BIOMIMETIC PHOTODIODE DEVICE WITH LARGE PHOTOCURRENT RESPONSE USING PHOTOSYNTHETIC PIGMENT-PROTEIN COMPLEXES

Damar Yoga Kusuma, Hariyadi Soetedjo

Abstract


Efficient light to energy conversion was demonstrated in solid-state, lateral photodiodes device containing photosynthetic light-harvesting chlorophyll protein complexes as active materials. The device exhibits the highest reported photocurrent density response of 365 µA/cm2 when illuminated at 320 mW/cm2 radiation source power. The photocurrent response was stabled over 104 s of continuous cycles of dark and illumination states. The short rise and decay time of the photocurrent waveform within sub-second range indicates an effective photogeneration and charge extraction within the device. Optical bandgap extraction using absorption coefficient method reveals that the energy gap of the active materials ranges from 2.8 to 3.8 eV, correspond to the Photosystem I and Photosystem II of the photosynthetic pigment-protein complexes.


Keywords


Photocurrent; Photodiode; Photosynthesis; Chlorophyll; PS I; PS II

Full Text:

PDF

References


Blankenship RE. Molecular Mechanisms of Photosynthesis. Hoboken, NJ: Blackwell Science; 2002.

Tang CW, Albrecht AC. Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells. J. Chem. Phys. 1975; 63(2): 2139-2142.

Segui J, Hotchandani S, Baddou D, Leblanc RM. Photoelectric properties of ITO/ cadmium sulfide/ chlorophyll a/ silver heterojunction solar cells, J. Phys. Chem. 1991; 95(22): 8807-8812.

Farag AAM. Electrical and photovoltaic characteristics of sodium copper chlorophyllin /n-type silicon heterojunctions. Appl. Surface Sci. 2009; 255(9): 4938-4943

Yun JJ, Jung HS, Kim SH, Han EM. Chlorophyll-layer-inserted poly(3-hexyl-thiophene) solar cell having a high light-to-current conversion efficiency up to 1.48%. Appl. Phys. Lett. 2005; 87(12), 123102

Wang YW, Sasaki S, Zhuang T, Tamiaki H, Zhang JP, Ikeuchi T, Hong Z, Kido J, Wang XF. Dicyano-functionalized chlorophyll derivatives with ambipolar characteristic for organic photovoltaics, Org. Electron. 2013; 14(8), 1972-1979

Choi JW, Lee DB, Oh BK, Min J, Kim KS. Molecular Scale Photodiode of Recombinant Ferredoxin/Chlorophyll a Heterostructure. J. Nanoscience and Nanotechnology. 2008; 8(9), 4527-4532

Wang XF, Wang L, Wang Z, Wang Y, Tamai N, Hong Z, Kido J. Natural Photosythetic Carotenoids for Solution-Processed organic Bulk-Heterojunction Solar Cells. J. Phys. Chem. C. 2013; 117(2), 804-811

Yaghoubi H, Lafalce E, Jun D, Jiang X, Beatty JT, Takshi A. Large Photocurrent Response and External Quantum Efficiency in Biophotoelectrochemical Cells Incorporating Reaction Centers Plus Light Harvesting Complexes, Biomacromol. 2015; 16(4), 1112-1118

Gebert J, Reiner-Rozman C, Steininger C, Nedelkovski V, Nowak C, Wraight, CA, Naumann RLC. Electron Transfer to Light-Activated Photosynthetic Reaction Centers from Rhodobacter sphaeroides Reconstituted in a Biomimetic Membrane System. J. Phys. Chem. C 2015; 119(2), 890-895

Kamran M, Delgado JD, Friebe V, Aartsma TJ, Frese RN. Photosynthetic Protein Complexes as Bio-photovoltaic Building Block retaining a High Internal Quantum Efficiency, Biomacromol. 2014; 15(8), 2833-2838

Gordiichuk PI, Wetzelaer GJAH, Rimmerman D, Gruszka A, de Vries, JW, Saller M, Gautier DA, Catarci S, Pesce D, Richter S, Blom PWM, Herrmann A. Solid-State Biophotovoltaic Cells Containing Photosystem I. Adv. Mater. 2014; 26(28), 4863-4869

Zolla L, Rinalducci S, Timperio A, Huber CG. Proteomics of Light-Harvesting Proteins in Different Plant Species. Analysis and Comparison by Liquid Chromatography-Electrospray Ionization Mass Spectrometry, Photosystem I. Plant Physiol. 2002; 130(4), 1938-1950

Zolla L, Timperio AM, Walcher W, Huber CG. Proteomics of Light-Harvesting Proteins in Different Plant Species. Analysis and Comparison by Liquid Chromatography-Electrospray Ionization Mass Spectrometry, Photosystem II, Plant Physiol. 2003; 131(1), 198-214

Lichtenthaler HK, Buschmann C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry. 2001; F:F4, F431-F438

Mukherjee B, Mukherjee M, Choi Y, Pyo S. Organic Phototransistor with n-type Semiconductor Channel and Polymeric Gate Dielectric. J. Phys. Chem. C 2009; 113(43), 18870-18873

Santabarbara S, Heathcote P, Evans MC. Modelling of the Electron Transfer Reaction in Photosystem I by Electron Tunneling Theory. Biochim Biophys Acta 2005 Jul; 1708(3), 283-310

Shi LX, Hall M, Funk C, Schroder WP. Photosystem II, a Growing Complex: Updates on Newly Discovered Components and Low Molecular Mass Proteins. Biochim Biophys Acta 2012 Jan; 1817(1), 13-25

Gratzel M. Photoelectrochemical Cells. Nature 2001 Nov; 414, 338-344




DOI: https://doi.org/10.18860/neu.v9i2.4042

Refbacks



Copyright (c) 2017 Damar Yoga Kusuma, Hariyadi Soetedjo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 


Published By:
Program Studi Fisika Fakultas Sains dan Teknologi Universitas Islam Negeri (UIN) Maulana Malik Ibrahim Malang, Indonesia
B.J. Habibie 2nd Floor
Jl. Gajayana No.50 Malang 65144
Telp./Fax.: (0341) 558933
Email: neutrino@uin-malang.ac.id

 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License 

View My Stats