Pengaruh Pemberian Jus Tomat (Solanum lycopersicum) terhadap Jumlah Sel Radang di Alveolus Tikus Wistar (Rattus norvegicus) yang Dipapar Asap Rokok Kretek Subkronik

Dewi Mustika, Subandi Subandi

Abstract


Asap rokok mengandung radikal bebas yang dapat menyebabkan proses inflamasi pada saluran nafas. Peningkatan jumlah sel radang pada alveolus paru dapat semakin meningkatkan kondisi stres oksidatif dikarenakan sel radang juga memicu timbulnya radikal bebas. Oleh karena itu, pemberian antioksidan diharapkan dapat mengurangi proses keradangan pada alveolus paru. Tujuan dari penelitian ini untuk membuktikan pengaruh pemberian jus tomat, yang mengandung likopen, betakaroten, dan vitamin c, terhadap penurunan jumlah sel radang alveolus tikus Wistar jantan yang dipapar asap rokok subkronik. Pemaparan asap rokok dilakukan selama 9 minggu menggunakan smoking pump, dilanjutkan dengan pemberian jus tomat dengan dosis 1,15; 2,3; dan 4,6 ml/tikus perhari selama 3 minggu. Setelah 12 minggu, jaringan paru setiap tikus diambil, kemudian dibuat sediaan histopatologi dengan pengecatan HE. Sediaan diamati menggunakan mikroskop pada 10 lapang pandang untuk dilakukan penghitungan jumlah sel radang (neutrofil, limfosit, makrofag) yang terdapat pada septa interalveolaris. Data dianalisis menggunakan One-Way ANOVA dilanjutkan uji Post hoc Tukey. Hasil penelitian menunjukkan bahwa pemberian jus tomat dapat menyebabkan penurunan  jumlah sel radang di alveolus pada ketiga dosis yang diberikan (p=0,000). Hasil uji korelasi Pearson menunjukkan bahwa semakin tinggi dosis jus tomat (0; 1,15; 2,3; 4,6 ml/hari) maka akan semakin menurunkan jumlah sel radang di alveolus (r= -0,868; p=0,000). Dari penelitian ini dapat disimpulkan bahwa pemberian jus tomat  setelah paparan asap rokok  dapat menurunkan jumlah sel radang di alveolus.


Full Text:

PDF

References


Reitsma MB, Fullman N, Ng M, Salama JS, Abajobir A, Abate KH, et al. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet. 2017;389(10082):1885–906.

Song Y, Zhao L, Palipudi KM, Asma S, Morton J, Talley B, et al. Tracking mpower in 14 countries: Results from the global adult tobacco survey, 2008–2010. Glob Health Promot. 2016;23(2):24–37.

Taghavi S, Khashyarmanesh Z, Moalemzadeh-Haghighi H, Nassirli H, Eshraghi P, Jalali N, et al. Nicotine content of domestic cigarettes, imported cigarettes and pipe tobacco in iran. Addict Heal [Internet]. 2012;4(1–2):28–35.

Valavanidis A, Vlachogianni T, Fiotakis K. Tobacco smoke: Involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health. 2009;6(2):445–62.

Dizdaroglu M, Jaruga P. Mechanisms of free radical-induced damage to DNA. Vol. 46, Free Radical Research. 2012. p. 382–419.

Lee J, Taneja V, Vassallo R. Cigarette smoking and inflammation: Cellular and molecular mechanisms. J Dent Res. 2012;91(2):142–9.

Bhalla DK, Hirata F, Rishi AK, Gairola CG. Cigarette smoke, inflammation, and lung injury: A mechanistic perspective. Vol. 12, Journal of Toxicology and Environmental Health - Part B: Critical Reviews. 2009. p. 45–64.

Qiu F, Liang C-L, Liu H, Zeng Y-Q, Hou S, Huang S, et al. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget. 2017;8(1):268–84.

Maeno T, Houghton a M, Quintero P a, Grumelli S, Owen C a, Shapiro SD. CD8+ T Cells are required for inflammation and destruction in cigarette smoke-induced emphysema in mice. J Immunol. 2007;178:8090–6.

Rovina N, Koutsoukou A, Koulouris NG. Inflammation and immune response in COPD: Where do we stand? Vol. 2013, Mediators of Inflammation. 2013.

Kingwell K. Lung disease: antioxidant protection against cigarette smoke. Nat Rev Drug Discov. 2009;8(2):110.

Ilahy R, Hdider C, Lenucci MS, Tlili I, Dalessandro G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J Food Compos Anal. 2011;24(4–5):588–95.

Erge HS, Karadeniz F. Bioactive compounds and antioxidant activity of tomato cultivars. Int J Food Prop. 2011;14(5):968–77.

García-Valverde V, Navarro-González I, García-Alonso J, Periago MJ. Antioxidant Bioactive Compounds in Selected Industrial Processing and Fresh Consumption Tomato Cultivars. Food Bioprocess Technol. 2013;6(2):391–402.

Story EN, Kopec RE, Schwartz SJ, Harris GK. An Update on the Health Effects of Tomato Lycopene. Annu Rev Food Sci Technol. 2010;1(1):189–210.

Rao A V., Shen H. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr Res. 2002;22(10):1125–31.

Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3–4):293–307.

Amir Aslani B, Ghobadi S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Vol. 146, Life Sciences. 2016. p. 163–73.

Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: A mutual interplay. Vol. 6, Redox Biology. 2015. p. 260–71.

Hempel N, Trebak M. Crosstalk between calcium and reactive oxygen species signaling in cancer. Vol. 63, Cell Calcium. 2017. p. 70–96.

Adcock IM, Caramori G, Barnes PJ. Chronic obstructive pulmonary disease and lung cancer: new molecular insights. Respiration. 2011;81(4):265–84.

Van Den Ende W, Peshev D, De Gara L. Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Vol. 22, Trends in Food Science and Technology. 2011. p. 689–97.

Nimse, SB, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015;5:27986–8006.

Erdman JW, Ford NA, Lindshield BL. Are the health attributes of lycopene related to its antioxidant function? Vol. 483, Archives of Biochemistry and Biophysics. 2009. p. 229–35.

Periago MJ, García-Alonso J, Jacob K, Olivares AB, Bernal MJ, Iniesta MD, et al. Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. Int J Food Sci Nutr. 2009;60(8):694–708.

Kaur A, Dhari J, Sharma OP, Gupta GD, Kharb V. Lycopene. Int J Pharm Technol. 2011;3(4):1605–22.

Tanumihardjo SA. Carotenoids and human health. Carotenoids and Human Health. 2013. 1-331 p.

Agarwal S, Rao A V. Tomato lycopene and its role in human health and chronic diseases. CMAJ [Internet]. 2000;163(6):739–44.

Kamiloglu S, Boyacioglu D, Capanoglu E. The effect of food processing on bioavailability of tomato antioxidants. Vol. 3, Journal of Berry Research. 2013. p. 65–77.

Devaraj S, Mathur S, Basu A, Meyers S, Jialal I, Aung HH, et al. A Dose-Response Study on the Effects of Purified Lycopene Supplementation on Biomarkers of Oxidative Stress. J Am Coll Nutr. 2008;27(2):267–73.

Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants, and antioxidants: The interplay. Vol. 2014, BioMed Research International. 2014.

Bouayed J, Bohn T. Exogenous Antioxidants—Double-Edged Swords in Cellular Redox State: Health Beneficial Effects at Physiologic Doses versus Deleterious Effects at High Doses. Oxid Med Cell Longev. 2010;3(4):228–37.




DOI: http://dx.doi.org/10.18860/jim.v2i1.5010

Refbacks

  • There are currently no refbacks.


Editorial Office:

Faculty of Medical and Health Sciences,
Universitas Islam Negeri Maulana Malik Ibrahim
Jalan Ir. Soekarno No.34 Dadaprejo, Batu, Jawa Timur, Indonesia
Phone (+62) 85746163772, (+62) 85259506000, Faximile (+62) 341 558933
e-mail: medicaljournal@uin-malang.ac.id


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.