

P-ISSN: 2355 - 8245 E-ISSN: 2614 - 5480	J-PIPS (JURNAL PENDIDIKAN ILMU PENGETAHUAN SOSIAL) Tersedia secara online: http://ejurnal.uin-malang.ac.id/index.php/jpis	Vol. 11, No. 2, June 2025 Page:129-145
--	--	--

The Influence of Differentiation Learning Strategies on Students' Creative Thinking Skills in History Learning at Senior High School

Aldi Cahya Maulidan^{1*}, Didin Saripudin², Leli Yulifar³

^{1,2,3}Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229 Bandung, West Java, Indonesia

¹aldicahya58@upi.edu, ²didin36@upi.edu, ³leli_yulifar@upi.edu

Diterima: 24-03-2025.; Direvisi: 16-06-2025; Disetujui: 28-06-2025

Permalink/DOI: <http://dx.doi.org/10.18860/jpis.v11i2.32461>

Abstract: This research is motivated by the fact that history education has so far provided little room for students to develop creativity based on their interests and talents. This issue arises because learning places greater emphasis on memorisation, whereas differentiated learning allows lessons to be tailored according to students' interests and talents, enabling them to produce work that aligns with their competencies. This study employs a quantitative research method with a quasi-experimental approach. Quasi-experimental methods in educational research are used to determine the effect of independent variables on dependent variables. This research involves two classes as the subjects of study at SHS 5 Tasikmalaya. Data collection in this study is conducted through tests to measure students' competence. The collected data is then analysed through the stages of normality testing, homogeneity testing, hypothesis testing, and the N-Gain test. The findings indicate that differentiated learning has an impact on students' creative thinking skills in history education. Differentiated learning reinforces the idea that all students have equal opportunities to create and innovate throughout the learning process. Its objective is to foster an inclusive learning environment to maximise each student's potential.

Key words: *differentiated learning; creative thinking; history learning*

INTRODUCTION

Education is the primary means of developing individual competence and ability to navigate life's dynamics (Maulidan & Yulifar, 2025). An effective education system must be able to holistically develop students' potential through a student-centered approach, emphasizing adaptability, creativity, and critical thinking skills. This endeavor can be realized through a flexible curriculum, interactive learning methods, and a conducive learning environment. In this context, students are given space to explore their interests and talents, fostering intrinsic motivation in the learning process. The Indonesian government positions education as a vital pillar in building the nation's dignity. This is reflected in policies promoting inclusive access to education, without discrimination based on ethnicity, race, or religion (Maulidan & Tarunasena, 2024). Educational reforms have also been implemented, adopting a new paradigm that emphasizes the development of 21st-century skills such as critical thinking, collaboration, and creativity, as well as instilling character values, empathy, and social

responsibility (Faiz & Pratama, 2022). In this context, learning is no longer one-way or focused on memorization but is oriented toward problem-solving and the formation of deep understanding.

This educational transformation is expected to produce generations adaptive to global developments and technological advancements. Students need to be equipped with the ability to think flexibly and find solutions when facing contemporary challenges. Education is viewed not only as a process of knowledge transfer but also as a means of character building and fostering social awareness. If consistently applied, these changes will contribute positively to improving the quality of human resources and the nation's global competitiveness. However, in the reality of history learning at the high school level, several obstacles still hinder the development of students' creative thinking skills. As stated by Blegur and Hardiansyah (2024), monotonous and teacher-centered learning methods make students tend to be passive, thus not facilitating critical or creative thinking. History learning, which should be interpretive and contextual, is still predominantly presented as a mere collection of facts and chronologies.

Creative thinking skills are crucial in modern life as they enable individuals to generate innovative solutions in various situations, whether in education, the workplace, or social life (Chandra, 2020). Creativity allows individuals to explore various approaches beyond conventional patterns to solve problems effectively (Supriatna, 2019). Therefore, creative thinking skills must be developed early on, including through history learning designed contextually and participatively. Although differentiated instruction has been extensively studied in education, its application in the context of history in Indonesia remains limited. Previous studies have mostly focused on exact sciences and language subjects, leaving a research gap that has not been widely explored, particularly regarding how this strategy can enhance creative thinking skills in history learning (Maulidan et al., 2025). Furthermore, the implementation of this strategy at the secondary school level is not yet supported by adequate empirical data, especially in the local context.

This research aims to fill this gap by exploring the influence of differentiated instruction strategies on creative thinking skills in history subjects. Based on field observations and interviews with history teachers at SHS 5 Tasikmalaya, it was found that students' creative thinking skills are still low. This is reflected in a lack of active participation in discussions, limited ability to express opinions, and a dominance of textual answers without analysis. Students are not yet accustomed to linking historical information with current life contexts and are less able to develop original ideas. Therefore, learning strategies that encourage exploration, open discussion, and reflection are needed so that students can actively participate and optimally develop analytical skills.

Differentiated instruction offers a responsive approach to the diverse characteristics of learners (Kado & Dorji, 2022). By adjusting strategies, methods, and assessments, teachers can create learning experiences that suit students' needs, interests, and learning styles. This approach not only enhances students' understanding of historical material but also trains them to think flexibly and innovatively in analyzing past events and connecting them with current social dynamics. Endeshaw (2023) also asserts that differentiated instruction strategies can improve the quality of learning mastery while developing creative thinking skills. Thus, implementing this strategy is a strategic step to create a history learning process that is not only meaningful but also relevant and transformative for student development.

A contextual approach in history learning allows students to understand that history is not just a record of the past but a source of learning for facing the future. Through methods such as group discussions, analysis of historical sources, simulations, and case studies, students are given the opportunity to interpret historical events critically and creatively (Kamal, 2021). This type of learning can build deeper understanding, strengthen reflective thinking skills, and foster a sense of social concern. On the other hand, differentiated instruction designed with a collaborative and inclusive approach also creates a safe and empowering learning environment, where every student feels valued and motivated to grow both individually and in groups (Dack & Triplett, 2020). Therefore, this research is important to strengthen empirical evidence regarding the effectiveness of differentiation strategies in enhancing students' creative thinking skills in history learning.

METHODS

This research employs a quantitative approach with a quasi-experimental design to analyze the influence of the independent variable, namely learning strategies, on the dependent variable, which is students' creative thinking skills. The experimental group (X-2) implemented differentiated instruction, while the control group (X-1) utilized conventional instruction. Although there was no randomization, the selection of both classes was based on the equivalence of initial characteristics, including pretest scores, teacher background, and student demographic composition, which was verified through a Mann-Whitney U equivalence test ($p > 0.05$). This step mitigated potential bias due to the absence of random assignment (Creswell, 2015).

Purposive sampling was applied with the following criteria: (1) students were from the same grade level, (2) had identical curricula and teaching hours, and (3) were taught by teachers with equivalent qualifications and teaching experience. To ensure initial equivalence, matching was performed based on previous academic scores and pretest scores for creative thinking ability. The research instrument, a test, was developed by the research team in collaboration with pedagogic experts and validated through expert judgment (Aiken's $V > 0.80$) and an inter-rater consistency test (Kappa coefficient ≥ 0.75). Content validity was further strengthened by item response theory (IRT) analysis to ensure the alignment of test items with indicators of creative thinking (Arikunto, 2013).

Data in this study were analyzed using non-parametric statistical tests because the results of the Shapiro-Wilk normality test indicated that the data distribution did not meet the assumption of normality (significance value < 0.05). The choice of a non-parametric approach was considered appropriate for this condition as it does not require a normal data distribution, thereby still allowing for a valid interpretation of differences. This strategy aligns with the research objective, which aims to maintain the authenticity of the learning context in the school environment by not intervening with existing class structures. Consequently, the naturalness of the learning environment was preserved, and the research results more accurately reflect real-world conditions.

In addition to maintaining external validity through an ecological setting, this approach was also designed to reduce the possibility of bias from confounding variables. One effort made was the implementation of strict control over external factors that could influence the results. However, it must be acknowledged that this approach has limitations, particularly concerning the potential for selection bias due to the lack of full randomization. To address this limitation, non-parametric analysis of covariance

(ANCOVA) was employed as a correction method to adjust for the influence of covariate variables that might be imbalanced between groups. Thus, internal validity could still be optimally maintained within the framework of the quasi-experimental method used.

RESULTS AND DISCUSSION

Results

Data on Creative Thinking Test Results for the Experimental Class and the Control Class

This research aims to enhance the creative thinking abilities of students within the context of history education at SHS 5 Tasikmalaya. The study subjects were specifically focused on class X-2, designated as the experimental class, with a total of 37 student participants. The learning activities were conducted over six meetings. Before implementing the differentiated learning intervention, the researcher conducted an initial survey to identify common obstacles encountered in the history learning process. The purpose of this survey was to ensure that the applied approach genuinely met the students' needs, allowing the learning strategies to be effectively implemented and positively impact learning outcomes.

Through a specially designed learning approach, this research encourages students not only to understand historical facts linearly but also to develop the ability to interpret historical events critically and creatively. This strategy is expected to broaden students' intellectual scope, enabling them to view history as a complex, relevant, and contextual dynamic. Consequently, learning transcends mere memorization, becoming an intellectual experience that challenges students' reasoning, imagination, and analytical skills concerning various sources and past events.

The evaluation of creative thinking abilities was conducted using a multiple-choice test instrument designed based on creative thinking indicators. Pre-test results indicated that most students had a relatively uniform initial understanding of the material. After six learning sessions, a post-test was administered to determine the extent of improvement. Based on the post-test results, a significant range of scores was observed, from a lowest score of 58 to a highest score of 95. This variation in scores reflects the diversity in students' levels of understanding and their ability to absorb the material and apply creative thinking strategies. These findings also provide an important basis for evaluating the effectiveness of the approach used, while also serving as a foundation for improving teaching methods in subsequent learning cycles. The comparison results of the pre-test and post-test scores for the experimental class are presented as follows:

Table 1. Statistical Data of Pretest & Posttest Results of Experimental Class Students

Statistics	Value	
	Pretest	Posttest
Minimum	16	58
Maximum	58	95
Median	33.50	84
Mood	31	84
Mean	34.43	79.43
Variance	107.495	142.185
Std. Deviation	10.368	11.924
Range	42	37

Based on the descriptive statistical analysis, a significant increase was observed in the post-test results compared to the pre-test results among students in the experimental class. Prior to the intervention, students' pre-test scores ranged from 16 to 58, with an average score of 34.43 and a standard deviation of 10.368. This data indicates a considerable variation in individual achievement, reflecting a low and inconsistent initial level of creative thinking ability among the students.

Following the implementation of differentiated learning strategies as an intervention, a substantial improvement was noted in post-test scores. The minimum score increased to 58 and the maximum score reached 95, with an average of 79.43 and a standard deviation of 11.924. The almost twofold increase in the average score compared to the initial value reflects a significant change in learning achievement. Furthermore, the increase in the standard deviation may suggest that while most students showed progress, there was also a diversity in the level of achievement, indicating varied responses to the differentiated approach.

The identical median and mode values of 84 in the post-test indicate that the majority of students performed above the average achievement, demonstrating consistency in learning outcomes after the learning process. This strengthens the presumption that differentiated learning strategies can positively impact the development of students' creative thinking abilities in the experimental class. Thus, these findings provide empirical evidence that a learning approach tailored to the individual needs and potential of students can optimize overall learning outcomes. The results comparing the pre-test and post-test values of the control group are presented below:

Table 2. Statistical Data of Pretest & Posttest Results of Control Class Students

s	Statistic	Value	
		Pretest	Posttest
m	Minimu	11	53
m	Maximu	47	79
m	Median	42	73
m	Mood	42	68
m	Mean	36.87	70.57
m	Variance	88.257	51.771
m	Std.	9.395	7.195
Deviation	Range	36	26

Based on the statistical data analysis, an improvement in learning outcomes was observed following the post-test in the control class. During the pre-test phase, the minimum student score recorded was 11, and the maximum reached 47. Both the

median and mode were 42. Meanwhile, the average pre-test score was 36.87, with a relatively high data dispersion, indicated by a variance of 88.257 and a standard deviation of 9.395.

After the post-test, a significant improvement occurred across various statistical aspects. The minimum score increased to 53, while the maximum score reached 79. The median rose to 73, and the mode increased to 68. The average post-test score was recorded at 70.57. Furthermore, the variance decreased to 51.771, and the standard deviation fell to 7.195. This decrease in variance and standard deviation indicates that student learning outcomes after the post-test were more consistent compared to the pre-test.

Although the improvement in learning outcomes is statistically evident, it suggests that the implementation of conventional learning in the control class has not optimally enhanced students' creative thinking abilities. The observed improvement primarily reflects a general development of understanding, but it does not yet indicate a profound transformation in the aspect of creative thinking. Therefore, it can be concluded that conventional learning approaches have limitations in significantly stimulating and developing creative thinking skills.

Normality Test

Normality testing is a crucial initial step in quantitative research to ensure that the data used meets the assumption of a normal distribution. This assumption is vital because most parametric statistical analysis techniques, such as the Independent Samples t-test and Analysis of Variance (ANOVA), require that the data be normally distributed. If the data do not meet this assumption, the results of analyses conducted with parametric methods may become invalid or misleading, potentially affecting the overall research conclusions.

In practice, normality testing can be performed using statistical software like IBM SPSS version 26. The assessment of data normality is typically done through the Kolmogorov-Smirnov or Shapiro-Wilk tests, with the significance value (Sig.) as the criterion. If the Sig. value is greater than 0.05, the data are considered normally distributed and suitable for analysis using parametric statistical techniques. Conversely, if the Sig. value is less than 0.05, the data are considered not normally distributed, and researchers need to switch to non-parametric statistical methods, such as the Mann-Whitney U test, which do not require data normality.

Through this normality testing, researchers can determine the most appropriate statistical analysis method that aligns with the characteristics of their data distribution. This is essential for maintaining the accuracy of the analysis results and enhancing the validity of research conclusions. Therefore, selecting the correct analysis technique, based on the results of normality testing, becomes a strong scientific foundation in the research decision-making process. The results of the normality test for the control and experimental classes are presented in the following table:

Table 3. Data on the Results of the Normality Test

		Test of Normality			Kolmogorov-Smirnov			Shapiro-Wilk		
		Class	statis	f	sig.	statis	f	sig.		
Critical Thinking	Pretest	130	0	200*	967	0	463			
	Posttest	216	0	001	892	0	005			
	Pretest	214	0	000	854	0	001			
	Control	199	0	004	908	0	013			
	Posttest									
	Control									

1.Lilliefors Significance Corrections

In this study, normality tests were conducted to determine whether the pretest and posttest data from both the experimental and control groups were normally distributed. The normality test procedure was performed using the latest version of IBM SPSS software, which is widely recognized in quantitative research for its accurate statistical analysis capabilities. The test results indicated that the pretest data for the experimental group had a significance value of 0.463. This value is greater than the 0.05 threshold, leading to the conclusion that the pretest data in the experimental group were normally distributed and met the basic assumptions for parametric analysis.

Conversely, the normality test results for the experimental group's posttest data showed a significance value of 0.005, which is below the 0.05 significance level. This indicates that the posttest data did not follow a normal distribution. In the control group, both the pretest and posttest data each had a significance value of 0.001. Consequently, the data from both stages in the control group also failed to meet the normality assumption. This failure to meet the assumption has important implications for the type of statistical analysis that can be employed. Further analysis cannot utilize parametric techniques, as these methods require normally distributed data. Below is the image of the normality test results:

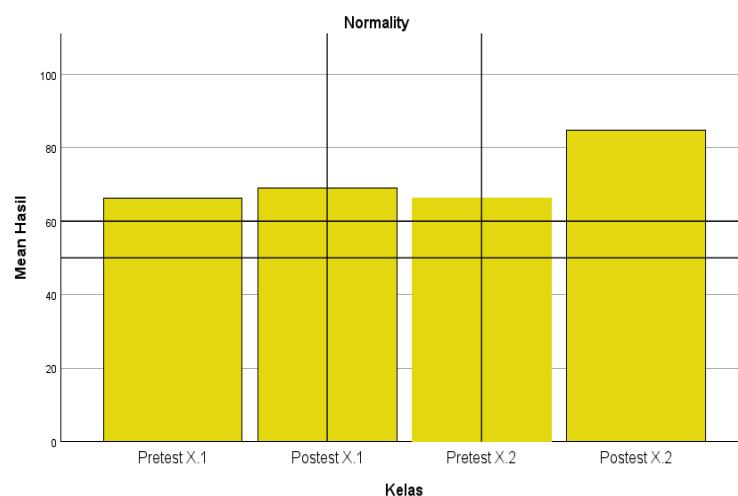


Image 1. Normality

Based on these findings, the researchers decided to use non-parametric statistical methods for hypothesis testing. One of the approaches used was the Mann-Whitney U

test, which is commonly applied to compare two groups that do not meet the assumptions of normality and homogeneity of variances. The use of this method was deemed more appropriate and relevant to the characteristics of the obtained data. The entire analysis process was carried out using IBM SPSS software, allowing for systematic and objective statistical calculations. Thus, the research results obtained possess a verifiable level of scientific accuracy and reliability.

Hypothesis Testing

In this study, the Mann-Whitney U test was chosen as the statistical analysis method due to its ability to handle non-normally distributed data. The advantage of this test lies in its robustness against violations of parametric assumptions, thereby yielding more accurate results that align with the characteristics of ordinal and interval data which do not meet normal distribution requirements. Consequently, the use of the Mann-Whitney U test is considered appropriate for analyzing the differences between the experimental and control groups within the context of this research.

To enhance the accuracy of calculations and simplify the interpretation of analysis results, this study utilized IBM SPSS version 26 as the primary analytical tool. This software was selected because it provides a comprehensive range of non-parametric statistical features that are user-friendly, and it also allows for more comprehensive data visualization. The application of technology in data processing aims to strengthen the validity of research findings and minimize the potential for manual analysis errors.

The main focus of this research is the implementation of a differentiated learning strategy, believed to be an effective approach in improving students' creative thinking skills, particularly in history subjects. This approach enables students to learn according to their individual needs, interests, and readiness levels, thereby creating a more meaningful learning experience. Through learning that is responsive to individual diversity, it is expected that students will be able to understand historical material more deeply and develop higher-order thinking skills, including creative thinking ability. The results of the hypothesis testing conducted in this study are presented below:

Table 4. Data on Hypothesis Test Results

Mann-Whitney U	228.500
Wilcoxon W	693.500
Z	-3.293
Asymp. Sig. (2-tailed)	0,001

In this research, the Mann-Whitney U test was employed as the statistical analysis method to test the research hypothesis. The selection of this non-parametric test was based on the normality test results, which indicated that the data were not normally distributed. Since one of the prerequisites for applying parametric tests, namely the assumption of a normal distribution, was not met, the statistical analysis had to be adjusted accordingly. The Mann-Whitney U test is a suitable alternative for examining differences between two independent groups when the data do not meet parametric assumptions. Below is the image of the Mann-Whitney test results:

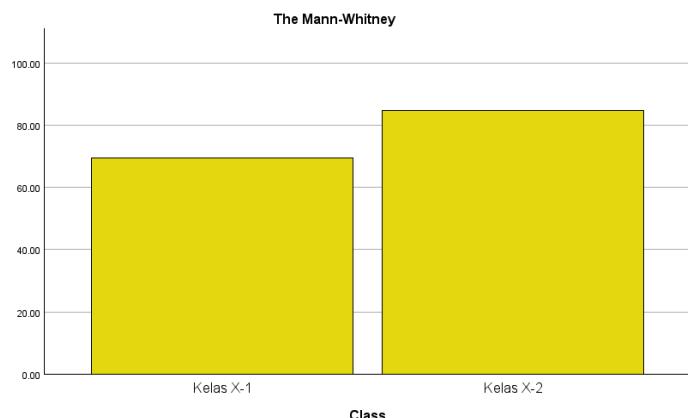


Image 2. Mann-Whitney

The hypothesis testing process involved comparing two groups of students who received different learning strategy treatments. The objective of this test was to determine whether there was a statistically significant difference in creative thinking ability between the treatment group and the control group. The interpretation of the results was based on the significance value (p-value). If the p-value was less than 0.05 ($p<0.05$), the null hypothesis (H_0) was rejected. This implied sufficient evidence that the implemented learning strategy had an effect on students' creative thinking ability.

The analysis results using the Mann-Whitney U test yielded a significance value of 0.001. This value is well below the 0.05 threshold, indicating a statistically significant difference between the two groups. Therefore, it can be concluded that the learning strategy used in the treatment had a positive and significant impact on enhancing students' creative thinking ability. This finding strengthens the argument that selecting an appropriate learning strategy is a crucial factor in developing students' cognitive potential, particularly in the aspect of creativity, which is an essential skill for facing 21st-century challenges.

Discussion

The Influence of Differentiated Learning Strategies on Students' Creative Thinking Ability

The research findings in class X-2 of Senior High School 5 Tasikmalaya indicate that learning strategies have a significant impact on students' creative thinking skills. In this study, the Mann-Whitney test was used as an analytical method because the collected data did not meet the normality assumption, making parametric tests inapplicable. Hypothesis testing was conducted by comparing two independent groups to determine whether there was a significant difference between the applied learning strategies and students' creativity levels. If the significance value (p-value) is less than 0.05, the null hypothesis (H_0) is rejected, meaning that the learning strategy does indeed influence students' creative thinking skills. Conversely, if the p-value is greater than 0.05, there is insufficient evidence to state a significant effect. Thus, the findings of this study highlight the importance of selecting appropriate learning strategies to enhance students' creativity in educational settings.

This experimental research underscores the significance of problem-solving strategies in history education to improve student engagement and understanding. By implementing this approach, students are not merely recipients of information but are

also actively involved in exploring various historical perspectives through critical analysis and evaluation. Through group collaboration, they are encouraged to compare facts, pose questions, and seek solutions to challenges within historical material. This approach not only enhances creative thinking skills but also strengthens communication and teamwork abilities. With a more interactive and dynamic learning atmosphere, students become more motivated to understand history in depth and relate it to present-day contexts (Maulidan, Saripudin, et al., 2024).

Differentiated learning allows each student to learn according to their unique characteristics, making the learning process more effective and enjoyable (Geel et al., 2023). Through this method, teachers can adjust their teaching strategies to better align with students' learning styles, whether visual, auditory, or kinaesthetic. In the context of history education, this approach helps students not only memorise facts but also comprehend the meaning behind each event. They are encouraged to analyse cause-and-effect relationships, explore different perspectives, and develop creative thinking skills (Gheyssens et al., 2022). As a result, history learning becomes more engaging and meaningful, motivating students to actively seek knowledge and connect historical events with their own lives today.

Statistical analysis in the experimental class revealed significant changes between the pre-test and post-test phases. At the initial stage before the intervention, the pre-test data illustrated an unfavourable condition, with the highest score reaching only 58 and the lowest at 16, while the median score was 33.50, indicating a considerable achievement gap among students. This situation suggests that before the intervention, students' abilities were still at a relatively low and uneven level. After the learning intervention was implemented, a remarkable transformation in student achievement was observed. This was evident from the increase in the highest score, which reached 95, although the lowest and median scores changed to 58 and 84, respectively. The drastic increase of 37 points in the highest score serves as concrete evidence of the effectiveness of the intervention, although the uneven distribution of scores indicates that some students may still require additional support to optimise their learning outcomes.

Differentiated learning strategies provide students with the opportunity to learn according to their styles, interests, and needs, thereby creating a more personalised and effective learning experience (Goldan & Schwab, 2020). With this approach, students can explore materials more deeply and in contexts relevant to them, thereby enhancing their understanding and knowledge retention. Moreover, this method encourages active interaction between students and teachers, where educators act as facilitators guiding the learning process according to the individual characteristics of students (Maulidan, et al., 2024). Consequently, learning is no longer one-directional but becomes a dynamic and participatory experience, ultimately contributing to a significant improvement in learning outcomes (Salyim et al., 2022).

The research findings indicate that the control class, which implemented a project-based learning model, experienced moderate progress. The collected data suggest an increase in scores after the learning process. Before the intervention, the highest score in the pre-test was 47, while the lowest was 11, with an average of 42. After the learning process was completed, improvements were observed across all assessment aspects, with the highest score rising to 79, the lowest increasing to 53, and the average score reaching 73. Nevertheless, although there was an increase in scores from pre-test to post-test, these results were still not as significant compared to the

experimental class, which exhibited a more striking development. This indicates that while the project-based learning model can have a positive impact, its effectiveness remains lower than the approach used in the experimental class.

The difference in learning outcomes between the two classes indicates that the implementation of a learning model has a significant impact on students' academic achievement. The experimental class, which applied differentiated learning, demonstrated higher results compared to the control class, suggesting that this approach is more effective in enhancing students' understanding and skills (Arum & Darmawati, 2024). Differentiated learning encourages students to be more active in identifying and solving problems, making the learning process more in-depth and meaningful (Hachfeld & Lazarides, 2020). Meanwhile, although the control class also experienced improvement after implementing project-based learning, the increase was more moderate. This suggests that the effectiveness of a learning model does not solely depend on its method but is also influenced by other factors such as student motivation, teachers' teaching skills, and the complexity of the material being delivered (Harizah et al., 2022). Therefore, when selecting a learning strategy, it is crucial to consider various supporting factors to optimise learning outcomes.

Differentiated learning, which is based on multiple intelligences theory, provides space for students to engage actively in learning (Joseph & Thomas, 2023). Through this approach, students are encouraged to connect their prior experiences with new problems they encounter, leading to a deeper understanding. Furthermore, differentiated learning allows each individual to learn according to their own style and pace, making the learning process more inclusive (Letzel & Schneider, 2022). As a result, students not only acquire theoretical knowledge but also develop essential critical thinking, collaboration, and problem-solving skills needed in real life.

A varied learning approach plays a crucial role in enhancing students' creative thinking abilities. By applying methods that align with the standards and indicators of creative thinking, students can more easily analyse and evaluate information systematically. Research conducted by Ennis and cited in the study by Pozas & Schneider (2020) reveals that there are six dimensions of creative thinking that must be considered, particularly in terms of analytical and evaluative skills. Observations in class X-1 at Senior High School 5 Tasikmalaya showed a significant improvement in students' understanding of the material and their ability to identify the core issues in the given questions. Therefore, the use of appropriate learning methods can have a positive impact on problem-solving and a deeper understanding of concepts for students.

The improvement of students' creative thinking skills depends on a combination of effective teaching methods and their application in accordance with creative thinking standards. Endeswah (2023) identify several key dimensions, such as analysis, evaluation, and reflection, which play a role in sharpening students' thinking skills. By implementing learning techniques that align with these dimensions, students can better understand the material and develop innovative solutions to solve problems (Maulidan & Darmawan, 2024). Field observations indicate that appropriate learning approaches can enhance students' ability to think critically and creatively, making them more prepared to face academic and everyday challenges.

Differences in characteristics between female and male students in learning show that each individual has their own way of understanding and completing academic tasks. Female students tend to be more meticulous and cautious in answering questions, as reflected in the longer time they take to ensure accuracy. In contrast, male students

prioritise efficiency by completing tasks quickly without compromising clarity. This pattern reflects variations in learning styles that can influence teaching strategies in the classroom. By understanding these characteristics, educators can design more inclusive teaching methods tailored to each student's needs, thereby creating a more effective learning environment (Verdiana & Djoko, 2020).

The Reasoning indicator plays a crucial role in shaping students' creative and analytical thinking patterns, particularly in gaining an in-depth understanding of events (Jayanti & Suprijono, 2023). In the context of history education, this ability enables students not only to receive information passively but also to examine and connect various factors underlying an event. For example, when studying the Japanese occupation of Indonesia, students can explore the reasons behind Japan's expansion, including the economic and political factors that drove it. By applying logical reasoning, they can conclude that the oil shortage caused by the US embargo prompted Japan to seize control of Indonesia to obtain the natural resources it needed. This ability not only helps students comprehend history more comprehensively but also trains them to think systematically in analysing various future events.

According to Gheyssens et al (2022), the differences in creative thinking patterns between female and male students reflect how gender characteristics can influence the way they analyse and present information. The more dominant analytical and systematic approach among female students indicates their tendency to consider various aspects before making a decision. Meanwhile, the more concise and direct problem-solving style of male students signifies efficiency in formulating responses (Ningsih et al., 2023). These differences do not indicate the superiority of one group over the other but rather illustrate variations in thinking styles that can complement each other in discussions and problem-solving. Therefore, understanding these characteristics can help educators design more inclusive and effective learning strategies, enabling each student to optimise their creative thinking potential.

Based on statistical analysis, it can be concluded that differentiated learning has a significant impact on improving creative thinking skills in history subjects. A significance value of 0.001 obtained from the Mann-Whitney test indicates a significant difference between the group using differentiated learning methods and the group that did not. Since this value is smaller than the 0.05 significance level, the null hypothesis (H_0) is rejected, while the alternative hypothesis (H_a) is accepted. This confirms that the implementation of differentiated learning is not merely a teaching strategy but also a crucial factor in encouraging students to think more creatively in understanding and analysing historical material.

The findings of this study support previous research that revealed the important role of differentiated learning in enhancing students' creative thinking skills. In Class X-2 of Senior High School 5 Tasikmalaya, the application of this method has proven effective in tailoring learning to students' individual needs, making it easier for them to understand historical material. Not only does it improve their ability to analyse and interpret various historical events, but it also encourages active student participation in the learning process. With a more personalised approach, students are more motivated to explore different perspectives, deepen their understanding, and develop critical and creative thinking skills essential for historical inquiry.

The research conducted by Prast & Van (2020) provides strong evidence that the implemented learning method can enhance students' creative thinking skills. Despite variations in subjects and research locations, the results consistently align with previous

studies. This underscores the crucial role of differentiated learning in helping students develop more flexible and innovative thinking. By offering learning experiences tailored to individual needs, this approach enables students to be more actively engaged in exploring and understanding the concepts being studied.

The relevance of these findings to the theory of multiple intelligences in education further reinforces the importance of meaningful learning experiences (Maulidan & Darmawan, 2024). In differentiated learning, students do not merely receive information passively but are also trained to connect new learning experiences with their prior knowledge. This process not only enhances their understanding of the subject matter but also enriches their analytical and evaluative skills. Consequently, this approach contributes not only to improved academic outcomes but also to the development of critical and creative thinking skills, which are essential for facing real-world challenges.

The conducted research has proven that differentiated learning methods are highly effective in fostering students' creativity. Based on structured observations and meticulous statistical data analysis in Class X-2 of Senior High School 5 Tasikmalaya, particularly in history lessons, it was found that this approach positively impacts students' ways of thinking. Implementing strategies tailored to each student's needs and potential allows them to be more active in exploring ideas, gaining a deeper understanding of the material, and optimally developing critical and creative thinking skills.

This study demonstrates that differentiated learning has a significant impact on enhancing students' creative thinking abilities. Through an approach tailored to individual needs, this method stimulates students' analytical skills, enables them to explore historical material more deeply, and encourages them to develop an understanding from multiple perspectives. With this strategy, students are more motivated to think critically and reflectively, sharpening their creative thinking skills. Therefore, differentiated learning can be considered an effective method for creating a more dynamic learning environment that supports higher-order thinking development in history education.

CONCLUSION

This study highlights the importance of learning strategies in enhancing students' creative thinking skills in the subject of History. The findings indicate that the use of appropriate methods can create a more interactive learning environment, encouraging students to be more actively engaged in discussions and other learning activities. Observations conducted during the learning process play a key role in fostering a dynamic learning atmosphere, motivating students to ask questions, express their opinions, and collaborate with their peers. With increased student engagement, their understanding of historical material also deepens. Furthermore, effective learning strategies help students develop analytical and evaluative skills in processing the information they acquire, which are essential aspects of creative thinking.

Statistical data analysis results show that the implementation of differentiated learning strategies has a significant impact on improving students' creative thinking ability scores. This improvement is reflected in their ability to explore and interpret historical events more deeply, as well as to formulate well-structured arguments based on available facts. The effectiveness of this strategy lies in its ability to tailor teaching approaches to the characteristics and learning needs of each student. Consequently,

every learner can optimise their potential according to their individual learning style and level of understanding.

The application of diverse learning strategies has proven effective in enhancing students' higher-order thinking skills. Through strategy differentiation, students can develop deeper analytical abilities and generate new understandings of historical material. This progress is evident in the improved quality of their writing and presentations, demonstrating a more critical understanding of historical sources. Additionally, this strategy plays a role in fostering students' creativity, encouraging them to be more meticulous in verifying historical information and distinguishing between facts and interpretations, making history learning more meaningful and in-depth.

REFERENCES

Arikunto, S. (2013). Prosedur Penelitian: Suatu Pendekatan Praktik. Rineka Cipta.

Arum, E. A., & Darmawati. D. M. (2024). The Influence of The Project-Based Learning Model On The Learning Outcomes of Professional Ethics. *J-PIPS (Jurnal Pendidikan Ilmu Pengetahuan Sosial)*, 10(2), 178–191. <https://doi.org/10.18860/jpis.v10i2.27347>

Blegur, J., & Hardiansyah, S. (2024). Differentiation instruction publications in physical education: bibliometric analysis of the last ten years. *Journal of Education and Learning (EduLearn)*, 18(3), 903–913. <https://doi.org/10.11591/edulearn.v18i3.21307>

Chandra, M. (2020). Examining students' and teachers' per_ceptions of differentiated practices, student engagement, and teacher qualities. *Journal of Advanced Academics*, 31(4), 530–568. <https://doi.org/10.1177/001698620404800102>.

Creswell. (2016). Research Design : Pendekatan Metode Kualitatif, Kuantitatif dan Campuran (Keempat). Pustaka Pelajar.

Dack, H., & Triplett, N. (2020). Novice social studies teachers' imple_mentation of differentiation: a longitudinal multicase study. *Theory & Research in Social Education*, 48(1), 32–73. <https://doi.org/10.1177/00224871241232419>

Dörnyei, Z. (2014). Research methods in applied linguistics. Oxford University Press.

Endeshaw, A. D. (2023). Examining EFL Teachers' Knowledge, Attitudes and Perceived Practices of Differentiated Instruction in English Classrooms. *Cakrawala Pendidikan: Jurnal Ilmiah Pendidikan*, 43(3), 760–770. <https://doi.org/10.21831/cp.v42i3.49953>

Faiz, A., & Pratama, A. (2022). Pembelajaran Berdiferensiasi dalam Program Guru Penggerak pada Modul 2.1. *Jurnal Basicedu*, 6(2), 228–239. <https://doi.org/10.31004/basicedu.v6i2.2504>

Geel, M. V., Keuning, T., & Frèrejean, J. (2023). Capturing the complexity of differentiated instruction. *An International Journal of Research, Policy and Practice*, 30(1), 51–67. <https://doi.org/10.1080/09243453.2018.1539013>

Gheyssens, E., Coubergs, C., Freixenet, J., Engels, N., & Struyven, K. (2020). Differentiated instruction: the diversity of teachers' philosophy and praxis to adapt teaching to students' interests, readiness and learning profiles. *International Journal of Inclusive Education*, 26(14), 1383–1400. <https://doi.org/10.1080/13603116.2025.2456764>

Goldan, J., & Schwab, S. (2020). Measuring students' and teachers' perceptions of resources in inclusive education—validation of an newly developed instrument. *International Journal of Inclusive Education*, 24(12), 1326–1339. <https://doi.org/10.1080/13603116.2018.1515270>

Hachfeld, A., & Lazarides, R. (2020). The relation between teacher self-reported individualization and student-perceived teaching quality in linguistically heterogeneous classes: An exploratory study. *European Journal of Psychology of Education. Vorab Onlinepublikation*, 36(14), 1159–1179. <https://doi.org/10.1080/13603116.2025.2449831>

Harizah, D. T. D., Sumarmi, S., & Bachri, S. (2022). Pengaruh Model Pembelajaran Project Based Learning terhadap Hasil Belajar Geografi Siswa SMAN 5 Pamekasan. *J-PIPS (Jurnal Pendidikan Ilmu Pengetahuan Sosial)*, 8(2), 104–113. <https://doi.org/10.18860/jpis.v8i2.13020>

Jayanti, D. S., & Suprijono, A. (2023). Implementasi Pembelajaran Berdiferensiasi Dalam Kurikulum Merdeka Pada Mata Pelajaran Sejarah Di SMA Negeri 22 Surabaya. *EDUKASIA: Jurnal Pendidikan Dan Pembelajaran*, 4(1), 561-566. <https://doi.org/10.62775/edukasia.v4i1.304>

Joseph, S., & Thomas, M. (2023). The Impact of Differentiated Instruction in a Teacher Education Setting: Successes and Challenges. *International Journal of Higher Education*, 2(3), 28–40. <https://doi.org/10.5430/ijhe.v2n3p28>

Kado, & Dorji, N. (2022). The Effects of Differentiated Instruction on Academic Achievement of Grade Eleven Students in The Field of Derivative in Bhutan. *International Journal of Educational Studies in Social Sciences*, 2(1), 27–37. <https://doi.org/10.53402/ijesss.v2i1.37>

Kamal, S. (2021). Implementasi Pembelajaran Berdiferensiasi Dalam Upaya Meningkatkan Aktivitas dan Hasil Belajar Matematika Siswa Kelas XI MIPA SMA Negeri 8 Barabai. *Julak: Jurnal Pembelajaran Dan Pendidikan*, 11(1), 89–100. <https://www.neliti.com/publications/409651>

Letzel, V., & Schneider, C. (2022). Length but positive! – An exploration into teacher attitude profiles towards differentiated instruction (DI) in Germany. *British Journal of Educational Psychology*, 9(2), 1–16. <https://doi.org/10.1111/bjep.12535>

Maulidan, A. C., Ahmad, A. A., Fachrerozi, M. H., & Firdaus, D. W. (2024). Implementation of Sociodrama Learning Method in Indonesia History Subjects. *Criksetra: Jurnal Pendidikan Sejarah*, 13(2), 127–140. <https://doi.org/10.36706/jc.v13i2.13>

Maulidan, A. C., & Darmawan, W. (2024). Implikasi Multikulturalisme dalam Pembelajaran Sejarah Sebagai Upaya Meningkatkan Kesadaran Persatuan Indonesia. *Artefak*, 11(1), 49–64. <http://dx.doi.org/10.25157/ja.v11i1.13671>

Maulidan, A. C., Saripudin, D., & Ma'mur, T. (2024). Pragmatism Education Philosophy and its Implications for History Learning. *Lembaran Ilmu Kependidikan*, 53(2), 154–170. <https://doi.org/10.15294/lik.v53i2.10286>

Maulidan, A. C., Saripudin, D., & Supriatna, N. (2025). Strategi Implementasi Pembelajaran Berdiferensiasi pada Pembelajaran Sejarah di SMA Negeri 16 Kota Bandung. *Fajar Historia: Jurnal Ilmu Sejarah Dan Pendidikan*, 9(1), 59–73. <https://doi.org/10.29408/fhs.v9i1>

Maulidan, A. C., & Tarunasena. (2024). Peranan Pembelajaran Sejarah Sebagai Upaya Membentuk Karakter Peserta Didik Pada Kurikulum Merdeka. *Visi Sosial Humaniora*, 5(1), 194–205. <https://doi.org/10.51622/vsh.v5i1.2332>

Maulidan, A. C., & Yulifar, L. (2025). Filsafat pendidikan progresivisme dan implikasinya pada pembelajaran sejarah. *Agastya: Jurnal Sejarah Dan Pembelajarannya*, 15(1), 21–38. <https://doi.org/10.25273/ajsp.v15i1.19484>

Ningsih, M. P., Ramadhan, I. R., & Novitasari, N. (2023). Penerapan Model Flipped Classroom Dengan Ragam Model Pembelajaran Kooperatif Jigsaw dan Tipe Think Pair Share. *J-PIPS (Jurnal Pendidikan Ilmu Pengetahuan Sosial)*, 10(1), 65–77. <https://ejournal.uin-malang.ac.id/index.php/jpis/article/view/23711>

Pozas, M., & Schneider, V. (2020). Teachers and Differentiated Instruction: Exploring Differentiation Practices to Address Student Diversity. *Journal of Research in Special Educational Needs*, 20(3), 217–230. <https://doi.org/10.1111/1471-3802.12481>

Prast, E. J., & Van, D. W. B. (2020). Differentiated Instruction in Primary Mathematics: Effects of Teacher Professional Development on Student Achievement. *Learning and Instruction*, 5(4), 22–34. <https://doi.org/10.1080/13603116.2025.2451030>

Salym, A., Soekamto, H., Aziz, S., & Lumpur, J. (2022). Pengaruh Model Project Based on Environment Learning dan Literasi Lingkungan dalam Kaitannya dengan Creative Thinking Skill. *J-PIPS (Jurnal Pendidikan Ilmu Pengetahuan Sosial)*, 9(1), 63–81. <https://doi.org/10.18860/jpis.v9i1.18054>

Supriatna, N. (2019). Pengembangan Kreativitas Imajinatif Abad Ke-21 Dalam Pembelajaran Sejarah. *Historia: Jurnal Pendidik Dan Peneliti Sejarah*, 2(2), 73–

84. <https://doi.org/10.17509/historia.v2i2.16629>

Verdiana, P., & Djoko, A. W. (2020). Pengembangan Perangkat Pembelajaran Dengan Model Diferensiasi Menggunakan Book Creator Untuk Pembelajaran Bipa Di Kelas Yang Memiliki Kemampuan Beragam. *Jurnal Education and Development*, 8(4), 310–319. <https://doi.org/10.37081/ed.v8i4>