Penyelesaian Persamaan Diferensial Parsial Fokker-Planck Dengan Metode Garis
Abstract
Keywords
Full Text:
PDFReferences
Chapra, S.C. dan Canale, R.P. (2002). Numerical Methods for Engineers with Software and Programing Applications. Fourth Edition. New York: The Mc Graw-Hill Companies, Inc.
Frank, T. (2004). Nonlinear Fokker-Planck Equation. Munster: Springer-Berlin.
Hamdi S., William E. Schiesser, Graham W. Griffiths. (2009). Method of Lines. Scholarpedia, 5.
Hussain, E. d. (2013). The Finite Volume Method for Solving Systems of Non-linear Initial-Boundary Value Problems for PDE's. Applied Mathematical Science, 1737-1755.
Ozdes A. dan Aksan E.N. (2006). The Method of Lines Solution of the Korteweg-de Vries Equation for Small Times. Int. J. Contemp. Math. Science, 639-650.
Palupi, D. (2010). Persamaan Fokker-Planck dan Aplikasinya dalam Astrofisika. Jurnal Berkala Fisika, A1-A6.
Pregla, R. (2008). Analysis of Elegtromagnetic Fields and Waves: The Method of Lines. British: John Wiley & Sons, Ltd.
Sadiku, M.N.O dan Obiozor, C.N. (1997). A Simple Introduction to the Method of Lines . International Journal of Electrical Engineering Education, 282-296.
Triatmodjo, B. (2002). Metode Numerik Dilengkapi dengan Program Komputer. Yogyakarta: Beta Offset.
Zauderer, E. (2006). Partial Differential Equations of Applied Mathematich. New York: Wiley-Interscience.
DOI: https://doi.org/10.18860/ca.v3i3.2943
Refbacks
- There are currently no refbacks.
Copyright (c) 2014 Siti Muyassaroh
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.