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Abstract

Understanding spatial disparities in human development is essential for designing equitable
development policies. This study examines the spatial variation of the Human Development
Index (HDI) in East Java Province using an integrated Geographically Weighted Regres-
sion–Flower Pollination Algorithm (GWR–FPA) optimized with a Tricube kernel. The
integration of GWR and FPA enables simultaneous spatial weighting and bandwidth opti-
mization using the corrected Akaike Information Criterion (AICc) as the objective function.
For standard GWR, the bandwidth was selected using Cross-Validation (CV) to minimize
prediction error, while for the GWR–FPA model, bandwidth optimization was performed us-
ing the Flower Pollination Algorithm (FPA) with the corrected Akaike Information Criterion
(AICc) as the objective function. Three predictors were analyzed: population size (X1), liter-
acy rate (X2), and mean years of schooling (X3). Statistical diagnostics indicated significant
spatial autocorrelation and heteroskedasticity in the OLS residuals, justifying the use of a
spatial modeling framework. The GWR estimates revealed strong spatial non-stationarity:
X1 showed no significant local effect, whereas educational factors (X2 and X3) were signif-
icant in all 38 districts and cities. The FPA optimization enhanced bandwidth selection,
resulting in improved model fit. Model comparison based on AIC and AICc showed that the
GWR–FPA–Tricube model achieved the lowest values (AIC = 135.8821; AICc = 137.0045),
outperforming both global OLS and standard GWR. The results highlight the dominant
contribution of education-related components to the spatial decomposition of HDI variation
across East Java. The optimized model provides a more accurate spatial representation of
local development disparities, supporting targeted policy interventions and illustrating the
effectiveness of integrating metaheuristic optimization within spatial regression.
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1. Introduction
Human development disparities across regions require analytical approaches capable of capturing
spatial inequality to support effective policy formulation [1], [2]. In Indonesia, the Human
Development Index (HDI) remains a key indicator of well-being, reflecting achievements in health,
education, and income. East Java, as one of the most populous provinces, exhibits notable
spatial variation in HDI across its districts and cities, emphasizing the need for spatially aware
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modeling techniques [3], [4]. Such spatial variation poses challenges for conventional analysis
and highlights the importance of localized approaches. Therefore, methods that can explicitly
account for spatial heterogeneity are necessary to inform effective policy decisions.

Conventional regression models such as Ordinary Least Squares (OLS) assume constant
relationships between variables over space [5]. This assumption is often unrealistic in geographi-
cally diverse regions where socio-economic conditions differ significantly [6]. As a result, global
models may overlook localized dynamics, yielding less accurate interpretations of the spatial
structure and component-wise variation of HDI [7]. Consequently, there is a need for methods
that incorporate spatially varying effects to better capture local variations. These methods can
provide more nuanced insights into regional development disparities.

Geographically Weighted Regression (GWR) provides a framework to account for spatial
non-stationarity by allowing regression coefficients to vary across locations [8], [9]. Using the
Tricube kernel, GWR assigns higher weights to nearby observations while progressively reducing
the influence of more distant ones, making it suitable for socio-economic phenomena with smooth
spatial gradients [10], [11]. However, GWR’s performance strongly depends on optimal bandwidth
selection, which may be difficult to obtain using conventional numerical methods. This limitation
motivates the integration of metaheuristic optimization techniques. By optimizing bandwidths,
GWR can more accurately capture local variations and improve model performance.

To address this limitation, metaheuristic algorithms such as the Flower Pollination Algorithm
(FPA) have been employed to optimize GWR bandwidths and kernel parameters. FPA utilizes
global search via Lévy flights and local refinement through neighborhood-based pollination,
enabling it to escape local minima and produce more stable solutions [12], [13]. Integrating
FPA with GWR under a Tricube kernel results in a hybrid model that improves both spatial
adaptivity and predictive accuracy. This approach allows the model to capture complex spatial
patterns more reliably. Therefore, GWR–FPA provides a robust framework for spatially varying
regression analysis.

It should be noted that some explanatory variables used in this study, particularly literacy
rate and mean years of schooling, are structural components of the Human Development Index.
Accordingly, the modeling framework is not intended to establish causal relationships, but rather
to examine the spatial decomposition and relative contribution of HDI-related components
across regions. This conceptual limitation is explicitly acknowledged, and all interpretations are
restricted to explanatory and descriptive insights rather than causal inference. Nevertheless, the
findings can inform evidence-based planning and highlight regional differences in development
components. Therefore, this study focuses on descriptive and explanatory insights without
making causal claims.

This study applies the GWR–FPA Tricube approach to model spatial variations in HDI
across East Java. The research aims to (1) examine the spatial heterogeneity in the contribution
of HDI-related components, (2) evaluate the performance of OLS, standard GWR, and optimized
GWR–FPA using AIC-based model selection, and (3) generate a more accurate spatial representa-
tion of HDI disparities. The findings are expected to support region-specific development planning
and contribute to the advancement of hybrid spatial–metaheuristic modeling in socio-economic
analysis. By combining spatial modeling with metaheuristic optimization, this study provides
a practical tool for regional policy analysis. Therefore, this research not only analyzes HDI
disparities but also demonstrates the value of hybrid modeling approaches in socio-economic
studies.

It should be emphasized that the present study focuses on educational components of the
Human Development Index (HDI), specifically literacy rate and mean years of schooling, as key
predictors of HDI spatial variation. While HDI is traditionally calculated from health, education,
and income indices, health- and income-related indicators were excluded from the model for two
main reasons. First, these factors tend to exhibit less spatial variability at the district level in
East Java compared to education, which is more sensitive to local policy and socio-economic
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conditions. Second, the objective of this study is to examine the relative contribution and spatial
decomposition of education-related components, rather than modeling all HDI determinants
comprehensively. By concentrating on education, the analysis can more clearly reveal the
dominant spatial patterns and local effects influencing HDI across districts. Therefore, despite
the exclusion of health and economic factors, this research remains relevant for understanding
regional disparities in human development and for informing targeted educational policies.

2. Methods
This research employs secondary data obtained from the Central Statistics Agency (Badan Pusat
Statistik, BPS) of East Java Province. The dataset consists of one response variable, namely the
Human Development Index (HDI), and three predictor variables (X1, X2, X3), which represent
socioeconomic and demographic factors influencing HDI in 2024. Specifically, X1 denotes the
total population in each district or city, X2 represents the literacy rate as the percentage of
the population aged 15 years and above who are literate, and X3 indicates the mean years of
schooling, reflecting the average number of years of formal education completed by the population.
The analysis covers all regencies and cities in East Java Province, totaling 38 administrative
units.

Table 1: Research Variables
Variable Symbol Unit Source (Year)
Human Development Index Y Index BPS (2024)
Population Size X1 Persons BPS (2024)
Literacy Rate X2 % BPS (2024)
Mean Years of Schooling X3 Years BPS (2024)

Figure 1: Study Area (East Java Province)

The analytical method used in this study is Geographically Weighted Regression optimized
using the Flower Pollination Algorithm (GWR–FPA). The research procedure is as follows:

1. Data preparation: input the 2024 HDI dataset of East Java Province, construct geo-
graphical distance and spatial weight matrices (Tricube kernel), and standardize predictors
(X1, X2, X3).
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2. Preliminary diagnostics: test spatial autocorrelation (Moran’s I) and heteroskedasticity
(Breusch–Pagan) on OLS residuals. Apply GWR if spatial dependence or heterogeneity is
detected.

3. Model and FPA setup:
(a) Define GWR kernel and bandwidth search range.
(b) Set FPA parameters: population size N , scaling factor γ, Lévy parameter λ, switch

probability p, max iterations.
(c) Use corrected AIC (AICc) as fitness function to optimize bandwidth.

4. Optimization process: update candidate bandwidths via FPA. Stop when convergence
or max iterations are reached.

5. Final model and interpretation: estimate GWR with optimal bandwidth, evaluate
using AICc, and map local coefficients βk(ui, vi) across 38 districts to examine spatial
variation in HDI determinants.

2.1. Spatial Test
2.1.1. Multicollinearity Diagnostic
To assess whether the independent variables exhibit multicollinearity, the Variance Inflation
Factor (VIF) was employed [14]. VIF measures the degree to which the variance of a regression
coefficient is inflated due to linear correlation among predictors. For a given predictor Xk, the
VIF is defined as:

VIF(Xk) = 1
1 − R2

k

, (1)

where R2
k represents the coefficient of determination obtained by regressing Xk on all other

independent variables. A VIF value greater than 10 indicates severe multicollinearity, while
values below this threshold suggest that multicollinearity is not a concern. This test ensures that
the predictors included in the model are not excessively correlated with one another.

2.1.2. Spatial Autocorrelation Test Using Moran’s I
Spatial autocorrelation in the regression residuals was examined using Moran’s I, a widely used
global spatial statistic that determines whether values are spatially clustered, dispersed, or
randomly distributed [15]. Moran’s I is formulated as:

I = n

W
·
∑

i

∑
j wij(ei − ē)(ej − ē)∑

i(ei − ē)2 , (2)

where n is the number of spatial units, wij is the spatial weight between locations i and j, ei

is the residual at location i, ē is the mean residual, and W =
∑

i

∑
j wij . A hypothesis test is

performed using the standardized statistic:

ZI = I − E[I]√
Var(I)

, (3)

where a p-value greater than 0.05 indicates the absence of spatial autocorrelation. This test
ensures that the independence assumption of regression is not violated due to spatial effects.

2.1.3. Breusch–Pagan Heteroscedasticity Test
To evaluate whether the variance of the residuals is constant, the Breusch–Pagan (BP) test
was applied. This test detects heteroskedasticity by regressing the squared residuals on the
independent variables [16]. The BP statistic is defined as:
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BP =
n∑

i=1
û2

i z⊤
i

(
Z⊤Z

)−1
zi, (4)

where ûi denotes the residuals of the regression model, and Z represents the matrix of independent
variables. Under the null hypothesis of homoskedasticity, the BP statistic follows a chi-square
distribution with degrees of freedom equal to the number of predictors. A p-value greater than
0.05 leads to the acceptance of the null hypothesis, indicating that the model does not suffer
from heteroskedasticity.

2.2. Flower Pollination Algorithm
The Flower Pollination Algorithm (FPA) represents a metaheuristic optimization approach
inspired by the biological process of flower pollination [17]. As in nature, the reproductive success
of a flower species depends on pollination [18]. In this method, the algorithm distinguishes
between two mechanisms: global pollination and local pollination [19].The global pollination
mechanism of the Flower Pollination Algorithm (FPA) is an update rule used to generate new
candidate solutions through Lévy flight-based exploration. The update equation is defined as
follows:

θt+1
i = θt

i + γL(λ)
(
θ∗ − θt

i

)
(5)

The local pollination mechanism represents a neighborhood-based update rule that exploits
local solution differences to refine candidate solutions. The local update equation is given by:

θi
t+1 = θi

t + ϵ
(
θj

t − θk
t
)

(6)

The Flower Pollination Algorithm (FPA) updates candidate solutions (flowers) using four main
mechanisms. Global Pollination allows exploration of the search space by moving solutions
towards the global best with Lévy-distributed steps. Local Pollination enables exploitation by
adjusting solutions based on the difference between two randomly selected candidates. Selection
Rule ensures that a candidate solution is updated only if it improves the objective function.
Finally, Best Solution Update stores the best solution found so far, guiding the algorithm
towards the optimal solution.

In this study, the Flower Pollination Algorithm (FPA) optimizes the bandwidth parameter
of the Geographically Weighted Regression (GWR) model by minimizing the corrected Akaike
Information Criterion (AICc). The objective (fitness) function is defined as:

f(θ) = AICc(θ), (7)

where θ denotes the GWR bandwidth parameter.

2.3. Geographically Weighted Regression (GWR)
Geographically Weighted Regression (GWR) is a local regression technique used to model
spatially varying relationships between a response variable and a set of predictor variables [20].
Unlike global linear regression, which assumes that model parameters are constant across all
locations, GWR allows regression coefficients to vary spatially, enabling the model to capture
local heterogeneity [21].

Let yi denote the response variable at location i, and let (ui, vi) represent the geographical
coordinates of that location. The GWR model is expressed as:

yi = β0(ui, vi) +
p∑

k=1
βk(ui, vi)xki + εi, (8)

where βk(ui, vi) are location-specific regression coefficients and εi is the random error term.
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The local parameter estimates are obtained using weighted least squares. The estimator of
the local regression coefficients at location (ui, vi) is given by:

β̂(ui, vi) =
(
X⊤W(ui, vi)X

)−1
X⊤W(ui, vi)y, (9)

where X is the matrix of predictor variables with dimension n × p, where n is the number of
locations and p is the number of predictors; y is the response vector of dimension n × 1; and
W(ui, vi) is a diagonal spatial weighting matrix of dimension n × n, with the weights wij on its
diagonal.

The bandwidth b in Geographically Weighted Regression (GWR) determines the spatial
extent over which observations influence the local parameter estimates. If not optimized, the
bandwidth is usually selected based on the data, either by using a fixed distance (e.g., a set
number of nearest neighbors or a predefined geographic distance) or by following a rule-of-thumb
method. However, to obtain accurate and reliable GWR estimates, it is recommended to optimize
the bandwidth by minimizing a criterion such as the Akaike Information Criterion corrected
(AICc) or the Cross-Validation (CV) score.

In cases where b has not been optimized, it is obtained from either a default value or a
predefined rule applied to the dataset, rather than from a specific equation.

2.3.1. Bandwidth Selection Using FPA and Tricube Kernel Function
In this study, the bandwidth parameter of the GWR model is optimized using the Flower
Pollination Algorithm (FPA) with the objective of minimizing the corrected Akaike Information
Criterion (AICc). The optimal bandwidth b∗ is obtained as:

b∗ = arg min
b

AICc(b) (10)

Once the optimal bandwidth is determined, the Tricube kernel function is used to construct
spatial weights:

wij(b) =


(

1 −
(

dij

b

)3)3

, if dij < b,

0, if dij ≥ b,

(11)

where dij denotes the Euclidean distance between locations i and j.
This procedure applies exclusively to the GWR–FPA model. For comparison, the standard

GWR model uses a pre-specified bandwidth determined from data characteristics, ensuring a
clear separation of bandwidth selection procedures between the two models.

2.3.2. Model Selection Using AIC and AICc
Model selection is conducted using the Akaike Information Criterion (AIC) and its corrected
form AICc [22]. These criteria evaluate model quality by balancing goodness-of-fit and model
complexity [23]. The mathematical formulations are:

AIC = −2 ln(L̂) + 2k (12)

AICc = AIC + 2k(k + 1)
n − k − 1 (13)

where L̂ is the log-likelihood, k is the number of estimated parameters, and n is the sample
size.

The criteria for selecting the best model are summarized in Table 2.
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Table 2: Model Selection Criteria Based on AIC/AICc
Criterion Description
Lower AIC Indicates better model fit
Lower AICc Preferred for small sample sizes
Penalty Term Avoids overfitting by penalizing complex models
Best Model Rule Model with the smallest AICc is selected

Based on this criterion, the model with the minimum AICc value is selected as the best-
performing model among all competing specifications.

3. Results and Discussion

Lemma 3.1 (Derivation of the Objective Function of GWR for FPA Optimization). Let θ
denote the bandwidth parameter of the Geographically Weighted Regression (GWR) model.
For each spatial location i, the local regression model is defined as:

yi = β0(ui, vi) +
p∑

k=1
βk(ui, vi)xki + εi. (14)

The weighted least squares estimator of the local coefficients is:

β̂(ui, vi; θ) = (X⊤W (ui, vi; θ)X)−1X⊤W (ui, vi; θ)y. (15)

The fitted values of the GWR model can be written using the smoothing matrix:

ŷ(θ) = S(θ)y, S(θ) = X(X⊤W (θ)X)−1X⊤W (θ). (16)

The residual vector is:
e(θ) = (I − S(θ))y. (17)

The estimated error variance is given by:

σ̂2(θ) = e(θ)⊤e(θ)
n − tr(S(θ)) . (18)

Assuming normal errors, the log-likelihood becomes:

ln L(θ) = −n

2 ln(2π) − n

2 ln
(
σ̂2(θ)

)
− 1

2σ̂2(θ)e(θ)⊤e(θ). (19)

The corrected Akaike Information Criterion for GWR is:

AICc(θ) = −2 ln L(θ) + 2 tr(S(θ)) + 2 tr(S(θ)) (tr(S(θ)) + 1)
n − tr(S(θ)) − 1 . (20)

Thus, the objective function to be minimized by the Flower Pollination Algorithm (FPA) is:

f(θ) = AICc(θ). (21)

It should be noted that in Geographically Weighted Regression (GWR), the weighting matrix
is location-specific. For each spatial location i, a local weighting matrix Wi(b) is constructed
based on distances from location i. The overall smoothing matrix S(b) is therefore formed by
stacking the local hat vectors corresponding to each Wi(b), rather than arising from a single
global weighting matrix. The trace of S(b) represents the effective number of parameters in the
GWR model, following the standard formulation of GWR [10].
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Lemma 3.2 (Integration of the GWR Objective Function into the Flower Pollination
Algorithm). Let θi denote the i-th candidate solution (flower) in the Flower Pollination
Algorithm. For each θi, the value of the objective function is computed as:

f(θi) = AICc(θi). (22)

Global Pollination. The global update rule is:

θt+1
i = θt

i + L
(
θ∗ − θt

i

)
, (23)

where θ∗ is the global best solution and L is a Lévy-distributed step size:

L ∼ λΓ(λ) sin(πλ/2)
πs1+λ

. (24)

Local Pollination. The local update rule is:

θt+1
i = θt

i + ϵ(θt
j − θt

k), ϵ ∼ U(0, 1). (25)

Selection Rule.

θt+1
i =

θt+1
i , if f(θt+1

i ) < f(θt
i),

θt
i , otherwise.

(26)

Best Solution Update.
θ∗ = arg min

θi

f(θi). (27)

Lemma 2 describes the mechanism for updating candidate solutions in the Flower Pollination
Algorithm (FPA) based on their performance according to the GWR objective function. Specifi-
cally, each candidate solution (flower) θi is evaluated using the objective function f(θi) = AICc(θi),
which measures the goodness-of-fit of the GWR model with the given parameters.

The lemma establishes a selection rule whereby a candidate solution is updated only if the
new position leads to an improvement in the objective function. This ensures that the search
process consistently moves toward better solutions. Additionally, the global best solution θ∗ is
tracked and updated whenever a better candidate is found.

Thus, Lemma 2 is necessary to guarantee that the optimization process converges toward an
optimal or near-optimal set of parameters for the GWR model, ensuring accurate local regression
estimates while efficiently exploring the solution space using FPA.

3.1. Multicollinearity Test
3.1.1. Multicollinearity Test
Multicollinearity is assessed using the Variance Inflation Factor (VIF). A VIF value greater than
10 generally indicates severe multicollinearity, while values between 5 and 10 suggest moderate
multicollinearity.

Table 3: Variance Inflation Factor (VIF) Results
Variable VIF
X1 2.837
X2 2.386
X3 4.946

Interpretation. The VIF values for all three independent variables (X1, X2, and X3) are below
the threshold of 10, and also below the moderate multicollinearity level of 5. This indicates that
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multicollinearity is not present in the model. Therefore, the independent variables do not exhibit
strong linear relationships with one another, and the regression coefficients can be interpreted
reliably without inflation due to collinearity.

3.2. Statistical Assumption Testing
3.2.1. Spatial Autocorrelation Test Using Moran’s I
The Moran’s I test was conducted on the residuals of the OLS model to examine the presence of
spatial dependence. The test produced a p-value of 0.012, which is less than the 0.05 significance
level. Since 0.012 < 0.05, the null hypothesis of spatial randomness is rejected, indicating the
presence of significant spatial autocorrelation in the OLS residuals. This result suggests that
the independence assumption of the global OLS model is violated, reflecting spatial dependence
among neighboring observations.

It should be emphasized that Moran’s I specifically detects spatial dependence in the residuals
and does not directly indicate spatial non-stationarity of regression relationships. Therefore, this
diagnostic is interpreted as evidence of spatial dependence rather than as a direct justification
for the use of Geographically Weighted Regression (GWR).

3.2.2. Heteroskedasticity Test Using the Breusch–Pagan Test
The Breusch–Pagan test was conducted to examine the homoskedasticity assumption of the
regression residuals. The test yielded a p-value of 0.032, which is below the 0.05 significance level.
Since 0.032 < 0.05, the null hypothesis of homoscedasticity is rejected, indicating the presence
of heteroskedasticity in the regression residuals. This result suggests that the variance of the
errors is not constant across observations, violating a key assumption of the global Ordinary
Least Squares (OLS) model.

The detected heteroscedasticity provides empirical justification for employing spatially adap-
tive models such as Geographically Weighted Regression (GWR), which are better suited to
capture spatial heterogeneity and location-specific variance structures.

3.2.3. Parameter determination
The implementation of the GWR–FPA model in this study involved determining several key
model parameters, summarized as follows:

1. GWR parameters.
(a) Standard GWR: Optimal bandwidth bGWR = 320,000 was determined using Cross-

Validation.
(b) GWR–FPA: Optimal bandwidth bFPA = 393,560.6 was obtained using the Flower

Pollination Algorithm (FPA) with AICc as the objective function.

2. FPA parameters. The Flower Pollination Algorithm was executed using the following
settings: scaling factor γ = 0.1, Lévy parameter λ = 1.5, global pollination probability
p = 0.8, number of agents = 20, and maximum iterations = 100. These values ensured
stable optimization in the bandwidth search process.

3. Model evaluation criteria. The corrected Akaike Information Criterion (AICc) was used
as the optimization objective for the Flower Pollination Algorithm (FPA). The GWR–FPA
model produced improved AIC and AICc values compared to the global OLS and standard
GWR models (see Table 7), indicating enhanced model fit and effective capture of spatial
heterogeneity.
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3.3. GWR-FPA
3.3.1. GWR Local Regression Equations for All Districts/Cities
All variables in the GWR model, including both the response (HDI, Y ) and predictors (X),
are standardized. Consequently, the local GWR coefficients represent the relative influence of
each predictor on HDI in standardized units, allowing for direct comparison across variables and
locations. The local intercept corresponds to the standardized HDI when all predictors are at
their mean levels.

Table 4: GWR Local Regression Equations for All Districts/Cities in East Java
District/City GWR-FPA Equation
Pacitan Ŷ = 1.07 + 0.58X1 + 0.96X2 + 2.15X3
Ponorogo Ŷ = 4.44 + 0.53X1 + 0.97X2 + 2.16X3
Trenggalek Ŷ = 7.02 + 0.49X1 + 0.99X2 + 2.16X3
Tulungagung Ŷ = 9.35 + 0.46X1 + 1.00X2 + 2.16X3
Blitar Ŷ = 12.08 + 0.42X1 + 1.01X2 + 2.17X3
Kediri Ŷ = 9.58 + 0.46X1 + 1.00X2 + 2.17X3
Malang Ŷ = 14.16 + 0.39X1 + 1.01X2 + 2.18X3
Lumajang Ŷ = 15.86 + 0.37X1 + 1.00X2 + 2.20X3
Jember Ŷ = 18.18 + 0.33X1 + 1.01X2 + 2.22X3
Banyuwangi Ŷ = 22.12 + 0.27X1 + 1.05X2 + 2.24X3
Bondowoso Ŷ = 18.04 + 0.34X1 + 1.01X2 + 2.24X3
Situbondo Ŷ = 17.37 + 0.34X1 + 1.00X2 + 2.25X3
Probolinggo Ŷ = 15.38 + 0.38X1 + 0.99X2 + 2.21X3
Pasuruan Ŷ = 13.27 + 0.41X1 + 0.99X2 + 2.19X3
Sidoarjo Ŷ = 11.65 + 0.43X1 + 0.99X2 + 2.19X3
Mojokerto Ŷ = 10.89 + 0.44X1 + 0.99X2 + 2.18X3
Jombang Ŷ = 9.52 + 0.46X1 + 0.99X2 + 2.18X3
Nganjuk Ŷ = 9.75 + 0.45X1 + 1.00X2 + 2.16X3
Madiun Ŷ = 4.52 + 0.53X1 + 0.97X2 + 2.17X3
Magetan Ŷ = 1.27 + 0.58X1 + 0.95X2 + 2.16X3
Ngawi Ŷ = −0.21 + 0.60X1 + 0.93X2 + 2.17X3
Bojonegoro Ŷ = 4.16 + 0.53X1 + 0.96X2 + 2.18X3
Tuban Ŷ = 3.09 + 0.55X1 + 0.93X2 + 2.18X3
Lamongan Ŷ = 7.79 + 0.48X1 + 0.97X2 + 2.18X3
Gresik Ŷ = 8.30 + 0.48X1 + 0.95X2 + 2.20X3
Bangkalan Ŷ = 11.37 + 0.43X1 + 0.97X2 + 2.20X3
Sampang Ŷ = 12.97 + 0.41X1 + 0.97X2 + 2.21X3
Pamekasan Ŷ = 14.04 + 0.40X1 + 0.97X2 + 2.23X3
Sumenep Ŷ = 17.49 + 0.34X1 + 1.01X2 + 2.27X3
Kota Kediri Ŷ = 8.99 + 0.46X1 + 0.99X2 + 2.17X3
Kota Blitar Ŷ = 11.43 + 0.43X1 + 1.01X2 + 2.17X3
Kota Malang Ŷ = 13.45 + 0.40X1 + 1.00X2 + 2.18X3
Kota Probolinggo Ŷ = 14.71 + 0.39X1 + 0.99X2 + 2.20X3
Kota Pasuruan Ŷ = 13.26 + 0.41X1 + 0.99X2 + 2.19X3
Kota Mojokerto Ŷ = 10.28 + 0.45X1 + 0.99X2 + 2.18X3
Kota Madiun Ŷ = 3.26 + 0.55X1 + 0.96X2 + 2.17X3
Kota Surabaya Ŷ = 11.18 + 0.44X1 + 0.98X2 + 2.19X3

ŶKota Batu = 12.29 + 0.42X1 + 1.00X2 + 2.18X3 (28)

The GWR local regression results for 38 districts and cities in East Java reveal substantial
spatial variation in the effects of the predictor variables on the Human Development Index (HDI).
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As shown in Eq. (28), the local model for Kota Batu indicates that population size (X1), literacy
rate (X2), and mean years of schooling (X3) all have positive effects on HDI. The coefficient of
X1 ranges from 0.273 (Banyuwangi) to 0.598 (Ngawi), indicating substantial local heterogeneity
across districts. In contrast, X2 exhibits relatively limited spatial variation, with coefficients
ranging from 0.934 to 1.050. Meanwhile, X3 shows the strongest and most stable influence on
HDI, with coefficient values between 2.147 and 2.273, highlighting its dominant role in explaining
HDI variation. Negative coefficient values, although not observed in this study, would indicate
an inverse relationship with HDI, whereas positive coefficients—as illustrated in Eq. (28) reflect
a direct positive contribution.

To further ensure that the spatial heterogeneity captured by GWR does not leave residual
spatial dependence, Moran’s I test was applied to the residuals. The results show a p-value
greater than 0.05, indicating no significant spatial autocorrelation and confirming that GWR
improves the error structure relative to the global OLS model.

Figure 2: Spatial Distribution of Local GWR–FPA Coefficients

3.3.2. Modelling GWR–FPA
The bandwidth value obtained using the fixed Tricube kernel corresponds to a single optimal
bandwidth. The bandwidth was optimized using the Flower Pollination Algorithm (FPA) with
the objective of minimizing the corrected Akaike Information Criterion (AICc). The resulting
optimal bandwidth was b = 393,560.6, which was used uniformly across all observation locations.
After determining the optimal bandwidth and constructing the spatial weighting matrix using the
Tricube kernel, local regression parameters were estimated for each district/city. The distribution
of the main GWR parameter estimates is summarized in Table 5.

Table 5: Distribution of GWR Parameter Estimates (Tricube Kernel)
Variable Min Median Max
X1 0.273 0.435 0.598
X2 0.934 0.991 1.050
X3 2.147 2.183 2.273

Table 5 shows that the coefficient of X1 is consistently positive across all districts/cities,
ranging from 0.273 to 0.598. This indicates that increases in X1 are consistently associated with
improvements in the Human Development Index (HDI), although the strength of its influence
varies spatially. The coefficient of X2 is also consistently positive, ranging between 0.934 and
1.050, this indicates that higher literacy rates (X2) are consistently associated with improvements
in the Human Development Index (HDI). Meanwhile, X3 exhibits the largest impact among
all predictors, with coefficients ranging from 2.147 to 2.273. This implies that variations in X3
produce the strongest improvement in HDI throughout the study area.

3.3.3. Significance Analysis of Local GWR Parameters
Local inference for the GWR coefficients was conducted using location-specific t-statistics,
computed as:

tik = β̂k(ui, vi)
SE(β̂k(ui, vi))

, (29)
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where β̂k(ui, vi) is the local coefficient for predictor k at location i, and SE(β̂k(ui, vi)) is the
corresponding local standard error.

A local coefficient is classified as statistically meaningful if |tik| > 2, following a descriptive
guideline for exploratory spatial analysis. No formal multiple comparison adjustment was applied.

Table 6: Summary of Local Significance for GWR–FPA Parameters across 38 Districts/Cities in East
Java

Parameter Number of Districts/Cities with Significant Local Effect
Intercept 38 / 38
X1 (Population Size) 3 / 38
X2 (Literacy Rate) 38 / 38
X3 (Mean Years of Schooling) 38 / 38

Interpretation. The intercept is significant in all districts/cities. X1 (population size) shows
significant effects in only 3 out of 38 districts/cities, indicating **localized influence** in a few
areas while being negligible elsewhere. This pattern highlights spatial heterogeneity, suggesting
that the impact of population size on HDI is **context-dependent**, possibly driven by regional
characteristics. Meanwhile, X2 (literacy rate) and X3 (mean years of schooling) are consistently
significant across all districts/cities, confirming their dominant and spatially stable contribution
to HDI variation.

Figure 3: Spatial Distribution of Local GWR Coefficients

3.3.4. Best Model Selection
The selection of the best model between the OLS regression and various specifications of
the Geographically Weighted Regression (GWR) model was carried out to determine the most
appropriate model for the characteristics of the data. The main criteria used were the Akaike
Information Criterion (AIC) and AICc, where lower values indicate a better model in terms of
balancing goodness-of-fit and model complexity.

Table 7 presents a comparison of the AIC and AICc values for the OLS model, the
GWR–Tricube model, and the GWR–FPA–Tricube model.

Table 7: Comparison of AIC Values for OLS, GWR, and GWR–FPA Models
Model AIC AICc
OLS Regression (Global) 138.0064 138.0079
GWR–Tricube 136.9215 140.9693
GWR–FPA–Tricube 135.8821 137.0045

Based on Table 7, Although the AIC value of the GWR–Tricube model is numerically close
to that of the global OLS model, the corrected criterion (AICc) increases due to the larger
effective number of parameters in GWR, as reflected by the trace of the GWR smoothing matrix.
This highlights the importance of using AICc rather than AIC when comparing global and local
models. However, its AICc value increases due to the penalty for model complexity, resulting in
a slight decrease in overall performance. In contrast, the GWR–FPA–Tricube model generates
the lowest AIC and AICc values among all models evaluated. Therefore, the GWR–FPA–Tricube
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model is identified as the best-performing model and the most appropriate for capturing the
spatial variation of the Human Development Index (HDI) in East Java Province. For the GWR
models, the parameter count used in AIC/AICc computation corresponds to the effective number
of parameters, approximated by the trace of the GWR smoothing matrix, following standard
GWR model selection practice.

Figure 4: Observed vs Fitted Values

Table 7 presents the model comparison results. It should be noted that standard GWR
utilized Cross-Validation for bandwidth selection, whereas the GWR–FPA model applied FPA
optimization targeting AICc minimization. This separation ensures reproducibility and clarifies
the optimization strategy for each model.

3.3.5. Post-GWR Residual Diagnostics
To evaluate whether the GWR–FPA model successfully removed spatial dependence, Moran’s I
test was conducted on the residuals of the fitted GWR model. A Tricube spatial weighting scheme
was employed, consistent with the model kernel. The Moran’s I value of 0.028 with a p-value
of 0.248 indicates that the residuals of the GWR–FPA model do not exhibit significant spatial
autocorrelation. This confirms that the model adequately accounts for spatial heterogeneity in
HDI across East Java. The Tricube-based weighting scheme ensures that nearby observations
are weighted more heavily, effectively capturing local spatial variation. Both statistical (Moran’s
I) and visual diagnostics confirm that the GWR–FPA model residuals are spatially random.
This implies that the model has successfully removed spatial dependence and is appropriate for
modeling the spatial variation of HDI in the study area.

4. Conclusion
This study analyzed the spatial variation of the Human Development Index (HDI) in East
Java using a Tricube-based Geographically Weighted Regression–Flower Pollination Algorithm
(GWR–FPA). The results show clear spatial heterogeneity in the determinants of HDI: population
size (X1) was not significant in any district/city, while education-related variables—literacy
rate (X2) and mean years of schooling (X3)—were consistently significant across all 38 regions.
Model comparison based on AIC and AICc demonstrated that the GWR–FPA–Tricube model
outperformed both global OLS and standard GWR, indicating superior optimization and spatial
representation. Overall, the study successfully met its objectives by identifying spatially varying
HDI determinants, confirming the superiority of the optimized GWR–FPA model, and These
findings suggest that spatial disparities in HDI largely mirror disparities in education-related
components, which may inform region-specific development prioritization within the existing
HDI framework.

“The dataset and code analyzed during the current study are publicly available in the Badan
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Pusat Statistik East Java 20241.”

CRediT Authorship Contribution Statement
Friansyah Gani: Conceptualization, methodology, writing—original draft. Henny Pramoedyo:
Supervision, validation, editing. Achmad Efendi: Supervision, validation, editing.

Declaration of Generative AI and AI-assisted Technologies
The authors declare that no generative AI tools were used to generate or modify the data, results,
or analysis of this study. AI tools were used only for grammar improvement and formatting.

Declaration of Competing Interest
The authors declare no competing financial or personal interest.

Funding and Acknowledgments
This research received no external funding. The authors thank BPS Jawa Timur for providing
the dataset.

Data and Code Availability
The data used in this study are publicly available from the Badan Pusat Statistik (BPS) at
https://jatim.bps.go.id/id/publication/2025/05/27/47fde052cb353c601c21c209/ind
eks-pembangunan-manusia-provinsi-jawa-timur-2024.html. The code used for analysis in
this study can be provided by the corresponding author upon reasonable request.

References
[1] A. Cohen-Solal et al., “Geographic variation and human development index in heart failure

with reduced ejection fraction: Insights from victoria,” JACC: Heart Failure, vol. 13, no. 9,
p. 102 548, 2025. doi: 10.1016/j.jchf.2025.102548. https://www.sciencedirect.
com/science/article/pii/S2213177925004755.

[2] A. Al-Maadid, M. S. Ben Ali, and K. Si Mohammed, “The effect of climate risk on the human
development index using the panel time-varying interactive fixed effects,” Environmental and
Sustainability Indicators, vol. 27, p. 100 757, 2025. doi: 10.1016/j.indic.2025.100757.
https://www.sciencedirect.com/science/article/pii/S2665972725001783.

[3] F. Jiang, “Comment on “favorable breast cancer mortality-to-incidence ratios of coun-
tries with good human development index rankings and high health expenditures”,”
Taiwanese Journal of Obstetrics and Gynecology, vol. 64, no. 6, p. 1130, 2025. doi:
10.1016/j.tjog.2025.07.027. https://www.sciencedirect.com/science/article/
pii/S1028455925002797.

[4] B. Zulfiqar, L. Madureira, S. Abbas, F. Shahzad, and Z. Fareed, “Asymmetric impact of hu-
man development index on terrorism in pakistan: New findings from qardl,” Socio-Economic
Planning Sciences, vol. 100, p. 102 226, 2025. doi: 10.1016/j.seps.2025.102226. https:
//www.sciencedirect.com/science/article/pii/S0038012125000758.

[5] J. Casellas et al., “Classification of light yorkshire pigs at different production stages using
ordinary least squares and machine learning methods,” Animal, vol. 18, no. 1, p. 101 047,
2024. doi: 10 . 1016 / j . animal . 2023 . 101047. https : / / www . sciencedirect . com /
science/article/pii/S1751731123003646.

1https://jatim.bps.go.id

Friansyah Gani 252

https://jatim.bps.go.id/id/publication/2025/05/27/47fde052cb353c601c21c209/indeks-pembangunan-manusia-provinsi-jawa-timur-2024.html
https://jatim.bps.go.id/id/publication/2025/05/27/47fde052cb353c601c21c209/indeks-pembangunan-manusia-provinsi-jawa-timur-2024.html
https://doi.org/10.1016/j.jchf.2025.102548
https://www.sciencedirect.com/science/article/pii/S2213177925004755
https://www.sciencedirect.com/science/article/pii/S2213177925004755
https://doi.org/10.1016/j.indic.2025.100757
https://www.sciencedirect.com/science/article/pii/S2665972725001783
https://doi.org/10.1016/j.tjog.2025.07.027
https://www.sciencedirect.com/science/article/pii/S1028455925002797
https://www.sciencedirect.com/science/article/pii/S1028455925002797
https://doi.org/10.1016/j.seps.2025.102226
https://www.sciencedirect.com/science/article/pii/S0038012125000758
https://www.sciencedirect.com/science/article/pii/S0038012125000758
https://doi.org/10.1016/j.animal.2023.101047
https://www.sciencedirect.com/science/article/pii/S1751731123003646
https://www.sciencedirect.com/science/article/pii/S1751731123003646
https://jatim.bps.go.id


Spatial Variation of HDI in East Java. . .

[6] K. Tong, “Urbanization moderates the transitional linkages between energy resource
use, greenhouse gas emissions, socio-economic and human development: Insights from
subnational analyses in china,” Journal of Cleaner Production, vol. 476, p. 143 776, 2024.
doi: 10.1016/j.jclepro.2024.143776. https://www.sciencedirect.com/science/
article/pii/S0959652624032256.

[7] T. Goswami and S. Ghosal, “Domestic water poverty in a semi-arid district of eastern india:
Multiple dimensions, regional pattern, and association with human development,” Envi-
ronmental Development, vol. 44, p. 100 742, 2022. doi: 10.1016/j.envdev.2022.100742.
https://www.sciencedirect.com/science/article/pii/S2211464522000446.

[8] M. d. R. Ahumada et al., “Spatial analysis of fasciola hepatica prevalence in sheep flocks
from córdoba, argentina using gwr and idw models,” Veterinary Parasitology: Regional
Studies and Reports, vol. 66, p. 101 367, 2025. doi: 10.1016/j.vprsr.2025.101367.
https://www.sciencedirect.com/science/article/pii/S2405939025001753.

[9] S. Mondal, K. K. Gavsker, and B. Mandal, “Decoding spatial non-stationarity of urban
heat island in a million-plus indian city: An integrated analysis harnessing gwr, mgwr, and
geodetector models for urban climate resilience,” Advances in Space Research, 2025. doi:
10.1016/j.asr.2025.10.012. https://www.sciencedirect.com/science/article/
pii/S0273117725011433.

[10] S. W. Tyas, Gunardi, and L. A. Puspitasari, “Geographically weighted generalized poisson
regression model with the best kernel function in the case of postpartum maternal mortality
in east java,” MethodsX, vol. 10, p. 102 002, 2023. doi: 10.1016/j.mex.2023.102002.
https://www.sciencedirect.com/science/article/pii/S2215016123000079.

[11] R. Putra, M. G. Fadhlurrahman, and Gunardi, “Determination of the best knot and
bandwidth in geographically weighted truncated spline nonparametric regression us-
ing generalized cross validation,” MethodsX, vol. 10, p. 101 994, 2023. doi: 10.1016/
j . mex . 2022 . 101994. https : / / www . sciencedirect . com / science / article / pii /
S2215016122003685.

[12] M. Chu and W. Chen, “A bi-objective discrete flower pollination algorithm for planning
the collaborative disassembly of retired power batteries by humans and robots,” Applied
Soft Computing, vol. 177, p. 113 213, 2025. doi: 10.1016/j.asoc.2025.113213. https:
//www.sciencedirect.com/science/article/pii/S1568494625005241.

[13] Y. Hu, L. Qin, S. Li, X. Li, Y. Li, and W. Sheng, “Optimal chiller loading based on
flower pollination algorithm for energy saving,” Journal of Building Engineering, vol. 93,
p. 109 884, 2024. doi: 10.1016/j.jobe.2024.109884. https://www.sciencedirect.
com/science/article/pii/S2352710224014529.

[14] R. Neog and B. Ghasemzadeh, “Drivers and dynamics of urban sprawl in dimapur, in-
dia (1994–2024): A gini, ueii, and geographically weighted regression-based assessment,”
Advances in Space Research, 2025. doi: 10.1016/j.asr.2025.11.091. https://www.
sciencedirect.com/science/article/pii/S0273117725013754.

[15] D. Zhang and Y. Zhang, “Moran’s i of vrpad: A human activity-sensitive spatial pattern in-
dex for vegetation restoration evaluation,” Journal of Environmental Management, vol. 387,
p. 125 948, 2025. doi: 10.1016/j.jenvman.2025.125948. https://www.sciencedirect.
com/science/article/pii/S0301479725019243.

[16] B. Güloğlu, S. Taşpınar, O. Doğan, and A. K. Bera, “Testing homoskedasticity in spatial
panel data models,” Econometrics and Statistics, 2024. doi: 10.1016/j.ecosta.2024.04.
003. https://www.sciencedirect.com/science/article/pii/S2452306224000339.

Friansyah Gani 253

https://doi.org/10.1016/j.jclepro.2024.143776
https://www.sciencedirect.com/science/article/pii/S0959652624032256
https://www.sciencedirect.com/science/article/pii/S0959652624032256
https://doi.org/10.1016/j.envdev.2022.100742
https://www.sciencedirect.com/science/article/pii/S2211464522000446
https://doi.org/10.1016/j.vprsr.2025.101367
https://www.sciencedirect.com/science/article/pii/S2405939025001753
https://doi.org/10.1016/j.asr.2025.10.012
https://www.sciencedirect.com/science/article/pii/S0273117725011433
https://www.sciencedirect.com/science/article/pii/S0273117725011433
https://doi.org/10.1016/j.mex.2023.102002
https://www.sciencedirect.com/science/article/pii/S2215016123000079
https://doi.org/10.1016/j.mex.2022.101994
https://doi.org/10.1016/j.mex.2022.101994
https://www.sciencedirect.com/science/article/pii/S2215016122003685
https://www.sciencedirect.com/science/article/pii/S2215016122003685
https://doi.org/10.1016/j.asoc.2025.113213
https://www.sciencedirect.com/science/article/pii/S1568494625005241
https://www.sciencedirect.com/science/article/pii/S1568494625005241
https://doi.org/10.1016/j.jobe.2024.109884
https://www.sciencedirect.com/science/article/pii/S2352710224014529
https://www.sciencedirect.com/science/article/pii/S2352710224014529
https://doi.org/10.1016/j.asr.2025.11.091
https://www.sciencedirect.com/science/article/pii/S0273117725013754
https://www.sciencedirect.com/science/article/pii/S0273117725013754
https://doi.org/10.1016/j.jenvman.2025.125948
https://www.sciencedirect.com/science/article/pii/S0301479725019243
https://www.sciencedirect.com/science/article/pii/S0301479725019243
https://doi.org/10.1016/j.ecosta.2024.04.003
https://doi.org/10.1016/j.ecosta.2024.04.003
https://www.sciencedirect.com/science/article/pii/S2452306224000339


Spatial Variation of HDI in East Java. . .

[17] F. Gani, H. Pramoedyo, and A. Efendi, “Modeling fuzzy geographically weighted clustering
with flower pollination algorithm for spatial optimization and clustering,” CAUCHY: Jurnal
Matematika Murni dan Aplikasi, vol. 10, no. 2, pp. 1205–1218, 2025. doi: 10.18860/cauchy.
v10i2.36800. https://doi.org/10.18860/cauchy.v10i2.36800.

[18] N. Chauhan, N. Kaur, K. S. Saini, S. Verma, R. Abu Khurma, and P. A. Castillo, “Maxi-
mizing resource efficiency in cloud data centers through knowledge-based flower pollination
algorithm (kb-fpa),” Computers, Materials and Continua, vol. 79, no. 3, pp. 3757–3782,
2024. doi: 10.32604/cmc.2024.046516. https://www.sciencedirect.com/science/
article/pii/S1546221824000304.

[19] M. Abdel-Basset and L. A. Shawky, “Flower pollination algorithm: A comprehensive
review,” Artificial Intelligence Review, vol. 52, no. 4, pp. 2533–2557, 2019. doi: 10.1007/
s10462-018-9624-4.

[20] Z. Huisheng et al., “Exploring groundwater potential: Combining gis techniques with ols,
gwr, and exploratory regression,” Journal of Hydrology: Regional Studies, vol. 61, p. 102 564,
2025. doi: 10.1016/j.ejrh.2025.102564. https://www.sciencedirect.com/science/
article/pii/S2214581825003891.

[21] B. Mandal and K. P. Goswami, “Evaluating the influence of biophysical factors in explaining
spatial heterogeneity of lst: Insights from brahmani-dwarka interfluve leveraging geodetector,
gwr, and mgwr models,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 138,
p. 103 836, 2025. doi: 10.1016/j.pce.2024.103836. https://www.sciencedirect.com/
science/article/pii/S1474706524002948.

[22] G. Flood-Page, L. Boutonnier, and J.-M. Pereira, “Application of the akaike information
criterion to the interpretation of bender element tests,” Soil Dynamics and Earthquake
Engineering, vol. 177, p. 108 373, 2024. doi: 10.1016/j.soildyn.2023.108373. https:
//www.sciencedirect.com/science/article/pii/S0267726123006188.

[23] S. Kudo, M. Fujimoto, T. Sato, and A. Nagano, “Determination of the optimal number of
linked rigid-bodies of the trunk during walking and running based on akaike’s information
criterion,” Gait & Posture, vol. 77, pp. 264–268, 2020. doi: 10.1016/j.gaitpost.2020.02.
009. https://www.sciencedirect.com/science/article/pii/S0966636220300709.

Friansyah Gani 254

https://doi.org/10.18860/cauchy.v10i2.36800
https://doi.org/10.18860/cauchy.v10i2.36800
https://doi.org/10.18860/cauchy.v10i2.36800
https://doi.org/10.32604/cmc.2024.046516
https://www.sciencedirect.com/science/article/pii/S1546221824000304
https://www.sciencedirect.com/science/article/pii/S1546221824000304
https://doi.org/10.1007/s10462-018-9624-4
https://doi.org/10.1007/s10462-018-9624-4
https://doi.org/10.1016/j.ejrh.2025.102564
https://www.sciencedirect.com/science/article/pii/S2214581825003891
https://www.sciencedirect.com/science/article/pii/S2214581825003891
https://doi.org/10.1016/j.pce.2024.103836
https://www.sciencedirect.com/science/article/pii/S1474706524002948
https://www.sciencedirect.com/science/article/pii/S1474706524002948
https://doi.org/10.1016/j.soildyn.2023.108373
https://www.sciencedirect.com/science/article/pii/S0267726123006188
https://www.sciencedirect.com/science/article/pii/S0267726123006188
https://doi.org/10.1016/j.gaitpost.2020.02.009
https://doi.org/10.1016/j.gaitpost.2020.02.009
https://www.sciencedirect.com/science/article/pii/S0966636220300709

	Introduction
	Methods
	Spatial Test
	Multicollinearity Diagnostic
	Spatial Autocorrelation Test Using Moran's I
	Breusch–Pagan Heteroscedasticity Test

	Flower Pollination Algorithm
	Geographically Weighted Regression (GWR)
	Bandwidth Selection Using FPA and Tricube Kernel Function
	Model Selection Using AIC and AICc


	Results and Discussion
	Multicollinearity Test
	Multicollinearity Test

	Statistical Assumption Testing
	Spatial Autocorrelation Test Using Moran's I
	Heteroskedasticity Test Using the Breusch–Pagan Test
	Parameter determination

	GWR-FPA
	GWR Local Regression Equations for All Districts/Cities
	Modelling GWR–FPA
	Significance Analysis of Local GWR Parameters
	Best Model Selection
	Post-GWR Residual Diagnostics


	Conclusion

