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Abstract

This study evaluates the performance of the DenseNet121 architecture for binary classification
of breast cancer histopathological images using the BreakHis dataset. The model employs
ImageNet pre-trained weights, fine-tuning, and geometric data augmentation to improve
feature learning and generalization. To obtain more reliable results, three optimization
algorithms (Adam, AdamW, and RMSprop) were evaluated through repeated experiments,
and performance was reported using mean and standard deviation of test metrics. The
experimental results demonstrate that DenseNet121 achieves consistently high classification
performance across different optimizers, with the Adam optimizer showing the most stable
results. These findings indicate that DenseNet121 combined with data augmentation provides
an effective and robust approach for histopathological image classification while emphasizing
the importance of repeated evaluation for reliable performance assessment.
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1 Introduction
Advances in artificial intelligence, especially driven by deep learning methods, have had a sig-

nificant impact on digital image analysis in various sectors in recent years [1][2][3]. Convolutional
Neural Network (CNN) has become one of the leading architectural approaches due to its ability
to automatically extract texture and spatial features without the need for manual extraction [4].
The use of CNNs is now quite widespread in industry, agriculture, and various pattern recognition
systems due to their ability to recognize visual structures efficiently [5][6][7][8], making it the
leading model in image classification tasks that require accurate and consistent analysis [9][10].

CNNs are effective, but their performance relies strongly on the robustness and completeness
of the training data [11][12]. Small or highly diverse datasets often result in overfitting, especially
if there are differences in lighting, color, or resolution [13][14]. To address this issue, data
augmentation techniques are applied to increase data variation through geometric transformations
such as rotation, flipping, zoom, translation, and contrast adjustment [15][16][17], which have
been shown to improve model generalization [18][15]. In addition, augmentation methods based
on generative models such as GAN and diffusion models have begun to be applied to create
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synthetic images similar to the original data [19][20]. Transfer learning and fine-tuning of pre-
trained models such as VGG, ResNet, EfficientNet, and DenseNet are often used to improve
efficiency on limited datasets [21][22]. DenseNet121 stands out from the above models due to its
dense connectivity, which enables feature reuse and stable gradient flow [23][24].

Previous research, including the study by Xiao et al. (2024), shows that CNNs can achieve
high accuracy in breast cancer histopathology images by utilizing the BreakHis dataset [25].
However, several studies report that model performance can vary across different data splits,
and high accuracy values may not always reflect performance stability. These findings indicate
the importance of robust evaluation protocols when assessing CNN-based models for medical
image classification.

Motivated by these observations, this study investigates the performance stability of DenseNet121
under different optimizer configurations combined with geometric data augmentation strategies.
The BreakHis dataset, consisting of approximately 7,909 benign and malignant histopathology
images, is employed as a benchmark dataset. Rather than proposing a new architecture, this
work focuses on analyzing how optimizer choice influences classification performance and result
variability under identical training conditions.

The main contribution of this study is a comparative evaluation of commonly used optimiz-
ers on a DenseNet121 architecture for breast cancer histopathology image classification. All
experiments are conducted using identical data splits, augmentation strategies, and network
configurations, with model performance reported as mean ± standard deviation across repeated
runs. This analysis provides empirical insights into optimizer stability and performance vari-
ability, contributing to more reliable evaluation practices in deep learning-based medical image
classification.

2 Methods
This study implements the DenseNet121 architecture as the main model for classifying breast

cancer histopathology images, with a training process that utilizes Adam, AdamW, and RMSprop
optimizations together with a Binary Cross-Entropy objective function. The complete flowchart
of the research stages is shown in the following flowchart.

Figure 1: Research Flowchart

Fig. 1 shows the main stages of the research, starting from the division of the dataset into
subsets for training, validation, and testing. Afterward, the training portion goes through a
data-augmentation procedure to increase image diversity before being used in model training.
The pretrained DenseNet121 is used as a feature extractor, then several classification layers are
added before the training process. The final stage involves model evaluation and testing to assess
overall classification performance.
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2.1 Preprocessing

At this stage, all images undergo an initial preprocessing step to ensure a uniform data format
prior to model training. Each image is resized to a spatial resolution of 224 × 224 pixels in order
to match the standard input requirement of DenseNet121. This resizing process helps maintain
consistency across the dataset while preserving essential spatial features relevant for classification.
After resizing, the images are transformed into RGB format to construct three-channel inputs
compatible with convolutional neural networks pre-trained on large-scale image datasets. This
representation enables the network to effectively capture color-based and textural information
from histopathological images. Subsequently, the dataset is divided into three subsets consisting
of training, validation, and testing data. An 80%, 10%, 10% split is employed to ensure sufficient
data for model learning while maintaining independent subsets for hyperparameter tuning and
unbiased performance evaluation.

To increase data variety and minimize the likelihood of overfitting, the present work applied
geometric data augmentation to histopathological images. The augmentation technique was
applied randomly to each training batch to generate spatial variation without altering the original
tissue structure.

The augmentations used include a rotation of 20◦, horizontal and vertical translations of 10%
each, a shear of 10%, a zoom of 10%, and a horizontal flip. This combination of transformations
simulates variations in microscope scanning conditions so that the model receives a broader range
of training samples and is able to learn network patterns more robustly.

2.2 Model Architecture

The model architecture in this study was built using DenseNet121 as the main feature
extractor. DenseNet utilizes a dense connectivity mechanism, where each layer receives features
from all previous layers.

Figure 2: DenseNet Architecture

Fig. 2 shows an illustration of the general architecture of DenseNet, where every layer within
the network is directly connected to all previous layers. This dense connectivity mechanism
allows for a more stable gradient flow and more effective feature reuse [24].

Mathematically, this mechanism can be expressed in Eq. (1):

xℓ = Hℓ ([x0, x1, . . . , xℓ−1]) , (1)

in which xℓ represents the result produced by layer ℓ, Hℓ(·) is a composite operation (BatchNorm,
ReLU, and Convolution), and [·] denotes the concatenation operation [24]. This approach enables
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more stable gradient flow and more effective feature utilization.
The model uses pre-trained ImageNet weights with the setting include_top = false so that

the model’s built-in classification part is removed. To improve adaptability to histopathology
datasets, only the last 30 layers are fine-tuned, while the initial layers are frozen to keep the
basic features stable.

Figure 3: DenseNet121 Architecture

The complete architecture of DenseNet121 used in this study is presented in the Fig. 3. The
diagram depicts the arrangement of dense blocks, transition layers, and additional layers (Global
Average Pooling, Dense, and Dropout) applied at the end to support the binary classification
process [24].

The output of DenseNet121 is a 7 × 7 × 1024 tensor, which is then summarized using the
Global Average Pooling (GAP) operation to convert spatial features into a single representative
average value for each channel. GAP is used to reduce feature dimensions while preserving the
core representation of each channel. It is more efficient than a fully connected layer and helps
minimize the likelihood of overfitting.

After the pooling process, a fully connected layer containing 256 neurons with a ReLU
function is added to produce a non-linear representation, followed by a dropout component set
to 0.5 as a regularization mechanism. The final layer consists of two neurons activated with a
sigmoid function to generate probability outputs for the two classes (benign and malignant).

The complete architectural structure is presented in Table 1.

Table 1: Model Architecture
Layer Parameters
Base Model DenseNet121 (ImageNet, include_top=False)
GlobalAveragePooling2D Output vector of size 1024
Dense 256 units, activation = ReLU
Dropout rate = 0.5
Dense (Output) 1 unit, activation = Sigmoid

2.3 Training Procedure

All experiments employed the same network architecture and training configuration, with the
optimizer serving as the main variable under investigation. Adam, AdamW, and RMSprop were
evaluated using identical hyperparameter settings. Training was performed for 20 epochs with a
batch size of 32, and a ReduceLROnPlateau scheduler was applied to enhance training stability
by decreasing the learning rate by a factor of 0.5 when validation loss showed no improvement
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over five consecutive epochs. This design enables a controlled and fair comparison of optimizer
performance for the binary classification task.

This research makes use of the Binary Cross-Entropy (BCE) loss, a function frequently applied
in tasks involving two-class classification. Mathematically, BCE is expressed in Equation 2:

LBCE(y, ŷ) = − (y log(ŷ) + (1 − y) log(1 − ŷ)) . (2)

Here, y, ŷ ∈ {0, 1}, where ŷ denotes the predicted probability and y represents the ground
truth label. This formulation corresponds to the Binary Cross-Entropy loss computed for an
individual sample. During training, the overall loss is obtained by averaging the sample BCE
over the mini batch [26].

To enhance the model’s ability to adapt to histopathological imaging characteristics, approxi-
mately 30 layers of DenseNet121 were fine-tuned, while the initial layers were frozen to retain
the basic features of pretrained ImageNet. The training process was conducted using augmented
data to enrich sample variation and help prevent the risk of overfitting.

The complete training hyperparameter configuration is presented in Table 2.

Table 2: Training Hyperparameters
Parameter Value
Optimizer Adam, AdamW dan RMSprop
Learning rate (initial) 0.0001
Weight decay 0.00001
Batch size 32
Epochs 20
Loss function Binary Cross-Entropy
Learning rate scheduler ReduceLROnPlateau
Fine-tuned layers Last 30 layers of DenseNet121

2.4 Evaluation Metrics

To assess how well the model performs in breast cancer two-class classification, this study uses
several evaluation metrics commonly applied within computer vision research, namely accuracy,
precision, recall, and the F1-score. Each metric is derived using prediction values obtained
through the confusion matrix, which consists of TP (True Positive), TN (True Negative), FP
(False Positive), and FN (False Negative) [27]. The definition of each metric is stated as follows.

Accuracy measures the share of correctly predicted outcomes against the entire sample and is
formally expressed in Eq. (3).

Accuracy = TP + TN

TP + TN + FP + FN
. (3)

Precision measures the accuracy of the model in predicting positive classes, or the proportion
of correct positive predictions. The precision metric is defined in Eq. (4).

Precision = TP

TP + FP
. (4)

Recall assesses the model’s capacity to recognize all actual positive cases, which is the fraction
of true positive samples successfully detected. Recall is formulated in Eq. (5).

Recall = TP

TP + FN
. (5)

The F1-score is the harmonic mean between precision and recall, which provides a more
balanced measure of performance, especially in conditions of imbalanced data. The F1-score is
calculated as shown in Eq. (6).

F1-Score = 2 · Precision × Recall
Precision + Recall (6)
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3 Results and Discussion
This section presents the experimental results of the proposed deep learning approach. The

discussion covers the dataset, preprocessing, data augmentation, and model architecture. Model
performance is evaluated through repeated test experiments using mean and standard deviation
to assess prediction stability across optimizers.

3.1 Dataset

The dataset consists of 7,909 breast cancer histopathological images, including 2,480 benign
and 5,429 malignant samples. The DenseNet121 model is implemented using the Keras Functional
API, and the data are partitioned into training, validation, and test sets using a stratified 80%,
10%, and 10% split. The training and validation sets are used for model learning, while the test
set is reserved for evaluation and contains 791 images (248 benign and 543 malignant). The
same data split is maintained across all experiments, and the reported results represent the mean
and standard deviation obtained from repeated runs.

3.2 Augmentation

The training data is subjected to a set of augmentation operations using ImageDataGenerator.
These augmentation steps involve applying rotation, horizontal and vertical shifts, shear trans-
formation, zooming, horizontal flipping, and fill-mode adjustments. The detailed augmentation
settings are provided in Table 3.

Table 3: Data Augmentation Parameters
Function Parameters
Rotation_range 20
Width_shift_range 0.10
Height_shift_range 0.10
Shear_range 0.10
Zoom_range 0.10
Horizontal_flip ’True’
Fill_mode ’nearest’

Table 3 shows the data augmentation parameters used to enrich image variation in the
training data. This approach enables the model to achieve more stable learning and lowers the
likelihood of overfitting.

3.3 Training Model Architecture

Training employed a preinitialized DenseNet121 model trained on ImageNet. Its dense
connectivity enables efficient feature reuse and robust extraction of complex patterns, making
it suitable for histopathological image analysis without training a network from scratch. The
complete architecture can be seen in Table 4.

Table 4: DenseNet121 Layer Summary
Layers Parameters
GlobalAveragePooling2D 1024-feature vector
Dense 256, activation = ’relu’
Dropout 0.5
Output Dense 1, activation = ’sigmoid’
Label Encoding Binary (0/1)
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(a) Accuracy Adam 1 (b) Loss Adam 1

(c) Accuracy Adam 2 (d) Loss Adam 2

(e) Accuracy Adam 3 (f) Loss Adam 3
Figure 4: Training and validation performance of DenseNet121 using Adam optimizer across three runs.

The model training phase used 20 epochs and consisted of 198 iterations per epoch. The
loss function applied was binary cross-entropy. To analyze the impact of optimization strategies,
three optimizers (Adam, AdamW, and RMSprop) were evaluated under identical training settings
(learning rate = 0.0001). Each configuration was trained three times from scratch to reduce
randomness, and performance is reported as mean ± standard deviation.

Fig. 4 presents the training and validation accuracy and loss curves of the DenseNet121
model trained with the Adam optimizer across three experimental runs. The accuracy increases
steadily while the loss values decrease throughout training, indicating effective learning behavior.
Minor variations appear during the early epochs; however, the overall trends remain consistent,
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suggesting stable optimization and satisfactory generalization without evident overfitting.

(a) Accuracy AdamW 1 (b) Loss AdamW 1

(c) Accuracy AdamW 2 (d) Loss AdamW 2

(e) Accuracy AdamW 3 (f) Loss AdamW 3

Figure 5: Training and validation performance of DenseNet121 using AdamW optimizer across three
runs.

Fig. 5 illustrates the training and validation accuracy and loss curves of the DenseNet121
model trained using the AdamW optimizer across three repeated experiments. The accuracy
consistently improves throughout training, while the loss values decrease steadily, indicating
effective optimization. Minor variations are observed during the early epochs. However, the overall
convergence remains stable under fixed hyperparameter settings. The smooth loss reduction
achieved with AdamW suggests improved regularization, and the close alignment between training
and validation trends indicates satisfactory generalization without evident overfitting.
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(a) Accuracy RMSprop 1 (b) Loss RMSprop 1

(c) Accuracy RMSprop 2 (d) Loss RMSprop 2

(e) Accuracy RMSprop 3 (f) Loss RMSprop 3
Figure 6: Training and validation performance of DenseNet121 using RMSprop optimizer across three
runs.

Fig. 6 shows the training and validation accuracy and loss curves of the DenseNet121 model
optimized using the RMSprop algorithm across three training runs. The accuracy curves
consistently increase and stabilize as the number of epochs progresses, while the loss curves
gradually decrease, indicating effective learning and convergence. Across all runs, the training
and validation curves remain closely aligned, suggesting that the model generalizes well without
exhibiting severe overfitting. Minor variations observed between runs mainly occur in the early
epochs and do not significantly affect the overall training behavior, demonstrating the stability
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of RMSprop under identical training settings.

Table 5: Training and Validation Performance of DenseNet121 Across Optimizers (Mean ± Std)
Optimizer Train Acc Val Acc Train Loss Val Loss
Adam 0.9286 ± 0.0064 0.9368 ± 0.0025 0.1890 ± 0.0053 0.1847 ± 0.0132
AdamW 0.9260 ± 0.0027 0.9368 ± 0.0043 0.1914 ± 0.0032 0.1851 ± 0.0124
RMSprop 0.9260 ± 0.0007 0.9233 ± 0.0071 0.1943 ± 0.0067 0.2009 ± 0.0151

Table 5 presents the average training and validation performance of DenseNet121 across
different optimizers. The results show that all configurations converge consistently with relatively
small variations, indicating stable training behavior. Among the evaluated optimizers, Adam
exhibit more reliable validation performance compared to RMSprop, which shows slightly higher
variability.

3.4 Model Prediction Results

This subsection presents the prediction performance of the DenseNet121 model evaluated
on the test dataset. To assess the stability and generalization capability of the model, three
independent training runs were conducted for each optimizer configuration. Model performance
was measured using accuracy, precision, recall, and F1-score, which were then summarized
using the mean and standard deviation to capture both central tendency and variability across
runs. Precision, recall, and F1-score are reported using weighted averaging to account for class
imbalance in the dataset. In this study, the malignant class is treated as the positive class (label
1), while benign samples correspond to the negative class (label 0). Accordingly, recall reflects the
model’s ability to correctly identify malignant cases, whereas precision indicates the reliability of
malignant predictions.

The mean and standard deviation of each evaluation metric are computed using Eq. (7) and
Eq. (8).

x̄ = 1
n

n∑
i=1

xi (7)

σ =

√√√√ 1
n − 1

n∑
i=1

(xi − x̄)2 (8)

Table 6: Prediction performance of DenseNet121 using Adam optimizer (mean ± standard deviation)
Optimizer Accuracy (%) Precision (%) Recall (%) F1-score (%)
Adam 93.63 ± 0.80 93.63 ± 0.82 93.63 ± 0.80 93.61 ± 0.84

Table 6 summarizes the prediction performance of the DenseNet121 model on the test dataset
using the Adam optimizer. The results indicate consistently high accuracy, precision, recall, and
F1-score values across repeated runs, with relatively small standard deviations. This suggests
that the model achieves stable and reliable predictive performance when optimized using Adam,
while maintaining good generalization on unseen data.

Table 7: Prediction performance of DenseNet121 using AdamW optimizer (mean ± standard deviation)
Optimizer Accuracy (%) Precision (%) Recall (%) F1-score (%)
AdamW 92.88 ± 0.89 92.85 ± 0.90 92.88 ± 0.89 92.80 ± 0.90

Table 7 summarizes the prediction performance of the DenseNet121 model optimized using
AdamW. The results indicate stable performance across three independent runs, as reflected by
the relatively small standard deviations. Overall, AdamW achieves competitive accuracy and
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balanced precision–recall values on the test dataset, demonstrating consistent generalization
capability.

Table 8: Prediction performance of DenseNet121 using RMSprop optimizer (mean ± standard deviation)
Optimizer Accuracy (%) Precision (%) Recall (%) F1-score (%)
RMSprop 92.25 ± 1.18 92.33 ± 0.98 92.25 ± 1.18 92.11 ± 1.32

Table 8 presents the prediction performance of the DenseNet121 model optimized using
RMSprop. The results show slightly higher variability across runs compared to Adam and AdamW,
as indicated by larger standard deviations. Nevertheless, RMSprop maintains competitive
accuracy and balanced precision, recall values on the test dataset, indicating stable but less
consistent performance under repeated training.

Based on the results presented in Table 6–Table 8, the DenseNet121 model demonstrates
strong and consistent prediction performance across all evaluated optimization strategies. Among
the three optimizers, Adam achieves the highest overall accuracy and F1-score with the smallest
standard deviation, indicating superior stability and reliable generalization on the test dataset.
AdamW also shows competitive performance with balanced precision and recall values, suggesting
its effectiveness in maintaining robust predictions while incorporating weight decay regularization.
In contrast, RMSprop exhibits slightly higher variability across runs, as reflected by larger
standard deviations, although its overall accuracy and class-wise performance remain comparable.
These findings indicate that while all optimizers are capable of producing satisfactory results,
Adam provides the most stable and consistent performance for the DenseNet121 model on the
BreakHis dataset.

4 Conclusion
This study evaluated the performance of the DenseNet121 model for breast cancer histopathol-

ogy image classification using the BreakHis dataset under repeated experimental settings. Three
optimizers (Adam, AdamW, and RMSprop) were assessed using identical hyperparameters and
geometric data augmentation, with each configuration trained three times to reduce randomness.
The results demonstrate that DenseNet121 achieves consistently high predictive performance, as
reflected by stable training validation curves and competitive test accuracy, precision, recall, and
F1-score values. Among the evaluated optimizers, Adam showed the most stable performance
with the highest average metrics and the lowest variability across runs, while AdamW provided
comparable results and RMSprop exhibited slightly higher variation but remained competitive.

These findings indicate that DenseNet121 combined with geometric data augmentation is
an effective and reliable approach for histopathological image classification on limited medical
datasets. The use of repeated experiments and statistical evaluation strengthens the robustness
of the performance assessment and avoids overclaiming generalization capability. For further
research, it is recommended to use a larger and more diverse dataset, as well as explore other
architectures or advanced data balancing techniques to improve model stability during the
classification process. This study is expected to contribute to computer-aided diagnosis for early
detection of breast cancer.
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