Sensitivity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission
Abstract
increase in the previous parameter value could potentially enlarge the endemicity of COVID-19. On the other hand, parameters 𝛼 and 𝜎, representing movement rate of exposed
individuals to the quarantine class and proportion of quarantined exposed individuals, showed negative index. The numbers indicate that an increase in the parameter value could decrease the disease’s endemicity. All in all, the study concludes that treatments for COVID-19 should focus on
restriction of interaction between individuals and optimization of quarantine.
Keywords
Full Text:
PDFReferences
B. Tang et al., “Estimation of the Transmission Risk of the 2019-nCoV and Its
Implication for Public Health Interventions,” Journal of Clinical Medicine, vol. 9, no.
, p. 462, 2020, doi: 10.3390/jcm9020462.
B. Tang et al., “The effectiveness of quarantine and isolation determine the trend of
the COVID-19 epidemics in the final phase of the current outbreak in China,” Int J
Infect Dis, 2020, doi: 10.1016/j.ijid.2020.03.018.
B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, and J. Wu, “An updated estimation of
the risk of transmission of the novel coronavirus (2019-nCov),” Infectious Disease
Modelling, vol. 5, pp. 248–255, 2020, doi: 10.1016/j.idm.2020.02.001.
M. A. Khan and A. Atangana, “Modeling the dynamics of novel coronavirus (2019-
nCov) with fractional derivative,” Alexandria Engineering Journal, 2020, doi:
1016/j.aej.2020.02.033.
T. M. Chen, J. Rui, Q. P. Wang, Z. Y. Zhao, J. A. Cui, and L. Yin, “A mathematical model
for simulating the phase-based transmissibility of a novel coronavirus,” Infectious
Diseases of Poverty, vol. 9, no. 1, pp. 1–8, 2020, doi: 10.1186/s40249-020-00640-3.
H. Sun, Y. Qiu, H. Yan, Y. Huang, Y. Zhu, and S. X. Chen, “Tracking and Predicting
COVID-19 Epidemic in China Mainland,” medRxiv, no. February, p.
02.17.20024257, 2020, doi: 10.1101/2020.02.17.20024257.
T. Kuniya, “Prediction of the Epidemic Peak of Coronavirus Disease in Japan, 2020,”
Journal of Clinical Medicine, vol. 9, no. 3, p. 789, 2020, doi: 10.3390/jcm9030789.
P. van den Driessche and J. Watmough, “Further Notes on the Basic Reproduction
Number,” in Mathematical Epidemiology, Victoria: Springer, 1945.
N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining Important Parameters in
the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model,”
Bulletin of Mathematical Biology, vol. 70, no. 5, pp. 1272–1296, Jul. 2008, doi:
1007/s11538-008-9299-0.
DOI: https://doi.org/10.18860/ca.v6i2.9165
Refbacks
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
- —
Copyright (c) 2020 Resmawan Resmawan, Lailany Yahya
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Editorial Office
Mathematics Department,
Universitas Islam Negeri Maulana Malik Ibrahim Malang
Gajayana Street 50 Malang, East Java, Indonesia 65144
Faximile (+62) 341 558933
e-mail: cauchy@uin-malang.ac.id
CAUCHY: Jurnal Matematika Murni dan Aplikasi is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.