Modeling Length of Hospital Stay for Patients With COVID-19 in West Sumatra Using Quantile Regression Approach

Ferra Yanuar, Athifa Salsabila Deva, Maiyastri Maiyastri, Hazmira Yozza, Aidinil Zetra


This study aims to construct the model for the length of hospital stay for patients with COVID-19 using quantile regression and Bayesian quantile approaches. The quantile regression models the relationship at any point of the conditional distribution of the dependent variable on several independent variables. The Bayesian quantile regression combines the concept of quantile analysis into the Bayesian approach. In the Bayesian approach, the Asymmetric Laplace Distribution (ALD) distribution is used to form the likelihood function as the basis for formulating the posterior distribution. All 688 patients with COVID-19 treated in M. Djamil Hospital and Universitas Andalas Hospital in Padang City between March-July 2020 were used in this study. This study found that the Bayesian quantile regression method results in a smaller 95% confidence interval and higher value than the quantile regression method. It is concluded that the Bayesian quantile regression method tends to yield a better model than the quantile method. Based on the Bayesian quantile regression method, it investigates that the length of hospital stay for patients with COVID-19 in West Sumatra is significantly influenced by Age, Diagnoses status, and Discharge status.


Length of hospital stay; COVID-19; quantile regression; Bayesian quantile regression; Asymmetric Laplace Distribution (ALD)

Full Text:



Kemenkes RI, “KMK No. HK.01.07-MENKES-413-2020 ttg Pedoman Pencegahan dan Pengendalian COVID-19.pdf.” 2020. [Online]. Available:

N. Lapidus, X. Zhou, F. Carrat, B. Riou, Y. Zhao, and G. Hejblum, “Biased and unbiased estimation of the average length of stay in intensive care units in the Covid-19 pandemic,” Ann. Intensive Care, vol. 10, no. 1, p. 135, Dec. 2020, doi: 10.1186/s13613-020-00749-6.

E. M. Rees et al., “COVID-19 length of hospital stay: a systematic review and data synthesis,” BMC Med, vol. 18, no. 1, p. 270, Dec. 2020, doi: 10.1186/s12916-020-01726-3.

S. Wu et al., “Understanding factors influencing the length of hospital stay among non-severe COVID-19 patients: A retrospective cohort study in a Fangcang shelter hospital,” PLoS ONE, vol. 15, no. 10, p. e0240959, Oct. 2020, doi: 10.1371/journal.pone.0240959.

N. Desviona and F. Yanuar, “Simulation Study of Autocorrelated Error Using Bayesian Quantile Regression,” sci. technol. indones., vol. 5, no. 3, pp. 70–74, Jul. 2020, doi: 10.26554/sti.2020.5.3.70-74.

R. Alhamzawi, K. Yu, and D. F. Benoit, “Bayesian adaptive Lasso quantile regression,” Statistical Modelling, vol. 12, no. 3, pp. 279–297, Jun. 2012, doi: 10.1177/1471082X1101200304.

R. Alhamzawi and K. Yu, “Variable selection in quantile regression via Gibbs sampling,” Journal of Applied Statistics, vol. 39, no. 4, pp. 799–813, Apr. 2012, doi: 10.1080/02664763.2011.620082.

K. Yu and R. A. Moyeed, “Bayesian quantile regression,” Statistics & Probability Letters, vol. 54, pp. 437–447, 2001.

H. Kozumi and G. Kobayashi, “Gibbs sampling methods for Bayesian quantile regression,” Journal of Statistical Computation and Simulation, vol. 81, no. 11, pp. 1565–1578, Nov. 2011, doi: 10.1080/00949655.2010.496117.

D. F. Benoit and D. Van den Poel, “Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution,” J. Appl. Econ., vol. 27, no. 7, pp. 1174–1188, Nov. 2012, doi: 10.1002/jae.1216.

Y. Feng, Y. Chen, and X. He, “Bayesian quantile regression with approximate likelihood,” Bernoulli, vol. 21, no. 2, pp. 832–850, May 2015, doi: 10.3150/13-BEJ589.

Y. Yang, H. J. Wang, and X. He, “Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood: Bayesian Quantile Regression,” International Statistical Review, vol. 84, no. 3, pp. 327–344, Dec. 2016, doi: 10.1111/insr.12114.

E. J. Nam, E. K. Lee, and M.-S. Oh, “Bayesian quantile regression analysis of Korean Jeonse deposit,” CSAM, vol. 25, no. 5, pp. 489–499, 2018, doi: 10.29220/CSAM.2018.25.5.489.

M.-S. Oh, J. Choi, and E. S. Park, “Bayesian variable selection in quantile regression using the Savage–Dickey density ratio,” Journal of the Korean Statistical Society, vol. 45, no. 3, pp. 466–476, 2016, doi: 10.1016/j.jkss.2016.01.006.

F. Yanuar, A. Zetra, C. Muharisa, D. Devianto, A. R. Putri, and Y. Asdi, “Bayesian Quantile Regression Method to Construct the Low Birth Weight Model,” J. Phys.: Conf. Ser., vol. 1245, p. 012044, Aug. 2019, doi: 10.1088/1742-6596/1245/1/012044.

H. A. Huskamp, D. G. Stevenson, D. C. Grabowski, E. Brennan, and N. L. Keating, “Long and Short Hospice Stays among Nursing Home Residents at the End of Life,” Journal of Palliative Medicine, vol. 13, no. 8, pp. 957–964, Aug. 2010, doi: 10.1089/jpm.2009.0387.

B. G. Kaufman, C. A. Sueta, C. Chen, B. G. Windham, and S. C. Stearns, “Are Trends in Hospitalization Prior to Hospice Use Associated With Hospice Episode Characteristics?,” Am J Hosp Palliat Care, vol. 34, no. 9, pp. 860–868, Nov. 2017, doi: 10.1177/1049909116659049.

K. Yuki, M. Fujiogi, and S. Koutsogiannaki, “COVID-19 pathophysiology: A review,” Clinical Immunology, vol. 215, p. 108427, Jun. 2020, doi: 10.1016/j.clim.2020.108427.

Y. Du et al., “Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan. A Retrospective Observational Study,” Am J Respir Crit Care Med, vol. 201, no. 11, pp. 1372–1379, Jun. 2020, doi: 10.1164/rccm.202003-0543OC.

C. Gebhard, V. Regitz-Zagrosek, H. K. Neuhauser, R. Morgan, and S. L. Klein, “Impact of sex and gender on COVID-19 outcomes in Europe,” Biol Sex Differ, vol. 11, no. 1, pp. 1–13, Dec. 2020, doi: 10.1186/s13293-020-00304-9.

R. Alhamzawi, K. Yu, and H. Mallick, “Quantile Regression and Beyond in Statistical Analysis of Data,” Journal of Probability and Statistics, vol. 2019, pp. 1–1, Jul. 2019, doi: 10.1155/2019/2635306.

C. Muharisa, F. Yanuar, and D. Devianto, “Simulation Study The Using of Bayesian Quantile Regression in Nonnormal Error,” CAUCHY, vol. 5, no. 3, p. 121, Dec. 2018, doi: 10.18860/ca.v5i3.5633.

I. Ntzoufras, Bayesian modeling using WinBUGS. Hoboken, N.J: Wiley, 2009.

F. Yanuar, H. Yozza, F. Firdawati, I. Rahmi, and A. Zetra, “Applying bootstrap quantile regression for the construction of a low birth weight model,” msk, vol. 23, no. 2, Aug. 2019, doi: 10.7454/msk.v23i2.9886.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Faximile (+62) 341 558933

Creative Commons License
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.