MEMBANGUN GAUSSIAN CLASSIFIER DALAM MENGENALI OBJEK DALAM BENTUK IMAGE

Irwan Budi Santoso

Abstract


Distribusi Multivariate Normal (Gaussian) adalah salah satu distribusi yang sering digunakan, mengingat hampir semua kejadian bisa didekati dengan distribusi tersebut. Dalam mengenali suatu objek dalam bentuk image, fitur objek tersebut kerapkali mengikuti distribusi Multivariate Gaussian dengan parameter mean dan covariance yang berbebeda-beda. Parameter dan yang berbeda-beda tersebut akan menghasilkan nilai probability density function (pdf) yang berbeda pula. Berdasarakan nilai probability density function ini selanjutnya dapat dibentuk fungsi diskriminan untuk mengenali objek (Gaussian Classifier). Kehandalan Gaussian Classifer dalam mengenali objek dalam bentuk image dipengaruhi oleh 2 faktor utama yaitu ketepatan dan keakuratan dalam pengambilan data objek training yang akan berpengaruh terhadap ketepatan dan keakuratan fitur yang diambil dan asumsi distribusi Multivariate Normal dari fitur objek yang diambil harus terpenuhi. Untuk memenuhi asumsi multivariate distribusi Multivariate Normal maka harus dilakukan pengujian terhadap normalitas distribusi fitur setiap kelas objek.

Kata Kunci Distribusi Gaussian, Parameter Distribusi, Probability Density Function, Fungsi Diskriminan


Keywords


Distribusi Gaussian, Parameter Distribusi, Probability Density Function, Fungsi Diskriminan

Full Text:

PDF


DOI: https://doi.org/10.18860/mat.v1i1.2645

Refbacks

  • There are currently no refbacks.




Copyright (c) 2014 Irwan Budi Santoso

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

_______________________________________________________________________________________________________________

Editorial Office:
Jurusan Teknik Informatika
Fakultas Sains dan Teknologi
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jalan Gajayana 50 Malang, Jawa Timur, Indonesia 65144
Email: matics@uin-malang.ac.id
_______________________________________________________________________________________________________________

Creative Commons License
This work is licensed under a CC-BY-NC-SA.
© All rights reserved 2015. MATICS , ISSN : 1978-161X | e-ISSN :  2477-2550