Mathematical Model Quartic Curve Bezier of Modification Cubic Curve Bezier

Juhari Juhari


The creative industries have become the government's attention for contributing to economic accretion. But due to the lack of artistic creativity and appeal, the evolution of the creative industries' craft section is not optimal. So that it was needed a variation of relief items to increase attractiveness. In general, an industrial object's design is still limited to the space geometry objects or a Bezier curve of degree two. Therefore, Bezier curves of degree are selected and modified it into a quartic Bezier forms and then applied to the design of industrial objects (glassware). The purpose of this research is to determine the formula of the quartic Bezier form of cubic Bezier modifications and to determine the rotary surface shape of quartic Bezier from cubic Bezier modifications. Then, from some form of the revolving surface of modified cubic Bezier, the glassware designs are generated. The results of this research are, first, the formula of the quartic Bezier result of Bezier cubic modifications. Second, the form of the revolving surface of modified cubic Bezier which is influenced by five control points P0, NP31, NP32, NP33, P3, and parameter lambda. For further research, it is expected to develop a modification of cubic Bezier into Bezier of degree-n


cubic Bezier modification, quartic Bezier, Modeling

Full Text:



E. Mortenson, Mathematics for Computer Grapichs Applications, New York: Industrial Press, Inc, 1999.

A. C. P. M. D. Kusno, "Modelisasi Benda Onyx dan Marmer Melalui Penggabungan dan Pemilihan Parameter Pengubah Bentuk Permukaan Putar Bezier," Jurnal Ilmu Dasar, vol. 8, no. 2, pp. 175-185, 2007.

E. O. Juhari, "Penerapan Kurva Bezier Karakter Simetrik dan Putar pada Model Kap Lampu Duduk Menggunakan MAPLE," CAUCHY: Jurnal Matematika Murni dan Aplikasi, vol. 4, no. 1, pp. 28-34, 2015.

Wahyudi, "Perancangan Objek-Objek Industri dengan Benda Permukaan Putar," Universitas Jember, Jember, 2001.

Roifah, "Modelisasi Knop Melalui Penggabungan Benda Dasar Hasil Deformasi Tabung, Prisma Segienam Beraturan, dan Permukaan Putar," Universitas Jember, Jember, 2013.

Arinda, "Konstruksi Vas Bunga Melalui Penggabungan Beberapa Benda Geometri Ruang," Universitas Jember, Jember, 2007.

E. Mortenson, Geometric Modelling, New York: Willey Komputer Publishing, 1996.

Kusno, Geometri Rancang Bangun Studi Surfas Putar Transformasi Titik Dan Proyeksi, Jember: Jurusan Matematika Fakultas MIPA Universitas Jember, 2003.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Faximile (+62) 341 558933

Creative Commons License
Cauchy (ISSN: 2086-0382 / E-ISSN: 2477-3344) by is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.