THE USE OF (Mg0.9Zn0.1)TiO3+2wt.% Bi2O3 CERAMICS AS A DIELECTRIC RESONATOR OSCILLATOR MATERIAL AND CHARACTERISATION OF STRUCTURE, MICROSTRUCTURE, AND DENSITY

Afandy Kadarosman, Frida Ulfah Ermawati

Abstract


Magnesium titanate (MgTiO3)-based ceramics have the potential for use in the telecommunications industry at microwave frequencies, including as a resonator in dielectric resonator oscillator (DRO) circuit. This research is intended to study the application of (Mg0.9Z0.1)TiO3+2wt.% Bi2O3 (abbreviated MZT01-2) ceramics as DRO material and characterize the structure, microstructure, and bulk density. Fabrication was carried out by ball milling between (Mg0.9Z0.1)TiO3 crystalline powder and 2wt.% Bi2O3 powder. The milled powder was compacted at certain pressure using a die press to become pellets. All pellets were sintered at 1000, 1100, 1200°C for 4 h to obtain ceramics. The structural characterization using XRD showed that the three ceramics contained the main MgTiO3 phase, each 93.63, 93.83, and 90.78% molar, the rest was the MgTi2O5 phase. The increase in sinter temperature causes the lattice parameter and the unit cell volume to decrease. The Archimedes bulk density was 2.928; 2.832 and 2.736 g/cm3. The microstructure is solid surfaces with a grain diameter of 1.9-2.3 μm accompanied by pores. As DRO materials, the three ceramics exhibited a resonant frequency at 5.11, 5.08, and 5.12 GHz which shows that the ceramics can be applied as DRO materials at microwave frequencies. The sinter temperature variation tends not to affect the resonant frequency position.


Keywords


DRO materials; Resonance frequencies; MZT01-2 ceramics; Structure; Microstructure

Full Text:

PDF

References


Ermawati FU. Grain Size Analysis on Pure and Zn-doped Ilmenite Magnesium Titanane Powders. Omega J Fis dan Pendidik Fis. 2017;3(1):15–22.

Wu HT, Jiang YS, Cui YJ, Zhang XH, Jia X, Yue YL. Improvements in the sintering behavior and microwave dielectric properties of geikielite-type MgTiO3 ceramics. J Electron Mater. 2013;42(3):445–51.

Wang H, Yang Q, Li D, Huang L, Zhao S, Xu S. Sintering Behavior and Microwave Dielectric Properties of MgTiO3 Ceramics Doped with B2O3 by Sol-Gel Method. J Mater Sci Technol. 2012;28(8):751–5.

Zhang J, Yue Z, Luo Y, Li L. MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture. Ceram Int [Internet]. 2018;44(17):21000–3. Available from: https://doi.org/10.1016/j.ceramint.2018.08.135

Sheen J. A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region. Meas Sci Technol. 2008;19(5).

Jacob M V., Hartnett JG, Mazierska J, Krupka J, Tobar ME. Dielectric characterisation of Barium Fluoride at cryogenic temperatures using TE011 and quasi TE0mn mode dielectric resonators. Cryogenics (Guildf). 2006;46(10):730–5.

Exxelia Temex. Exxelia - E7000 (Materials & Tuning Components > Dielectric Resonators). Dielectr Reson Datasheet [Internet]. 2015;129–41. Available from: https://exxelia.com/en/product/detail/636/e7000

Fusco VF, Dearn A. Dielectric Resonator Oscillators. Encycl RF Microw Eng. 2005;

Seçkin Uǧurlu Ş. Dielectric resonator oscillator design and realization at 4.25 GHz. ELECO 2011 - 7th Int Conf Electr Electron Eng. 2011;1–4.

Taryana Y, Sulaeman Y, Praludi T, Wahyu Y, Santiko AB. Design of 9.4 GHz Dielectric Resonator Oscillator with an Additional Single Stage Amplifier. Proceeding - 2018 Int Semin Intell Technol Its Appl ISITIA 2018. 2018;34:9–13.

Gonzales G. Foundation of Oscillator Circuit Design. bostonarctech house, inc. 2007;

Chiu T. Dielectric constant measurement technique for a dielectric strip using a rectangular waveguide. IEEE Trans Instrum Meas. 2003;52(5):1501–8.

Skyworks. Properties, Test Methods, and Mounting of Dielectric Resonators. 2017;2. Available from: https://cm-sitecore.skyworksinc.com//media/SkyWorks/Documents/Products/25012600/Properties_and_Mounting_of_Dielectric_Resonators_202803B.pdf. Retrieved February 11, 2020.

Ermawati et al. Blok diagram sirkuit DRO dan blok diagram pengukuran respon frekuensi dan daya luaran DRO pada C-band untuk keramik dielektrik (Mg1-xZnx)TiO3. Sertifikat Hak Cipta Republik Indonesia. No. Pencatatan 000203671, 2020.

Ermawati et al. Metode Fabrikasi Keramik Dielektrik (Mg1-xZnx)TiO3 sebagai Dielektrik Resonator Osilator yang bekerja pada Pita C. Paten Indonesia. No. Permohonan P00202006498, 04 Sept. 2020.

Rostianbudi, FY. dan Ermawati, FU. Fabrikasi dan karakterisasi struktur dan densitas keramik (Mg0,5Zn0,5)TiO3+x wt.% Bi2O3 sebagai kandidat naterial dielektrik. J Inov Fis Indones. 2020;09(02):72–7.

Rettiningtyas, N dan Ermawati, FU. Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3+2 wt.% Bi2O3 sebagai bahan Dielektrik serta Karakterisasi Struktur dan Densitasnya akibat Variasi waktu tahan Sinter. J Inov Fis Indones. 2020;09(02):25–33.

Zendya, L and Ermawati, FU. Pengaruh variasi tekanan kompaksi terhadap mikrostruktur dan densitas keramik (Mg0,9Zn0,1)TiO3+2 wt.% Bi2O3 hasil sintesis menggunakan metode pencampuran larutan. J. Inov. Fis. Indones. 2020;09; 145–51.

Nisa, D and Ermawati, FU. Fabrikasi keramik (Mg0,6Zn0,4)TiO3+xwt.% Bi2O3 hasil sintesis dengan metode pencampuran larutan dan pengaruh variasi x wt.% Bi2O3 terhadap struktur dan densitas keramik. J Inov Fis Indones. 2020;09(02):15–20.

Rani SA dan Suasmoro. (Mg0,8Zn0,2)TiO3 Ceramics synthesize as dielectric material by attritor mill mixing methods’. Thesis. FMIPA, Physics, Institut Teknologi Sepuluh November, Surabaya, 2016

Ermawati FU. Difraksi Sinar X: Teori dan Analisis Data Eksperimen. Surabaya: UNESA University Press. Sertifikat Hak Cipta Republik Indonesia. No. Pencatatan 000139628, 2018.

Angela R. dan Pratapa S. Sintesis MgTiO3 dengan Variasi Temperatur Kalsinasi Menggunakan Metode Pencampuran Larutan. J Sains Dan Seni Its. 2012;1(1):73–5.

Saukani, M, Ermawati, FU. dan Pratapa S. Mekanisme perlambatan penyusutan dalam kajian sintering (Mg0,8Zn0,2)TiO3. 2013;(October):10–1.

Rahaman MN. Ceramic processing and sintering, second edition. Ceram Process Sintering, Second Ed. 2017;1–875.

German RM, Suri P, Park SJ. Review: Liquid phase sintering. J Mater Sci. 2009;44(1):1–39.

Akmal J, Ramlan. karakterisasi konduktivitas, porositas dan densitas bahan keramik Na-β"-Al2O3 dari komposisi Na2O 13% dan Al2O3 87% dengan variasi waktu penahanan. J Penelit Sains. 2008;11(3):544–511.

Ermawati FU. The Response of (Mg0.6Zn0.4)TiO3 Ceramic System as A Dielectric Resonator Oscillator at C-Band. J Phys Conf Ser. 2021;1805(1):0–6.




DOI: https://doi.org/10.18860/neu.v13i2.11720

Refbacks



Copyright (c) 2021 Afandy Kadarosman, Frida Ulfah Ermawati

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 


Editorial Office of Jurnal Neutrino:
Department of Physics, Faculty of Sains and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Gajayana st. No.50 Malang 65144
Telp. +62 813-4090-1818
Email: neutrino@uin-malang.ac.id

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

View My Stats