Hybrid Model GSTAR-SUR-NN For Precipitation Data

Agus Dwi Sulistyono, Waego Hadi Nugroho, Rahma Fitriani, Atiek Iriani

Abstract


Spatio-temporal model that have been developed such as Space-Time Autoregressive (STAR) model, Generalized Space-Time Autoregressive (GSTAR), GSTAR-OLS and GSTAR-SUR. Besides spatio-temporal phenomena, in daily life, we often find nonlinear phenomena, uncommon patterns and unidentified characteristics of the data. One of current developed nonlinear model is a neural network. This study is conducted to form a hybrid model GSTAR-SUR-NN to develop spatio-temporal model that has better prediction. This research is conducted on ten-daily rainfall data at 2005 - 2015 for Blimbing, Singosari, Karangploso, Dau, and Wagir region. Based on the results of this research, indicated that the accuracy of GSTAR ((1), 1,2,3,12,36)-SUR model used cross-covariance weight has relatively similar to GSTAR ((1), 1,2,3 , 12.36)-SUR-NN (25-14-5) for  Blimbing and Singosari region with 5% error level. While Karangploso, Dau, and Wagir, GSTAR ((1), 1,2,3,12,36)-SUR-NN (25-14-5) model has better accuracy in predicting the precipitation at three locations with the value of R2prediction for each location is 0.992, 0.580, and 0.474.

Keywords


spatio temporal; precipitation; hybrid model; neural network

Full Text:

PDF

References


P. E. Pfeifer and S. J. Deutsch, “Identification and Interpretation of First Order Space-Time ARMA Models,” Technometrics, vol. 22, no. 3, pp. 397–408, 1980.

B. N. Ruchjana, “Study on the Weight Matrix in the Space-Time Autoregressive Model,” in Proceeding of the 10th International Symposium on Applied Stochastic Models and Data Analysis (ASMDA), France, 2001, vol. 2, pp. 789–794.

B. N. Ruchjana, “A Generalized Space Time Autoregressive Model and its Application to Oil Production Data,” Institut Teknologi Bandung, Bandung, 2002.

A. Iriany, Suhariningsih, B. N. Ruchjana, and Setiawan, “Prediction of Precipitation Data at Batu Town Using the GSTAR (1,p)-SUR Model,” J. Basic Appl. Sci. Res., vol. 3, no. 6, pp. 860–865, 2013.

S. Suhartono and S. Subanar, “The Optimal Determination Of Space Weight in Gstar Model by Using Cross-Correlation Inference,” Quant. METHODS, vol. 2, no. 2, pp. 45–53, Dec. 2006.

Suhartono and R. M. Atok, “Pemilihan Bobot Lokasi yang Optimal pada Model GSTAR,” in Prosiding Konferensi Nasional Matematika XIII, Semarang, 2006.

T. V. Apanasovich and M. G. Genton, “Cross-covariance functions for multivariate random fields based on latent dimensions,” Biometrika, vol. 97, no. 1, pp. 15–30, Mar. 2010.

E. Smirnova, “Statistical Analysis of Large Cross-Covariance and Cross-Correlation Matrices Produced by fMRI Images,” J. Biom. Biostat., vol. 5, no. 2, 2013.

H. Tong, Non-Linear Time Series: A Dynamical System Approach. Oxford University Press, 1993.

M. B. Priestley, Non-Linear and Non-Stationary Time Series Analysis, 2nd edition, 2nd ed. London: Academic Press, 1991.

T.-H. Lee, H. White, and C. W. J. Granger, “Testing for neglected nonlinearity in time series models: A comparison of neural network methods and alternative tests,” J. Econom., vol. 56, no. 3, pp. 269–290, Apr. 1993.

C. W. . Granger and T. Terasvirta, Modeling Nonlinear Economic Relationships. United Kingdom: Oxford University Press.

W. Dhoriva Urwatul and S. Suhartono, “PERAMALAN DERET WAKTU MULTIVARIAT SEASONAL PADA DATA PARIWISATA DENGAN MODEL VAR-GSTAR,” in Seminar Nasional Matematika dan Pendidikan Matematika 2009, 2009.

S. A. Borovkova, H. P. Lopuha, and B. N. Ruchjana, “Generalized S-TAR with Random Weights,” in the 17th International Workshop on Statistical Modeling, Chania-Greece.

W. H. Greene, Econometric analysis, 7th ed. Boston: Prentice Hall, 2012.

Suhartono, “Feedforward Neural Networks untuk Pemodelan Runtun Waktu,” Universitas Gajah Mada, Yogyakarta, 2007.

H. Suryono, “Auto Regressive Integrated Moving Average With Exogeneous Factor-Neural Network (ARIMAX-NN) pada Data Inflasi di Indonesia,” Institut Teknologi Sepuluh November, Surabaya, 2009.

B. Sutijo, S. Suhartono, and A. J Endharta, “Forecasting Tourism Data Using Neural Networks-Multiscale Autoregressive Model,” J. Mat. Sains, vol. 16, no. 1, pp. 35–42, 2011.




DOI: https://doi.org/10.18860/ca.v4i2.3490

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
 

Creative Commons License
Cauchy (ISSN: 2086-0382 / E-ISSN: 2477-3344) by http://ejournal.uin-malang.ac.id/index.php/Math is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.