Spline Nonparametric Regression to Analyze Factors Affecting Gender Empowerment Measure (GEM) in East Java

Luluk Mahfiroh, Yuniar Farida


Gender is a multidimensional issue that's not limited to gender discrimination, but alsoincludes the economic, educational, and health aspects, which then become the focus of almost all the Sustainable Development Goals (SDGs). Evaluation of the development devoted to the perspective of the gender using several indicators, Gender Development Index (GDI) and Gender Empowerment Measure (GEM). GEM describes the role of women in the economic sphere and is measured by equality in political participation. GEM of East Java for 5 consecutive years (2014 – 2018) is lower than the average national GEM. This study aims to identify factors affecting GEM in East Java using nonparametric regression spline quadratic. The result ofthe regression model shows the factors affecting GEM East Java is the Labor Force Participation Rate(LFPR) population of women (), School Participation Rate(SPR) high school population of women (), Percentage of Population Female thatWorking in the formal sector (), sex ratio (), Percentage of Population Female that Working as members of People’s Representative Council (), Percentage of Population Female that working as Civil Servants (), and rate of women's income donations (). The model generates value of 93.74% and MAPE of 3.22%.This research contributes to the implementation of non-parametric spline regression in identifying various factors that influence social phenomena.


Gender Empowerment Measure (GEM); Gender Development Index (GDI); Nonparametric Regression; Spline; Generalized Cross-Validation (GCV)

Full Text:



Gadis Arifia and Nur Iman Subono, “A Hundred Years of Feminism in Indonesia An Analysis of Actors, Debates and Strategies,” Ctry. Study, pp. 1–28, 2017, [Online]. Available: www.fes-asia.org.

KPPA and BPS, Pembangunan Manusia Berbasis Gender 2016. Jakarta: CV. Lintas Khatulistiwa, 2016.

S. Akter et al., “Women’s empowerment and gender equity in agriculture: A different perspective from Southeast Asia,” Food Policy, vol. 69, pp. 270–279, 2017, doi: 10.1016/j.foodpol.2017.05.003.

KPPA and BPS, Pembangunan Manusia Berbasis Gender 2018. Jakarta: KPPA, 2018.

KPPA and BPS, Pembangunan Manusia Berbasis Gender 2013. Jakarta: CV. Lintas Khatulistiwa, 2013.

Badan Pusat Statistik, “Indeks Pemberdayaan Gender Menurut Provinsi, 2010-2018.”

R. P. Rangel, M. de L. G. Magaña, R. U. Azpeitia, and E. Nesterova, “Mathematical Modeling in Problem Situations of Daily Life,” J. Educ. Hum. Dev., vol. 5, no. 1, pp. 62–76, 2016, doi: 10.15640/jehd.v5n1a7.

R. Kurniawan and B. Yuniarto, Analisis Regresi Dasar dan Penerapannya dengan R. Jakarta: Kencana, 2016.

N. A. Erilli, “Non-Parametric Regressiın Estimation For Data With Equal Values,” Eur. Sci. J. Febr. 2014, vol. 10, no. 4, pp. 70–82, 2014.

R. Syam, W. Sanusi, and R. Adawiyah, “Model Regresi Nonparametrik dengan Pendekatan Spline ( Studi Kasus : Berat Badan Lahir Rendah di Rumah Sakit Ibu dan Anak Siti Fatimah Makassar ),” 2017.

K. N. Fadhilah, “PEMODELAN REGRESI SPLINE TRUNCATED UNTUK DATA LONGITUDINAL ( Studi Kasus : Harga Saham Bulanan pada Kelompok Saham Perbankan Periode Januari 2009 – Desember 2015 ),” vol. 5, pp. 447–454, 2016.

M. F. F. Mardianto, E. Tjahjono, and M. Rifada, “Statistical modelling for prediction of rice production in Indonesia using semiparametric regression based on three forms of fourier series estimator,” ARPN J. Eng. Appl. Sci., vol. 14, no. 15, pp. 2763–2770, 2019.

F. N. Hidayah, Analisis Regresi Nonparametrik Spline Linear. Yogyakarta: Fakultas Saintek UIN Sunan Kalijaga, 2019.

Y. H. Chan, C. D. Correa, and K. L. Ma, “The generalized sensitivity scatterplot,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 10, pp. 1768–1781, 2013, doi: 10.1109/TVCG.2013.20.

P. Taylan, G. W. Weber, L. Liu, and F. Yerlikaya-Özkurt, “On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization,” Comput. Math. with Appl., vol. 60, no. 1, pp. 134–143, 2010, doi: 10.1016/j.camwa.2010.04.040.

X. Ni, H. H. Zhang, and D. Zhang, “Automatic model selection for partially linear models,” J. Multivar. Anal., vol. 100, no. 9, pp. 2100–2111, 2009, doi: 10.1016/j.jmva.2009.06.009.

A. Pawar et al., “Adaptive FEM-based nonrigid image registration using truncated hierarchical B-splines,” Comput. Math. with Appl., vol. 72, no. 8, pp. 2028–2040, 2016, doi: 10.1016/j.camwa.2016.05.020.

H. A. Farahani, A. Rahiminezhad, L. Same, and K. Immannezhad, “A comparison of Partial Least Squares (PLS) and Ordinary Least Squares (OLS) regressions in predicting of couples mental health based on their communicational patterns,” Procedia - Soc. Behav. Sci., vol. 5, pp. 1459–1463, 2010, doi: 10.1016/j.sbspro.2010.07.308.

A. Prahutama, Suparti, and T. W. Utami, “Modelling fourier regression for time series data - A case study: Modelling inflation in foods sector in Indonesia,” J. Phys. Conf. Ser., vol. 974, no. 1, 2018, doi: 10.1088/1742-6596/974/1/012067.

R. L. Eubank, Nonparametric Regression and Spline Smoothing, 2nd Editio. New York: Mercel Dekker, 1988.

DOI: https://doi.org/10.18860/ca.v7i1.12993


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.