT

N
+ λ7θq2βε(1 − u1)SDT

N
− λ8θ(1 − q2)βε(1 − u1)SDT

N
+ λ8(γ2 + µ + d2) − λ9γ2

dλ9
dt

= − ∂H

∂JDT
= −A4 − λ7(1 − p2)r2 + λ9(r2 + µ + d4) − λ10p2r2

dλ10
dt

= − ∂H

∂RDT
= λ10µ

with transversality condition λi(tf ) = 0, i = 1, 2, 3 . . . 10.

The optimal controls u1 and u2 are characterized by the stationary conditions ∂H

∂u1
= 0 and

∂H

∂u2
= 0, yielding

u†
1 = λβ(q2θSDT (λ7 − λ8) + θSDT (λ8 − λ6) + q1ST (λ2 − λ3) + ST (λ3 − λ1))

B1

u†
2 = α(τIT (λ8 − λ3) + JT (λ9 − λ4) + LT (λ7 − λ2) + RT (λ10 − λ5) + ST (λ6 − λ1))

B2

Hence, the optimal controls u∗
i , i = 1, 2, subject to the bounds 0 ≤ ui ≤ 1, are characterized by

u∗
1 = min

{
max

{
0, u†

1

}
, 1
}

u∗
2 = min

{
max

{
0, u†

2

}
, 1
}

3.4. Numerical Simulation of the Optimal Control Strategies
To evaluate the effectiveness of the proposed optimal control strategies, system Eq. (5) was
numerically solved using a combination of the fourth-order Runge–Kutta method and the Forward–
Backward Sweep algorithm. The time variable is measured in years because tuberculosis and
TB–DM coinfection are chronic diseases with slow progression and long treatment durations. Ad-
ditionally, all model parameters are defined on an annual basis, ensuring dimensional consistency
and alignment with epidemiological data.

The simulations were carried out using the initial conditions ST (0) = 190250, LT (0) =
16500, IT (0) = 10576, JT (0) = 3500, RT (0) = 810, SDT (0) = 44870, LDT (0) =
4000, IDT (0) = 1000, JDT (0) = 100, RDT (0) = 80, together with the parameter val-
ues listed in Eq. (1). The weight constants in the objective functional were chosen as
A1 = 10, A2 = 20, A3 = 1, A4 = 1, B1 = 40000, B2 = 200. Simulation results of sys-
tem Eq. (5) under different control strategies, namely no control, u1 only, u2 only, and combined
controls (u1, u2), are presented in Eq. (2) and Eq. (3).

Under the u1-only strategy, which reduces the effective contact rate β, a substantial
reduction is observed in TB-only compartments. Eq. (2)(b)–(e) show that LT , IT , JT , and RT

decrease significantly compared to the no-control scenario. A reduction is also observed in the
TB–DM compartments ( Eq. (2)(g)–(j)); however, the magnitude of reduction is smaller than
that achieved under the combined control strategy. Meanwhile, Eq. (2)(a) and Eq. (2)(f) show
a marked increase in the susceptible compartments ST and SDT , reflecting reduced new TB
infections due to transmission control.
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Figure 2: Simulation result of the model Eq. (5) under different strategies: no control, u1 control only,
u2 control only, and combined controls (u1, u2)

In contrast, the u2-only strategy targets the reduction of the diabetes onset rate α among
TB-infected individuals. Eq. (2)(a)–(e) indicate only minor changes in ST , LT , IT , JT , RT

compartments, suggesting that u2 alone is not effective in suppressing TB transmission. However,
Eq. (2)(f)–(j) show a marked reduction in SDT , LDT , IDT , JDT , RDT compartments, confirming
that the u2-only strategy primarily mitigates TB–DM progression rather than TB itself.

Under the combined control strategy (u1, u2), the largest reduction is observed in all infection-
related compartments. As shown in Eq. (2)(b)–(e) and Eq. (2)(g)–(j), the compartments
of LT , IT , JT , RT and their TB–DM counterparts LDT , IDT , JDT , RDT decrease significantly.
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Conversely, Eq. (2)(a) and Eq. (2)(f) show increased levels of ST and SDT , indicating effective
suppression of new infections and disease progression.

Figure 3: Simulation result of the corresponding optimal control profiles

The corresponding optimal control profiles are illustrated in Eq. (3). Eq. (3)(a) represents
the u1-only strategy, where u2(t) = 0 for all t. The control u1(t) is applied at its maximum level
during the early intervention period and gradually decreases as time approaches t = 28.4 years.
In Eq. (3)(b), the control u1(t) does not appear because it is identically zero over the entire time
interval, corresponding to the u2-only strategy. The profile u2(t) = 1 for t ∈ [0, 39.7] indicates
that maintaining the maximum level of diabetes prevention is optimal throughout most of the
intervention period, reflecting the high susceptibility of TB-infected individuals to diabetes and
the relatively lower cost associated with u2. Eq. (3)(c) depicts the combined control strategy,
in which both u1(t) and u2(t) are applied simultaneously at their maximum levels during the
early phase. The control u1(t) begins to decline at approximately t = 27.6 years, while u2(t)
remains maximal for a longer duration and starts to decrease at approximately t = 37.9 years.
This behavior indicates that TB transmission control can be gradually relaxed once the infection
burden is reduced, whereas diabetes prevention among TB-infected individuals requires sustained
intervention.

Table 2: Objective function values under different control strategies
u1 only u2 only combined controls (u1, u2)

2.771 × 106 1.766 × 107 2.656 × 106

Furthermore, Eq. (2) presents the objective function values obtained under different control
strategies. Since the aim of this study is to minimize the objective function given in Eq. (4),
the combined control strategy (u1, u2) yields the smallest objective function value among all
considered strategies.

Overall, the combined control strategy (u1, u2) is the most effective among all considered
scenarios, as it simultaneously minimizes TB and TB–DM infections while optimizing the total
intervention cost. These results are in concordance with established public health evidence,
which underscores that case detection, isolation, contact tracing, behavioral education, and
environmental protective interventions constitute core components of effective TB prevention [17].
Moreover, the findings are supported by [18] who demonstrated that lifestyle modifications among
individuals with DM, such as increased physical activity, smoking cessation, and reduced alcohol
consumption, can lower the risk of TB among individuals with diabetes mellitus. Consequently,
the integration of these control measures can be regarded as a highly effective and evidence,
based approach for mitigating TB–DM transmission and enhancing the efficiency of disease
control programs.

4. Conclusion
This study developed a ten-compartment mathematical model to analyze the transmission
dynamics of TB–DM coinfection. The analytical results show that the disease persists when
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R0 > 1, which is consistent with the numerical estimate R0 = 3.592, confirming the potential for
endemic persistence. Optimal control analysis incorporating two interventions, TB transmission
reduction (u1) and diabetes prevention among non-diabetic individuals (u2), demonstrated
that the combined strategy yields the most effective outcome. Numerical simulations showed
that simultaneous implementation of both controls achieves the lowest objective function value
(2.656 × 106), significantly reduces infected populations, and maintains higher susceptible levels
compared to single-control approaches. These findings highlight the importance of integrated
TB and DM prevention strategies to support more effective public health policies.
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