NANOPARTICLE FABRICATION OF CO_xNi_{1-x}Fe₂O₄ USING CO-PRECIPITATION METHODE AT LOW TEMPERATURE

Muhammad Yakob¹, Hendri Saputra¹, Dona Mustika¹, Puji Wahyuningsih², Rachmad Almi Putra^{3*}

¹Department of Physics Education, Faculty of Teaching and Education, Universitas Samudra, Kota Langsa, 24416, Indonesia

² Department of Chemistry, Faculty of Engineering, Universitas Samudra, Kota Langsa, 24416, Indonesia

³ Department of Physics, Faculty of Engineering, Universitas Samudra, Kota Langsa, 24416, Indonesia

Received: 2nd Februari 2019; Revised: 10th March 2019; Accepted: 30st April 2019

ABSTRACT

Nanoparticle $Co_xNi_{1-x}Fe_2O_4$ has been successfully synthesized using co-precipitation method at low temperature 120°C by variation of concentration value (x=0, 0.25, 0.5, 0.75, 1.0). Crystal structure and size of crystallite increase with increasing cobalt concentration. There is a difference of lattice between theoretical and experimental. The increasing of cobalt affected significantly to the expansion and lattice distortion occurred at the tetrahedral site and octahedral site. Because of the distortion, the crystallite where imperfectly formed and crystal defect occurred. It is indicated by the microstrain value that describes the magnitude of the strain in crystal.

Keywords: Co_xNi_{1-x}Fe₂O₄; nanoparticle; site A; site B; co-precipitation

Introduction

The aim of this research is ferrite type nanoparticles. Ferrite groups have the potential to be developed in various field of technology such as data storage, medical diagnostics, detectors microwave absorber, etc. The focus of the researchers are spinel group or known as spinel ferrite. Spinel ferrite has unique properties because of the typical crystalline structure of spinel structure. The spinel structure influenced by the configuration and distribution of ions in nanoparticle crystals affected by chemical composition during the synthesis process. The chemical formula of the spinel structure of crystal is MFe₂O₄ where M is divalent cation of the 3d transition element. This crystal structure has cation that distorted in two sublattices, namely sublattice tetrahedral and octahedral.

The type sample of magnetic nanoparticle was studied were nickel ferrite (NiFe₂O₄) and cobalt ferrite (CoFe₂O₄). CoFe₂O₄ has a high saturation magnetization value, hard magnetic,

structure.^{1,2} and inverse spinel This potential nanoparticle been as nanophotocatalyst and nano absorbent for organic pollutan.³ Nanoparticle NiFe2O4 is fine magnetic materials with high saturation magnetic characteristic, low coercivity, high magnetic permeability, low anisotropy, high currie temperature and low magnetostriction.^{4,6} If the two materials are combined into a single CoNiFe₂O₄ unit, they will be producing new materials with crystal structures and different properties which have been potential to be a signal rectifier oscillator device.

The information about the structure of $Co_x Bi_{1-x}$ nanoparticle crystals still has a gap to research. This gives opportunity to study various information about $Co_x Ni_{1-x}Fe_2O_4$ in relation to the influence of various synthesis parameters and chemical composition of the nanoparticles constituents with certain method. The co-precipitation method has selected in this research because the synthesis process is simple and relatively fast (not time-consuming),

Permalink/DOI: http://dx.doi.org/10.18860/neu.v11i2.7261

carried out at low temperature (120°C), and nanoparticles that resulted have a size that tends to be more uniform compared to other methods. In addition, the co-precipitation method is also efficient because it does not have to require further processing in the form of calcination or sintering as was done by previous studies.

Methods

Nanoparticle $Co_xNi_{1-x}Fe_2O_4$ (0;0,25;0,5;0,75;1,0) has been synthesized by co-precipitation method. Chemicals used in research is $CoCl_2 \cdot 6H_2O$, $NiCl_2 \cdot 6H_2O$, FeCl_3.6H_2O, HCl, NaOH (E Merk. Germany), and DI water. The mole ratio is used as presented in Table 1.

Tabel 1. The mole ratio precursor

Reagen	Ratio	
CoCl ₂ .6H ₂ O	1	
NiCl ₂ .6H ₂ O	1	
FeCl ₃ .6H ₂ O	2	

For the value of x varied (0, 0.25, 0.5, 0.75, dan 1.0). The co-precipitation method begins with prepare Fe₂Cl₃, CoCl₂, dan NiCl₂ solution. Fe₂Cl₃, CoCl₂, dan NiCl₂ solution stirred at room temperature with speed 500 rpm for 3 minutes until homogeneous. The metal salt solution added with 3.37 ml HCl and stirred by rate 500 rpm at room temperature for 5 minutes. After that, this solution was dripped with a dropping rate ± 2 ml/min using a burette into NaOH solution which being sterilized at 120°C with a stirring rate of 1000 rpm for 60 minutes. The precipitate formed is deposited on a permanent magnet for 30 minutes until the temperature is at room temperature, then rinse with 150 mL of distilled water and deposited again on a permanent magnet for 30 minutes. The slurry was heated in a furnace at 90°C for 5 hours to produce solid pieces of nanoparticles CoxNi1-xFe₂O₄ and then it crushed to powder. Finally, nanoparticles were characterized using X-Ray diffraction characterization (XRD) using X-Ray wavelength (CuKa1) of 1.5406 Å step to observe the crystal structure and nanoparticle phase and data is processed using Origin Software.

Result and Discussion

The diffraction peaks formed in the XRD spectrum in each sample can be assumed that the sample is crystalline. This is characterized by the appearance of diffraction peaks. The diffraction peaks of nanoparticles are (311) in the diffraction patterns confirms that all the samples exhibit a cubic spinel structure having space group Fd3m.⁷ Determination of the diffraction peaks is adjusted to the JCPDS card No 79-1744 (CoFe₂O₄) and JCPDS Card No. 74-2018 (NiFe₂O₄). The diffraction peaks are formed shifted as the concentration of x increase from x=0 to x=1, because of differences in composition between Co and Ni. Besides that, the synthesis method also affected the shift of diffraction peaks. The synthesis method has an effect on the CoNiFe₂O₄ nanoparticle crystals formed. XRD data processing used software origin 9.0, which from the diffraction peaks can be estimated crystallite size and lattice parameter of nanoparticle CoxNi1-xFe₂O₄ (x=0,0.25,0.5,0.75,1.0). The concentration of the XRD spectrum shown in Figure 1 displayed phase of γ -Fe₂O₃. The phase peaks γ -Fe₂O₃ also undergo a shift with increasing nickel concentration in nanoparticle CoxNi1-xFe₂O₄. The form of γ -Fe₂O₃ did not give a significant effect on the crystalline structure of nanoparticle, but it has a significant effect on the moment magnetic of nanoparticle which has an impact to the magnetic properties.⁸ The phase presence of γ -Fe₂O₃ can be caused by a synthesis process which is not perfect, so it is assumed the phase of Co_xNi_{1-x}Fe₂O₄ that formed is not perfect. The parameter value of experimental lattice (aex) and crystallite size can be calculated by the Scherrer⁹ and presented in Table 2.

$$D \frac{k\lambda}{B \cos\theta} \tag{1}$$

The average cation radius at A site (rA) and B site (rB) can be calculated by equation⁹:

 $rA = (C^{A}_{Co}{}^{2+})(r^{A}_{Co}{}^{2+}) + (C^{A}_{Fe}{}^{3+})(r^{A}_{Fe}{}^{3+})$ (2) $rB = 1/2*((C^{B}_{Ni}{}^{2+})(r^{B}_{Ni}{}^{2+}) + (C^{A}_{Fe}{}^{3+})(r^{A}_{Fe}{}^{3+}))$ (3)

where the CA value shows the ion concentration found of A-site (tetrahedral) and

CB value of B site (octahedral). Lattice parameters experimentally (a_{exp}) give result different than theoretical lattice parameters (a_{th}) . It is due to the calculation of theoretical lattice parameters based on the ionic radius of each element in CoxNi1-xFe2O4. Theoretical calculation of lattice parameters can be calculated by the equation 4:

$$a_{th} = \frac{8}{3\sqrt{3}} \left[r_A + R_0 + \sqrt{3}(r_B + R_0) \right]$$
(4)

rA and rB are radius cation-anion found at A site and B site.

Table 2. Value of lattice parameters, crystallite size, Co_xNi_(1-x)Fe₂O₄ nanoparticle

X	Sample	20	FWHM	hkl	a _{exp} (Å)	a _{th} (Å)	t(nm)	microstrain
0.0	NiFe ₂ O ₄	35,46	0,33	311	8,39	7,80	50,09	0.32
0.25	Co _{0.25} NiFe ₂ O ₄	35,12	0,31	311	8,47	7,82	53,93	0.32
0.5	Co _{0.5} Ni _{0.5} Fe ₂ O ₄	34,85	0,29	311	8,53	7,84	56,64	0.31
0.75	Co _{0.75} Ni _{0.25} Fe ₂ O ₄	34,75	0,26	311	8,56	7,85	64,03	0.31
1.0	CoFe ₂ O ₄	34,59	0,26	311	8,59	7,87	64,00	0.31

Table 2. Effect of Co ((\mathbf{x})	concentration	of	$E R_A$	and <i>l</i>	RB	values
-------------------------	----------------	---------------	----	---------	--------------	----	--------

Figure 3. The Co (x) concentration effect on R_A and R_B

Based on Table 2, the lattice parameters increased with increasing the content of cobalt in $Co_xNi_{1-x}Fe_2O_4$ both theoretically (a_{th}) and experimentally (a_{exp}) . It graphically is shown in Figure 2.

Increasing lattice parameters can be affected by ion substitution, replacing a larger radius of ionic with smaller ionic radius. The cobalt element that has an ionic radius of 0,75 A replace the nickel element which has an ionic radius of 0,69 A. Co^{2+} ions in this nanoparticle are present on A site tetrahedral and Ni²⁺ ions on B site octahedral. Fe3+ ions are distributed in both sites, tetrahedral and octahedral. Distribution of cations in the nanoparticle is assumed by the equation¹⁰:

$$[Co_{x}^{2+}Fe^{3+}_{1-x}]_{A}[Ni_{1-x}Fe^{3+}_{1-x}]_{B}$$
(5)

Increasing of cobalt concentration in $CoxNi1-xFe_2O_4$ nanoparticle affected to the bond length between cation-anion on tetrahedral site (R_A) and octahedral site (R_B). The bond length can be calculated by equation 6 - 7. ⁹⁻¹¹ As a result of changes in the bond

length of cation-anion assumed that distortion occurs in both sites. The addition of cobalt concentration in $CoFe_2O_4$ nanoparticle due to lattice expansion occurs in A site and shrinkage in B site which is illustrated by equation 8 and equation 9. R_A and R_b value are shown in Table 2.

$$R_A = a\sqrt{3}(\delta + \frac{1}{8}) \tag{6}$$

$$R_B = a \sqrt{3\delta^2 - \frac{\delta}{2} + \frac{1}{16}}$$
(7)

$$\delta = U - 0.375 \tag{8}$$

$$U = \left[(rA + Ro)\frac{1}{\sqrt{3a}} + \frac{1}{4} \right] \tag{9}$$

Based on Table 2, R_A and R_B value was decreased with increasing of cobalt element. It graphically is shown in Figure 3.

The trigonal deviation from the coordinate of oxygen atom which found on B site octahedral is expressed as U. The shrinking of the U value state due to distribution on tetrahedral site and octahedral site with increasing of cobalt concentration.

Conclusion

The $Co_xNi_{1-x}Fe_2O_4/SiO_2$ nanoparticle have been successfully synthesized with various element of (x=0.0, 0.25, 0.5, 0.75, 1.0) using co-precipitation method. The result of XRD diffractogram represented that the nanoparticle has a crystalline form with a crystallite size of 50.09 to 64. The form of nanoparticles is not perfect because the synthesis process at lowtemperature result strain in crystal so assumed happen deviation for both sites, A site and B site.

References

- 1. S. K. Pradhan, S. Sain, and H. Dutta. Microstructure Characterization of Nanocrystalline Magnesium Ferrite Annealed at Elevated Temperatures by Rietveld Method. 2011;
- T. Dippong et al., .Structural and magnetic properties of CoxFe3-xO4 versus Co/Fe molar ratio. J. Magn. Magn. Mater. 2015; 394:111–116,
- M. Yakob, H. Umar, P. Wahyuningsih, and R. A. Putra. Characterization of microstructural and optical CoFe 2 O 4 / SiO 2 ferrite nanocomposite for photodegradation of methylene blue. 2019 January;6:45–51.
- 4. M. Srivastava, S. Chaubey, and A. K. Ojha. Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater. Chem. Phys., 2009;118(1):174–180.
- 5. T. Jahanbin, M. Hashim, and K. Amin, "Journal of Magnetism and Magnetic Materials Comparative studies on the structure and electromagnetic properties of Ni À Zn ferrites prepared via coprecipitation and conventional ceramic processing routes. J. Magn. Magn. Mater.,

2010;322(18):2684-2689.

- T. F. Marinca, I. Chicinaş, O. Isnard, V. Pop, and F. Popa. Synthesis, structural and magnetic characterization of nanocrystalline nickel ferrite—NiFe2O4 obtained by reactive milling. J. Alloys Compd., 2011;509(30):7931–7936.
- 7. J. Masilko et al. Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe 2 O 4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017;8(4): 045002,
- S. E. Deswardani Franstica, Maulia Riska. Study of Structural and Magnetic Properties of Silica and Polyethylene Glycol (PEG-4000) - Encapsulated Magnesium Nickel Ferrite Study of Structural and Magnetic Properties of Silica and Polyethylene Glycol (PEG-4000)-Encapsulated Magnesium:pp. 2–11.
- 9. K. A. Mohammed, A. D. Al-rawas, A. M. Gismelseed, A. Sellai, H. M. Widatallah, and A. Yousif, "Author's personal copy."
- 10. I. Sharifi, H. Shokrollahi, M. Mahdi, and R. Safi. Journal of Magnetism and Magnetic Materials Magnetic and structural studies on CoFe 2 0 4 nanoparticles synthesized by coprecipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 2012;324(10):1854-1861.
- P. Taylor, A. Sankaramahalingam, J. B. Lawrence, A. Sankaramahalingam, and J. B. Lawrence. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry Structural, Optical, and Magnetic Properties of MgFe 2 O 4 Synthesized with Addition of Copper Structural, Optical, and Magnetic Properties of MgFe 2 O 4 Synthesized with. 2014 October;37–41.