CHEMOMETRIC-BASED ELECTRONIC NOSE APPLICATION TO PORK OIL AND OLIVE OIL USING THE ODOR PATTERN CLASSIFICATIONS

Imam Tazi1*, Muthmainnah1, Suyono2, Avin Ainur3, Fajrul Falah1, Arum Sinda Santika1

1Department of Physics, Science, and Technology of Faculty, Maulana Malik Ibrahim Malang Gajayana St. No. 50 Malang 65144
2Department of Biology, Science, and Technology of Faculty, Maulana Malik Ibrahim Malang Gajayana St. No. 50 Malang 65144
3School of Medicine, Faculty of Medicine and Health Science, Maulana Malik Ibrahim Malang Gajayana St. No. 50 Malang 65144

Recieved: 10th April 2018; Revised: 19th April 2018; Accepted: 28th April 2018

ABSTRACT

A chemometric-based electronic nose has designed for analyzing pork oil and olive using the odor pattern classifications of a chemometric-based electronic nose. The electronic nose (e-nose) built from a combination of several chemical sensors derived from a semiconductor. The data retrieval was done by vaporizing the sample, then being captured by the sensor and identified by the electronic nose (e-nose). The output data from the electronic nose is the voltage released by each sensor. Samples analyzed were 100% olive oil, 100% pork oil and a combination of olive oil and pork oil with a ratio of 50%: 50%. The result of pattern classification using linear discriminant analysis (LDA) method shows that each sample is clustered well with the percentage of first discriminant function value is 87.9% and second discriminant function is 12.1%.

Keywords: electronic nose; LDA; pork oil; olive oil

Introduction

Cooking oil is one of the basic needs of human beings to fulfill daily needs. Currently, challenge analysis to detect the original cooking oil and the presence of pork oil contaminants to be the attention of researchers. The chemometric-based classification method can identify the quality of olive oil by determining the taste, the smell of musty, rancid and rancid. The combination of FTIR tools and chemometric methods to determine the pattern classification of various animal oils and vegetable oils has been able to improve the quality of classification patterns. Detecting the authenticity of vegetable oils using GC-MS can be used to analyze fatty acid compositions and fatty acid profiles.

Olive oil is an oil made from olives and has a high unsaturated fat value that is beneficial to health. Besides, it has high nutritional value; its price is also high and often falsified. The combination of semiconductor sensors can distinguish 141 samples labeled olive oil. The LDA method can classify original and non-native olive oils with a 95% accuracy level. The quality of olive oil has been investigated on how contamination of chemicals and bacteria during olive storage. Ultraviolet light is used to alter the olive oil scent to be rancid and able to be evaluated based on the degree of rancidity with a combination of sensors on the electronic nose.

The e-nose is an electronic olfactory system that has an aroma-based work system. The smell or aroma detected by the sensor will be processed and will form a

*Corresponding author.
E-Mail: imamtazi@yahoo.com
unique voltage change pattern for each sensor. The e-nose mimics the human sense of smell. The human sense of smell system divides into three layers. The first layer is a layer of olfactory cells that amount to about one billion cells. The second layer is an olfactory vesicle that serves to regulate, strengthen and control messages from olfactory cells. The third layer is the olfactory center located in the brain and is responsible for defining signals and classifying the types of smells. E-noses are made of semiconductor sensors arranged in parallel. It has been developed and widely used in the food industry.

Some research on cooking oil using e-nose aim to gain a fast and cheap method. The e-nose consists of 18 arrays of MOS metal sensors used to detect the degree of rancid sunflower oil. It can distinguish olive oil from different regions of Morocco based on its volatile profile. It also has been successfully developed to distinguish pig fat from other fats as well as mixed fat using surface acoustic wave (SAW).

Chemometrics is a combination of statistical and mathematical methods for designing optimum procedures in providing informations contained in a data. Chemometrics used to classify citrus fruit flavors with a major component value of 88.6%. Several types and brands of dairy products have been classified using chemometrics with a value of 90.5%.

Linear discriminant analysis (LDA) is a multivariate statistical technique that can classify objects into a particular group. The identification objects pattern can be determined by finding discriminant value in which its value can numerically classify the observed objects. The LDA technique classified the taste change of cow milk 100% and 98.6% goat milk when measured by using the electrical nose.

Methods

Data collection was done by preparing each sample in measuring cup as much as 50 ml. The e-nose chamber inserted into a measuring cup, and the sample heated to a temperature of 60°C. Each sensor in the e-nose measured the scent on each sample. Measurements on each sample were performed with ten repetitions with the sensing technique (duration 30 seconds), fleshing (duration 30 seconds) and sampling 1 data/second.

Figure 1. The process of taking data on the electronic nose

The sensor output data is analog data. Before displayed on the computer then first converted to digital using Analog Digital Converter (ADC).

Figure 2. Display the output of the electronic nose

Figure 2 is an example of output view on sampling data from process sensing, fleshing and sampling. Preprocessing data was done by searching for the extent of the sensing-fleshing results in the steady-state data and done by the baseline method. The result of measurement is numerical data then
processed by linear discriminant analysis method (LDA).

Result and Discussion

The e-nose constructed from an array of sensors using chemosensor. Chemosensor is a device that can convert chemical quantities into electrical signals. The concentrations change of specific particles such as atoms, molecules, ions in gas or fluid phases can alter the chemosensor electrical signals. It is also capable of detecting odor molecules in gas phases in the form of volatile organic molecules, ions in gas or fluid phases can change into electrical signals. A device that can convert chemical quantities into electrical signals is the chemosensor. Chemosensor is constructed from an array of sensors using the following chemical reactions:

\[e + \frac{1}{2}O_2 \rightarrow O(s)^- \]

(1)

\[X(g) + O(s)^- \rightarrow XO(g) + e \]

(2)

S is the surface, g is the gas phase, e is the electron of the conduction band on metal oxide semiconductor, and X is the reducible gas. Eq. (1) shows the oxygen absorbed in the hole of the oxide semiconductor. The conductivity of a semiconductor decreases when oxygen is absorbed. The electron is derived from the reduced gas of the oxygen ions reaction to the gas X (g).

Table 1. Sensor output on olive oil samples

<table>
<thead>
<tr>
<th>Name</th>
<th>Output Sensor (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Olive oil 1</td>
<td>251.8</td>
</tr>
<tr>
<td>Olive oil 2</td>
<td>275.5</td>
</tr>
<tr>
<td>Olive oil 3</td>
<td>273.6</td>
</tr>
<tr>
<td>Olive oil 4</td>
<td>282.2</td>
</tr>
<tr>
<td>Olive oil 5</td>
<td>264.7</td>
</tr>
<tr>
<td>Olive oil 6</td>
<td>251.7</td>
</tr>
<tr>
<td>Olive oil 7</td>
<td>255.5</td>
</tr>
<tr>
<td>Olive oil 8</td>
<td>263.4</td>
</tr>
<tr>
<td>Olive oil 9</td>
<td>226.5</td>
</tr>
<tr>
<td>Olive oil 10</td>
<td>246.0</td>
</tr>
</tbody>
</table>

Table 2. Sensor output on pork oil samples

<table>
<thead>
<tr>
<th>Name</th>
<th>Output Sensor (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pork oil 1</td>
<td>191.3</td>
</tr>
<tr>
<td>Pork oil 2</td>
<td>209.4</td>
</tr>
<tr>
<td>Pork oil 3</td>
<td>216.1</td>
</tr>
<tr>
<td>Pork oil 4</td>
<td>163.3</td>
</tr>
<tr>
<td>Pork oil 5</td>
<td>189.7</td>
</tr>
<tr>
<td>Pork oil 6</td>
<td>198.4</td>
</tr>
<tr>
<td>Pork oil 7</td>
<td>187.6</td>
</tr>
<tr>
<td>Pork oil 8</td>
<td>201.6</td>
</tr>
<tr>
<td>Pork oil 9</td>
<td>186.1</td>
</tr>
<tr>
<td>Pork oil 10</td>
<td>172.2</td>
</tr>
</tbody>
</table>
Table 3. Sensor output on combination of pork oil and olive oil

<table>
<thead>
<tr>
<th>Name</th>
<th>Output Sensor (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pork oil + olive oil 1</td>
<td>185</td>
</tr>
<tr>
<td>Pork oil + olive oil 2</td>
<td>185</td>
</tr>
<tr>
<td>Pork oil + olive oil 3</td>
<td>182</td>
</tr>
<tr>
<td>Pork oil + olive oil 4</td>
<td>178</td>
</tr>
<tr>
<td>Pork oil + olive oil 5</td>
<td>188</td>
</tr>
<tr>
<td>Pork oil + olive oil 6</td>
<td>179</td>
</tr>
<tr>
<td>Pork oil + olive oil 7</td>
<td>189</td>
</tr>
<tr>
<td>Pork oil + olive oil 8</td>
<td>187</td>
</tr>
<tr>
<td>Pork oil + olive oil 9</td>
<td>202</td>
</tr>
<tr>
<td>Pork oil + olive oil 10</td>
<td>182</td>
</tr>
</tbody>
</table>

The e-nose consists of 10 sensors. Each sensor measured the sample at the same time. Therefore, in one measurement there were ten sensor outputs. Table 1, 2, and 3 represent the output voltage sensors on the e-nose. Each data repetition has almost the same value for each oil sample. It is evident from the data that the output of the sixth sensor has a high voltage value. The average output voltage was 900 mV.

Each sensor provides different measurements for each sample, so there are many graphs to be analyzed. Multivariate techniques are applied to evaluate the response capability of the electronic nose. Linear discriminant analysis (LDA) is chosen to evaluate the response so that the electronic nose measurement output can be well classified.

The LDA score plot is used to visualize the data classification of odor patterns from some cooking oils. Its plots sketched in 2-dimensional graphs. The score chart coordinate consists of the discriminant function 1 and discriminant function 2 representing the data variant of the overall test result data.

Based on Figure 3, it can be classified into 3 groups. Group 1 is the result of olive oil sample classification; group 2 is the result of the classification of the sample of pork oil; group 3 is the result of the mixed classification of olive oil and pork oil. The value of the first discriminant function (FD1) is 87.9% and the value of the second discriminant function (FD2) is 12.1%. The total of discriminant functions is 100% indicating the e-nose can distinguish sample 1 and the other samples well.

Moreover, it also appears that in group 1 the data is somewhat diffused from its centroid center. The diffusion represents that olive oil samples were well clustered. Group 2 has a broader diffusion rate comparing group 1. On the other hand, group 3 has the smallest dispersion rate. However, there is one data that goes across to group 2. It occurred in such a way that because the crossed sample indeed contains pork oil mixings.
The olive oil centroid data in Fig. 4 is around the coordinates (4, -0.5). Olive oil measurement data spread around the centroid data. Four data that spread far from the centroid and six data gathered near the centroid. It shows that 40% of olive oil measurements have a considerable deviation value.

Moreover, the centroid data of pork oil in Fig. 5 is located around the coordinates (-1, 1.5). Pork oil measurement data spread around the centroid data. Six data that spread far from the centroid and four data gathered near the centroid. It shows that 60% of the results of the measurement of pork oil have a considerable deviation value.

In Fig. 6, the centroid data of a mixture of pork oil and olive oil are around the coordinates (-2.4, 1.5). Measurement data for a mixture of pork oil and olive oil spread around the centroid data. Two data that spread far from the centroid and eight data gathered near the centroid. It shows that 20% of the results of the measurement of pig oil have a considerable deviation value.

The e-nose works based on changes in the concentration of a particle such as atoms, molecules or ions in the gas and then converted to electrical signals. Sensors made of semiconductor materials on the electronic nose will absorb oxygen during interacting with gas and capture electrons in the conduction band. Changes in gas composition in the sample will change the electrical signal on the electronic nose.
The e-nose can distinguish pig-containing oil. Samples containing pork oil form a separate group of oils that are free of pork oil contamination. Pure olive oil has a distinctive aroma so that the e-nose can distinguish it from other oils. The electronic nose can be used as a way to detect oil content of pork on cooking oil.

Conclusion

Based on the LDA scores plots, The electronic nose can distinguish olive oil samples, pork oil and olive oil mixture and pigs well. Each sample clustered well enough with discriminant function 1 87.9% and second discriminant function 12.1%.

References

16. Haddi, Z. et al. Discrimination and
identification of geographical origin
virgin olive oil by an e-nose based on
MOS sensors and pattern recognition
techniques. Procedia Engineering. 2011;
25:1137–1140.
17. Nurjuliana, M., Che Man, Y.B. & Mat
Hashim, D. Analysis of lard’s aroma by
an electronic nose for rapid Halal
authentication. JAOCs, Journal of the
American Oil Chemists’ Society. 2011;
88(1):75–82.
18. Bagas Surya Wibowo, Imam Tazi,
Kuwat Triyana, Pengembangan Sistem
Sensor Rasa Berbasis Membran Selektif
Ion Untuk Klasifikasi Buah Jeruk. Jurnal
19. Imam Tazi, Kuwat Triyana, Dwi
Siswanta, Anovel Arduino Mega 2560
Microcontroller-Based Electronic
Tongue for Dairy Product Classification.
AIP Conference Proceedings. 2016;
170003-1 – 170003-5.
20. Imam Tazi, Anis Choiriyah, Dwi
Siswanta, Kuwat Triyana. Detection of
Taste Change of Bovine and Goat Milk
in Room Ambient using Electronic
Tongue. Indones. J. Chem. 2017; (3):422-
430.
Physics, Designs, And Applications
Third Edition. Advanced Monitors
Corporation San Diego. California.
2003.
22. Amalia Berna. Metal Oxide Sensors for
Electronic Noses and Their Application