Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces

Minanur Rohman

Abstract


In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  f : X to Y, where Y is a reflexive Banach space, then there exists a bounded linear operator   T : Y to X  with  such that

  

for every x in X.


Full Text:

PDF


DOI: http://dx.doi.org/10.18860/ca.v4i4.4100

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Phone (+62) 81336397956, Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id / jo_alkanderi57@yahoo.co.id
 

Creative Commons License
Cauchy (ISSN: 2086-0382 / E-ISSN: 2477-3344) by http://ejournal.uin-malang.ac.id/index.php/Math is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.