CAUCHY - Jurnal Matematika Murni dan Aplikasi
Volume 11 (1) (2026), Pages 61-74
p-ISSN: 2086-0382; e-ISSN: 2477-3344

University Scheduling Optimization Using Integer Programming;:
A Case Study

Gayus Simarmata!”, Rajainal Saragih?, and Anil Hakim Syofra3

! Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Universitas HKBP
Nommensen Pematangsiantar, Pematangsiantar, Indonesia
2 Computer Engineering Study Program, Politeknik Bisnis Indonesia, Indonesia
3 Mathematics Education Study Program, Faculty of Education and Teacher Training, Universitas Asahan,
Indonesia

Abstract

This paper presents an Integer Linear Programming (ILP) model to construct a weekly
lecture timetable for the Mathematics Study Program at HKBP Nommensen University,
Pematangsiantar. The case study comprises 25 courses, three rooms (RK 11, RK 12, and
LAB 1), five teaching days (Monday—Friday), and 13 time periods per day. The model
enforces hard constraints on room, lecturer, and cohort non-overlap; consecutive periods
according to credit load; room-type compatibility between theory and practicum sessions; and
an institutional worship-time restriction on Tuesday. Lecturers’ availability is represented
by a binary acceptance matrix collected at the course level, and rejected time periods are
penalized in the objective. The ILP is implemented in Python using the PuLP (Python
Linear Programming) library and solved with the CBC (Coin-or Branch and Cut) solver.
For the real instance, the solver returns an optimal solution with objective value Z* = 0 (no
scheduled period falls in a rejected slot) in approximately 94 seconds. The resulting timetable
is conflict-free and operationally interpretable, with a weekly room-time utilization of about
31.3%. To support verification and communication to stakeholders, the paper also provides a
heatmap of the acceptance matrix and a graphical timetable by room and day.
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1 Introduction

Course scheduling is a recurrent operational task in higher education institutions. Each semester,
a timetable must coordinate courses, lecturers, student cohorts, rooms, and a finite set of time
periods under institutional rules. In practice, manual scheduling is time-consuming and prone
to clashes, especially when lecturers teach multiple courses and cohorts must attend a fixed set
of classes without overlap. From an optimization perspective, university timetabling is widely
recognized as a combinatorial problem that is commonly classified as NP-hard, because it requires
identifying a best allocation over many interacting assignments within limited resources [1].
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University Scheduling Optimization using Integer Programming

University course timetabling problems are often categorized into student-based and curriculum-
based variants [2], [3]. This study considers a curriculum-based setting, where courses within
a study program are assigned to predefined time and room slots. The assignment must satisfy
hard constraints, such as avoiding conflicts involving lecturers, cohorts, and rooms [4], while
also addressing soft considerations, such as lecturers’ time preferences and the reduction of
undesirable placements [5].

A broad spectrum of solution methods has been proposed for university timetabling. Exact
approaches, including Integer Linear Programming (ILP) and related formulations such as graph
coloring, aim to obtain provably optimal solutions under a precise mathematical model [6], [7].
However, exact approaches may face scalability challenges as the problem size and constraint
complexity grow. In contrast, heuristic and metaheuristic methods—such as Genetic Algorithms,
Tabu Search, and evolutionary strategies—are frequently adopted because they can produce
high-quality schedules within reasonable computation time for complex, real-world constraints [8],
9], [10], [11], [12], [13].

Despite the popularity of heuristics, ILP remains attractive in departmental or program-level
scheduling because it offers transparency, interpretability, and direct encoding of institutional
rules. Several studies have reported successful ILP deployments in practical contexts, although
applications are often limited to a single department or relatively moderate instances [14], [15].
In operational environments, a common strategy is to solve scheduling at the program level while
coordinating room usage within the local infrastructure, which helps maintain implementability
while keeping the model scope manageable [16], [17].

This paper addresses the weekly timetabling of the Mathematics Study Program at HKBP
Nommensen University, Pematangsiantar, under institutional constraints including multi-period
course delivery, differentiation between theory and practicum rooms, and a fixed worship-time
restriction. The study uses real academic data to evaluate whether an optimization model can
produce a conflict-free timetable while aligning assignments with lecturers’ declared availability.

The novelty and contribution of this work are as follows. First, we develop a program-
level ILP formulation that simultaneously enforces room, lecturer, and cohort non-overlap
while guaranteeing consecutive time blocks for multi-credit courses through start-time variables.
Second, we incorporate room-type compatibility (regular rooms versus LAB 1) and an institutional
worship-time restriction within the same constraint system to ensure operational feasibility. Third,
we integrate lecturers’ availability using a binary acceptance matrix collected at the course level
and minimize rejected assignments via a transparent penalty objective, complemented by visual
diagnostics (heatmap and schedule overlay) to support validation. Accordingly, the objective
of this study is to generate a feasible and interpretable timetable that minimizes preference
violations under the stated constraints.

The remainder of this paper is organized as follows: Section 2 describes the case-study setting,
data, and ILP formulation; Section 3 reports the computational results and their interpretation;
and Section 4 concludes the paper and outlines future work.

2 Methods

This study adopts an applied quantitative approach with a case-study design [16]. The op-
timization model is developed and evaluated using real academic scheduling data from the
Mathematics Study Program, Faculty of Mathematics and Natural Sciences, HKBP Nommensen
University, Pematangsiantar. A case-study design is appropriate because university timetabling
is an operational decision problem whose constraints and feasibility requirements depend strongly
on institutional policies, available resources, and local academic practices.
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2.1 Data collection and scheduling setting

The study begins with the collection of information required to define a realistic timetabling
instance. The collected data include: (i) the list of courses and their credit loads; (ii) lecturer
assignments for each course; (iii) cohort groupings (class/semester) that must not overlap; (iv)
available rooms and their functional types (regular rooms versus laboratory); (v) the weekly
scheduling horizon in terms of days and time periods; and (vi) institutional restrictions and
policies, including worship time and non-lecture days. These data constitute the empirical basis of
the ILP formulation and ensure that the optimization problem accurately reflects real operational
conditions.

The dataset is derived from academic records covering the 2022-2025 academic years. The
weekly instance considered in this paper involves 25 courses (active learning groups) to be
scheduled within one academic week. The scheduling horizon consists of five lecture days
(Monday-Friday) and 13 time periods per day, where each period has a fixed duration of 50
minutes. The available infrastructure includes three rooms: two regular classrooms (RK 11
and RK 12) and one laboratory (LAB 1). The course data (including classes/semesters and
supporting lecturers) are summarized in Table 1.

Table 1: Data on Courses, Classes, and Supporting Lecturers

Class/  Supporting

Label MK Code Subject Credits Semester Lecturer
1 AMO0111  Basic Calculus Response 1 AM.1/1 FLOG
2 AMO0231  Introduction to Logic and Sets 3 AM.1/1 MS
3 AMO0431 Number Theory 3 AM.1/1 HS
4 AMO0631  Analytical Geometry 3 AM.1/1 RBM
5 FMO0131 Calculus 3 FMNS/1 YOP
6 FM0231 Physics 2 FMNS/1 STPL
7 UNO121 Religion 2 AM.1/1 Rev. RS
8 AMO0933 Programming Design and Algorithms 3 AM.3/3 PA
9 AM1033 Elementary Linear Algebra 1 AM.3/3 RT
10 AM1133 Statistics 3 AM.3/3 YOP
11 AM1333  Multivariate Calculus 3 AM.3/3 TMS
12 UNO0423 Pancasila 2 UN/3 SDS
13 UNO0523 Multimedia 2 UN/3 JTH
14 AM2235  Real Analysis IT 3 AM.5/5 DRS
15 AM2335  Combinatorics 3 AM.5/5 DGS
16 AM2435 Sampling Theory and Methods 1 AM.5/5 RS
17 AM2535 Decision Support System 3 AM.5/5 DJAS
18  AM2635  Mathematical Statistics 3 AM.5/5 RS
19 AM2725  Entrepreneurship Mathematics Science 2 AM.5/5 DGS
20 AM2835 Science Research Methodology 3 AM.5/5 DGS
21 AM4025  Queue Theory 3 AM.5/5 RS
22 AM3637 Applied Mathematics of Industry Based 3 AM.7/7 RS

on Pro Deo Et Patria
23 AM3737  Stochastic Process 1 AM.7/7 CS
24 AM3837 KKN 3 AM.7/7 YOP
25 AM4627  Dynamic Program 2 AM.T/7 RS

2.2 Time periods, rooms, and institutional rules

The time structure is represented by 13 periods per day. The complete period definition is
provided in Table 2. An institutional worship-time restriction is imposed every Tuesday from
09:10 to 10:00 AM. Since this interval overlaps parts of the second and third periods, the affected
Tuesday morning periods are treated as unavailable for lectures in the optimization model, and
the formulation enforces this restriction explicitly.

Gayus Simarmata 63



University Scheduling Optimization using Integer Programming

Table 2: Time Period Definition

Period Start Time Finish Time Duration (min) | Period Start Time Finish Time Duration (min)

1 08:00 08:50 50 8 13:50 14:40 50
2 08:50 09:40 50 9 14:40 15:30 50
3 09:40 10:30 50 10 15:30 16:20 50
4 10:30 11:20 50 11 16:20 17:10 50
) 11:20 12:10 50 12 17:10 18:00 50
6 12:10 13:00 50 13 18:00 18:50 50
7 13:00 13:50 50

The available lecture rooms are summarized in Table 3. In this case study, RK 11 and RK 12
are treated as regular classrooms, while LAB 1 is the only facility room used for practicum or
computer-based sessions.

Table 3: Available Lecture Rooms

No Lecture Room
1 RK11
2 RK 12
3  Laboratory

Based on Tables 1, 2, and 3, the scheduling environment consists of three rooms operating from
08:00 to 18:50 over five lecture days (Monday—Friday). This setting naturally creates conflicts
among cohorts, lecturers, and room usage if assignments are performed manually, motivating the
use of an optimization-based approach such as Integer Linear Programming (ILP) to generate a
feasible and conflict-free timetable.

2.3 Preference assumptions and computational procedure

Because the teaching system follows fixed cohorts, this study does not model individual student
preferences. Student feasibility is enforced through cohort non-overlap constraints. Lecturer
availability is incorporated through a binary acceptance matrix collected at the course level,
which identifies acceptable and rejected time periods; rejected assignments are discouraged via a
penalty-based objective. Institutional rules, including the Tuesday worship-time restriction and
the absence of lecture activities on Saturday, are treated as hard constraints.

The ILP model is implemented in Python using the PuLP library as the modeling interface
and solved using the CBC solver. The computational experiments produce an optimal timetable
under the stated constraints and policies. The resulting schedule is then evaluated in terms of
feasibility (no lecturer, cohort, or room clashes; consecutive periods for multi-credit courses; and
room-type compatibility) and preference compliance through the reported objective value. The
detailed results and their interpretation are presented in Section 3.

3 Results and Discussion

This section reports the outcomes of applying the proposed ILP formulation to the real scheduling
data of the Mathematics Study Program. We begin by describing the practical scheduling context
and the main sources of conflicts, including lecturer assignments, cohort-based non-overlap
requirements, room limitations, and the institutional worship-time restriction. We then present
how these elements are reflected in the preference matrix and the resulting optimized timetable,
and we interpret the solution quality through feasibility checks and the objective value produced
by the solver.
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3.1 Lecture Scheduling Problems

Lecture scheduling in this study was carried out for the odd semester in the Mathematics
Study Program, Faculty of Mathematics and Natural Sciences, HKBP Nommensen University,
Pematangsiantar. The main objective was to optimize the allocation of lecture time and classroom
space in order to avoid conflicts related to lecturer availability, room usage, and class overlaps,
while complying with institutional regulations such as designated worship times.

This study applies an Integer Linear Programming (ILP) approach, implemented in Python
using the PuLP library as the modeling interface and the CBC solver for optimization. The
scheduling model simultaneously considers courses, lecturers, rooms, lecture days, and time
periods. Each lecture day is divided into 13 time periods with a fixed duration of 50 minutes.
The model is designed to produce a feasible and implementable timetable by enforcing structural
constraints (e.g., room and lecturer conflicts) and incorporating lecturer time-slot preferences as
soft considerations.

The relationship between lecturers and the courses they teach is summarized in Table 4.
Several lecturers are responsible for multiple courses, which increases problem complexity and
highlights the need to prevent lecturer time conflicts across cohorts and semesters.

Table 4: Types of Courses and Instructors

No. Lecturer Course Label | No. Lecturer Course Label
1 FLOG 1 10 TMS 11
2 MS 2 11 SDS 12
3 HS 3 12 JTH 13
4 RBM 4 13 DRS 14
5 YOP 5, 10, 24 14 DGS 15, 19, 20
6 STPL 6 15 RS 16, 18, 21, 22, 25
7 Rev. RS 7 16 DJAS 17
8 PA 8 17 CS 23
9 RT 9

In addition to lecturer—course assignments, the scheduling problem is structured by grouping
courses according to class cohorts and semesters. Table 5 lists the study groups and their
corresponding course labels. Each study group represents a cohort of students who must attend
all listed courses without overlap, thereby imposing strict time-slot constraints.

Table 5: Study Groups and Course Labels

No. Class (Class/Semester) Course Label
1 AM.1/1 and FMNS/1 1,2.3,4,5,6,7
2 AM.3/3 and UN/3 8, 9.10, 11, 12, 13
3 AM.5/5 14, 15, 16, 17, 18, 19, 20, 21
4 AM.7/7 99, 23, 24, 25

The information in Tables 4 and 5 reflects the inherent combinatorial nature of the scheduling
task: lecturers may teach multiple courses, and each cohort must attend a fixed set of courses
without conflicts. These conditions justify the use of an optimization-based approach such as
ILP to systematically generate a feasible, conflict-free timetable.

Lecturer time-slot preferences are represented by a binary acceptance matrix, where a value
of 1 indicates that the corresponding time period is acceptable and a value of 0 indicates rejection.
This acceptance matrix is summarized in Table 6 and is incorporated into the ILP objective
function to discourage assignments in rejected time periods.
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Table 6: Lecturer time-slot acceptance matrix for each course (1 = acceptable, 0 = rejected). Rows
denote periods, columns denote course labels.

Time Session|1 2345678910 11 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1110110011110110101010000
2 111011001111 0110101O01O0O0O0TGO0
3 1110110011 1101111010100 °O0GO0
4 1111110117111 0111101110000
5 11111101170 1 100 1 1 101110O0O0O0
6 11111101170 1 1 001 1101110001
7 11111101171 1101 11111110101
8 11111101171 1101 111111101171
9 11111101171 111 1111111011171
10 1110101111 111111111001 1171
11 1110101111 101011111001 111
12 1110101111 101011111001 111
13 1110101111 101011111001 1171

To improve readability, the lecturer time-slot acceptance matrix in Table 6 is also visualized
in Figure 1. This visualization highlights rejected periods (0) and acceptable periods (1) across
all courses, making the overall preference structure easier to interpret at a glance.

Lecturer time-slot acceptance matrix Q (1=acceptable, O=rejected)

1.0

-
L

N
L

w
L

0.8

IS
|

0.6

o
L

Time period (t)

0.4

0.2

T T T T T T T T T T 0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Course label (k)

Figure 1: Heatmap visualization of the lecturer time-slot acceptance matrix Qu (1 = acceptable, 0 =
rejected). Rows represent time periods (¢ = 1,...,13) and columns represent course labels (k =1,...,25).

To reduce model complexity and clearly define the scope of the study, several assumptions
are adopted. Lecturer assignments for each course are fixed and predetermined. Students are
assumed to have no individual time preferences, so cohort-based non-overlap constraints are
used as the primary student-related restriction. All available classrooms may be used subject
to room availability constraints. Courses with three credit units are assumed to be delivered in
three consecutive periods, and courses that require laboratory or computer-based facilities are
scheduled exclusively in LAB 1. In addition, no lectures are permitted during the designated
worship time held every Tuesday from 09:10 to 10:00 AM, and no lecture activities are scheduled
on Saturdays.

3.2 Design of Integer Linear Programming Model

The lecture scheduling problem in this study is formulated as an Integer Linear Programming (ILP)
model by explicitly considering limitations related to space, time, and lecturer availability [16], [18].
The model aims to generate an efficient and conflict-free lecture timetable based on predefined
time periods, available lecture rooms, and lecturer time-slot preferences (acceptance/rejection).
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Through this formulation, institutional constraints and lecturer preferences can be integrated
into a single optimization framework.

Indices and sets. Let K ={1,2,..., K} denote the set of courses (in this study, K = 25), R
the set of rooms, D the set of lecture days, and 7 = {1,2,...,T} the set of time periods per day
(here, T' = 13). We use:

k € K (course), r € R (room), de D (day), teT (time period).

In this case study, R = {RK 11,RK 12,LAB 1}. The day index can be defined as D =
{1,2,3,4,5} (Monday—Friday); if Saturday is included for bookkeeping, it must be constrained
as non-lecture day in the constraint set.

To distinguish room categories and course types, define the room subsets

R, ={LAB 1} (facility room), R:={RK 11,RK 12} (regular rooms).

Let G, € K be the set of courses that require laboratory or computer-based facilities (e.g.,
programming/multimedia sessions) and therefore must be scheduled in the laboratory (LAB 1).
Let Gt = K\ G, be the set of courses that can be scheduled in regular classrooms. In this case
study, LAB 1 is treated as the only facility room, hence any course categorized in Gy, is restricted
to LAB 1 by the room-type compatibility constraints.

To model cohort non-overlap constraints, define the cohort sets (Table 5):

Gs1 ={1,2,3,4,5,6,7}, Gg3={8,9,10,11,12,13},

Ggs = {14,15,16,17,18,19,20,21}, Ggr = {22,23,24,25}.

These sets ensure that, within each cohort, no two courses are scheduled at the same day and
time period. If lecturer-based non-overlap constraints are used, it is recommended to index
lecturers by ¢ € £ and define lecturer course sets G, C K, where each G, contains the course
labels taught by lecturer £.

Parameters. Let S denote the number of face-to-face periods required for course k (derived
from its credit load). Lecturer time-slot preference is given by the binary acceptance matrix Qy:

0 {1, if time period t is acceptable for course k,
th =

0, if time period t is rejected for course k.
To penalize rejected assignments in a minimization framework, define the penalty parameter
Py =1 — Qu,

so that Py = 1 indicates a rejected time period and Pj, = 0 indicates an acceptable one.

Decision variables. A binary decision variable is introduced:

{1, if course k is scheduled in room 7 on day d at period ¢,
Trdtk =

0, otherwise.

The variable x4 captures the time-room occupancy, while y,.q supports consistency constraints
between room assignment and time allocation.
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Objective function. The objective is to minimize the total time-slot rejection penalty implied
by lecturer preferences. Using Py, = 1 — Qu, the objective function is:

minZ =% wau P (1)

reR deDteT kek

A smaller value of Z indicates that fewer course-period assignments fall into rejected time slots,
hence the resulting timetable is more consistent with lecturer preferences while still satisfying
all hard constraints related to room availability, lecturer/cohort conflicts, worship time, and
non-lecture days.

3.3 Constraints

The scheduling model incorporates a set of constraints that represent academic regulations,
spatial limitations, lecturer availability, cohort coherence, and institutional policies such as
worship periods and non-lecture days. These constraints ensure that the resulting timetable is
feasible, conflict-free, and compliant with all predefined requirements.

Auxiliary start-time variable (to enforce consecutiveness). To model consecutive time
periods for multi-credit courses in a linear ILP form, we introduce an auxiliary binary variable

{1, if course k starts in room r on day d at period t,
Srdtk =

0, otherwise.

The original binary variable x,4) remains an occupancy variable (1 if course k occupies room r
on day d at period t). The variables are linked as follows.

(C1) Each course starts exactly once per week.

Z Z Z Srate = 1, Vk € K. (2)

reRdeDteT
(C2) Feasible start times. A course of length Sy cannot start after period T'— Sy + 1.

Sratk =0, VreR,deD, ke, t>T— S+ 1. (3)

(C3) Linking start-time and occupancy (consecutive periods). For each course k, if it
starts at period 7, then it occupies periods 7,7+ 1,...,7 + S — 1 on the same day and room.
This is enforced by:

min(t, T—Sk+1)
Trdtk = Z Srdrk, Vre€R,deD,teT,kek. (4)
T=max(1,t—Sk+1)

With this definition, the consecutive requirement is satisfied automatically, and each scheduled
course occupies exactly S periods.

(C4) Room capacity (no room clashes). FEach room can host at most one course in the
same day and time period:

> pak <1, VreR,deD,teT. (5)
keK
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(C5) Lecturer non-overlap (no lecturer clashes). Let £ be the set of lecturers and
Gre C K the set of courses taught by lecturer £. Then:

Y waw <1, VIeL deD, teT. (6)
reRkeGry

(C6) Cohort non-overlap (no student group clashes). Using the cohort sets defined in
the model (Table 5):

Z Z Trdtk < 1> Vd € D7 le Tv (7)
reR keGg1
Z Z LTrdtk < 17 vd e Dv te T7 (8)
reR keGgs
Z Z Trdtk < 17 Vd € Da te 7-7 (9)
reR kEGS5
Z Z Teare <1, VdeD,teT. (10)
reR keGgr

(C7) Room-type compatibility (theory vs practicum). Let R, = {Lab} be practicum
rooms and R; = {RK 11,RK 12} be regular rooms. Then:

Trak = 0, Vk € Gy, T‘ERP, d e D, tGT, (11)

Tratk =0, Vke Gy, reRy, deD,teT. (12)

(C8) Worship time restriction (Tuesday 09:10-10:00). As the worship time overlaps
parts of periods 2 and 3 on Tuesday, those periods are treated as unavailable on day d = 2:

Trorr =0, VreR, kek, te{23}. (13)

This also prevents any multi-period course from starting in a way that would occupy the restricted
periods, due to constraint (C3).

(C9) Binary requirements.

Trdtk € {0, 1}, Srdtk € {O, 1}, VreR,deD,teT,kek. (14)

3.4 Computational Results and Discussion

This subsection reports the computational results of the proposed ILP model and discusses the
feasibility, preference satisfaction, and practical interpretability of the obtained timetable. The
problem instance consists of 25 courses scheduled over five lecture days (Monday—Friday), with
13 time periods per day and three rooms (RK 11, RK 12, and Laboratory/LAB 1). The model
minimizes violations of lecturers’ time-slot preferences represented by the binary acceptance
matrix Qu (Table 6) by using the penalty coefficient Py, = 1 — Q.

To facilitate reproducibility and interpretation, the results are presented in a stepwise manner.
First, we report the solver configuration and the resulting solution status to confirm that an
optimal integer solution was reached. Next, we present the finalized timetable in a compact
tabular format, followed by a graphical visualization to support quick verification of room usage
patterns. Finally, we discuss the feasibility of the obtained schedule with respect to each hard
constraint and interpret the objective value in terms of lecturers’ time-slot preference satisfaction.
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3.4.1 Solver setup and solution status

The ILP model was implemented in Python using PuLLP as the modeling interface and solved
using the CBC (Coin-or Branch and Cut) solver. CBC returned an Optimal status, indicating
that a feasible integer solution satisfying all hard constraints was found and that the objective
value reached its minimum under the proposed formulation. The computational experiments
were conducted on a computer equipped with an Intel Core i5 processor and 8 GB RAM. The
reported runtime was approximately 1 minute and 34 seconds, as summarized in Table 7.

Table 7: Solver summary (PuLP/CBC).

Item Value

Solver CBC (via PuLP)
Solution status Optimal

Objective value Z* 0

Runtime (reported) ~ 1 minute 34 seconds

Binary variables (upper bound) |z| =3 x5 x 13 x 25 = 4875, |s| = 4875

3.4.2  Final optimized timetable

The final optimized timetable produced by the proposed ILP model is presented in Table 8. The
table reports, for each course, the assigned room, lecture day, starting period, duration (number
of consecutive periods), the occupied period indices, and the corresponding lecturer. The day
index follows the convention 1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, and 5=Friday.
This presentation is intended to support direct operational use by the study program, while
also allowing verification of the hard constraints such as room non-overlap, lecturer non-overlap,
cohort non-overlap, consecutive periods for multi-credit courses, and room-type compatibility
(theory vs practicum).

The feasibility of the timetable in Table 8 is verified in the next subsection by checking each
hard constraint explicitly.

3.4.3 Feasibility with respect to hard constraints

A direct inspection of Table 8 confirms that all hard constraints are satisfied. First, no clashes
occur in room usage: each room hosts at most one course in the same day—period. Second,
lecturer non-overlap and cohort non-overlap constraints prevent simultaneous assignments for the
same lecturer and for the same student cohort. Third, multi-credit courses occupy consecutive
periods according to their required duration. Fourth, room-type compatibility is enforced: facility-
required courses (G,) are assigned exclusively to the laboratory (LAB 1), while theory-oriented
courses are scheduled in regular rooms (RK 11 and RK 12). Finally, the institutional worship-time
restriction on Tuesday is respected by treating periods 2 and 3 as unavailable; therefore, no
course is scheduled in those periods on Tuesday.

3.4.4  Preference satisfaction and objective interpretation

Lecturers’ time-slot preferences are encoded by the acceptance matrix Qu (Table 6), where
Qi = 1 indicates an acceptable period and @y = 0 indicates rejection. The optimization
penalizes rejected assignments using Py, = 1 — Q. and minimizes

Z = Z Z Z Z Trdtk Pik-

reRdeEDteT keK

Since Py, € {0, 1}, the objective value Z counts the number of occupied course—period assignments
that fall into rejected time slots. The obtained solution yields Z* = 0, which implies that every
scheduled course period is assigned only to acceptable time slots (i.e., all occupied (¢, k) pairs
satisfy Qu = 1).
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Table 8: Optimized timetable satisfying hard constraints and minimizing lecturer time-slot rejection
(Day: 1=Mon, 2=Tue, 3=Wed, 4=Thu, 5=Fri).

Subject Room Day Start Duration Period Lecturer
Basic Calculus Response LAB 1 3 7 1 7 FLOG
Introduction to Logic and Sets RK 12 2 11 3 11, 12, 13 MS
Number Theory RK 12 3 10 3 10, 11, 12 HS
Analytical Geometry RK 12 4 4 3 4,5,6 RBM
Calculus RK 12 5 1 3 1,2,3 YOP
Physics RK 12 5 7 2 7,8 STPL
Religion RK 12 5 10 2 10, 11 Rev. RS
Programming Design and Algorithms LAB 1 1 4 3 4,5,6 PA
Elementary Linear Algebra RK 11 1 13 1 13 RT
Statistics RK 12 4 10 3 10, 11, 12 YOP
Multivariate Calculus RK 11 5 5 3 5,6,7 TMS
Pancasila RK 12 3 5 2 5, 6 SDS
Multimedia LAB 1 2 9 2 9, 10 JTH
Real Analysis II RK 11 3 8 3 8,9, 10 DRS
Combinatorics RK 11 2 4 3 4,5, 6 DGS
Sampling Theory and Methods RK 11 1 10 1 10 RS
Decision Support System RK 11 2 8 3 8,9, 10 DJAS
Mathematical Statistics RK 11 5 10 3 10, 11, 12 RS
Entrepreneurship Mathematics Science LAB 1 4 5 2 5,6 DGS
Science Research Methodology RK 11 3 5 3 5,6, 7 DGS
Queue Theory RK 12 4 1 3 1,2,3 RS
Applied Mathematics of Industry Based RK 11 2 11 3 11,12, 13 RS
on Pro Deo Et Patria

Stochastic Process RK 12 1 10 1 10 CS
KKN RK 11 3 11 3 11, 12, 13 YOP
Dynamic Program RK 11 1 6 2 6, 7 RS

Time period (t)

For an immediate visual validation, Figure 2 overlays the optimized schedule (Table 8) on the
acceptance matrix. In this overlay, outlined cells represent scheduled course—period selections.
In the reported solution, all outlined cells fall on acceptable entries (Q; = 1), consistent with
zZ* = 0.

Schedule overlay on Q (outlined cells are occupied by the final timetable)

oF
§

T T T T T T T
1 2 3 4 5 6 7 8 9 10

12 13

1.0

T T T
14 15 16 17

Course label (k)

T T
18 19 20

21

T T T
22 23 24

T 0.0
25

Figure 2: Overlay of the optimized schedule on the lecturer time-slot acceptance matrix ). Cells indicate
lecturer acceptance (Q = 1 acceptable, Qi = 0 rejected), while the outlined cells mark the time periods
selected by the optimized timetable (Table 8).

Gayus Simarmata

71



University Scheduling Optimization using Integer Programming

3.4.5  Timetable visualization and room utilization

While Table 8 provides the detailed allocation, Figure 3 summarizes the same solution in a
room-by-day timetable layout, making it easier to verify room utilization patterns and confirm
the absence of conflicts.

Timetable (by room and day)

RK11-Mon o jorship (Tue P2-P3)

RK11-Tue o

RK11-Wed 4

RK11-Thu

RK11-Fri -

RK12-Mon 4

RK12-Tue o

RK12-Wed o

RK12-Thu

RK12-Fri

LAB-Mon -

T T T T T T T T T y T T T
1 2 3 4 5 6 7 8 9 10 11 12 13
Time period

Figure 3: Graphical timetable of the optimized schedule by room (RK 11, RK 12, and LAB 1) and day
(Monday—Friday). Each block represents a scheduled course spanning its required consecutive periods.

Across three rooms, five days, and thirteen periods per day, the weekly capacity is 3x 5x 13 =
195 period-slots. From Table 8, the timetable uses 61 period-slots, corresponding to approximately
61/195 =~ 31.3% utilization. This utilization level is reasonable because the instance covers a
single study program with a limited weekly teaching load relative to the available room-time
capacity. Overall, the results show that the proposed ILP model can generate a feasible and
operational timetable, while simultaneously achieving full satisfaction of the lecturers’ binary
time-slot preferences under the stated constraints.

4 Conclusion

This study proposed an Integer Linear Programming (ILP) model for lecture timetabling in
the Mathematics Study Program, HKBP Nommensen University. The model integrates key
constraints, including room capacity, lecturer and cohort non-overlap, consecutive periods for
multi-credit courses, practicum/theory room compatibility, and institutional rules such as the
Tuesday worship-time restriction.

The model was implemented in Python using PuLLP and solved with the CBC solver. The
solver returned an Optimal status, and the resulting timetable schedules all 25 courses across
RK 11, RK 12, and LAB 1 without conflicts. Practicum courses are assigned to the laboratory
and theory courses to regular rooms, while all hard constraints are satisfied and lecturer time-slot
rejections are minimized.

Future work may extend the model by adding class-size and room-capacity constraints, using
weighted penalties for soft constraints, and combining ILP with heuristic methods to improve
scalability for larger timetabling instances.
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