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ABSTRACT	

The generalized linear process accomplishes stationarity and invertibility properties. The 

invertibility property must be having a series of convergence conditions of the process parameter. 

The generalized Space-Time Autoregressive (GSTAR) model is one of the stationary linear models 

therefore it is necessary to reveal the invertibility through the convergence of the parameter 

series. This article studies the invertibility of model GSTAR(1;1) with kernel random weight. The 

result shows that the model GSTAR(1;1) under kernel random weight fulfills the invertibility 

property and obtains a finite order of Generalized Space-Time Moving Average (GSTMA) process. 

The other result obtained is the time order of the finite orde 7 � � � 30 . On the Triangular kernel 

resulted in the relatively great value n, so that it does not apply to the kernel with a finite value n. 

The GSTAR(1;1) model with random kernel weight is applied to the data of tea production in six 

plantantion area in West Java. The RMSE value of data estimation obtained is quite small. It follows 

the original data pattern at each research location respectively. 

 

Keywords: autoregressive process; generalized linear process; invertibility; stationarity 

INTRODUCTION	

Theoretically, the first order of the autoregressive model, AR(1), of the univariate 

time series is equivalent to the moving average model with infinity order, MA( )∞  [1]. It 

happens to the multivariate model that the vector autoregressive model, VAR(1), is 

comparable with the model VMA( )∞  [2]. These properties are known as the invertibility 

property of the autoregression model orde 1. The GSTAR(1;1) model is a member of the 

autoregression model family [3]. The question of research, Is the GSTAR(1;1) model also 

equivalent to the GSTMA(∞;1) model? The theoretical study of the GSTAR model has be 

done in [4] about the model stationarity using the inverse of the autocorrelation matrix. 

Furthermore, [5] tells about the estimation property of the parameter GSTAR using the 

least square method, observes the error assumption of the model GSTAR [6] and the 

GSTAR containing outlier [7]. Also, the development of the GSTAR model has been carried 

out by several researchers such as GSTAR-GARCH [8], GSTAR-SUR [9], GSTAR-Kriging 

[10] and others.  
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Several researchers have developed the spatial weight matrix determination, such 

as  [11] using a uniform spatial weight matrix namely the closest neighbors are given the 

same weight. [5] uses a binary weight matrix considering the uniform weight as a 

comparison.  The weight matrix determination using cross-correlation have also be done 

by [12]. All of the researchers use distance as the basis of the weight matrix determination. 

[13] proposes a Fuzzy set approach based on observational data in determining the 

weight matrix, but the approach still produces the weights assigned is not random. 

Determining random weight matrix have be be done by author by using some kernel 

functions approach [3]. Furthermore, the spatial weight effect of the random kernel is also 

examined for its stationary properties [14]. Some of the space-time data applied using the 

GSTAR model are the tourist number data at several tourist attractions [15], the tea 

production data [5], the GDP data in the countries in Europe [11], the chili prices 

prediction [16], the data of log Gamma Ray [3], the rainfall data [10] and so on.  

This paper discusses the GSTAR model with a random weight using the kernel 

function. The kernel function used is uniform, triangular, Epanechnikov, cosine dan 

Gaussian. The kernel functions present the constant function, linear, square, cosine, dan 

exponential. Moreover, the research talks about the weight matrix effect of kernel spatial 

to its invertibility. In notation, the weight matrix using the kernel function is denoted by 
� ( )ijW=W ɶ  and the parameter matrix GSTAR(1;1) is represented by �Φ . Besides, the study 

discloses the convergence of each kernel function to its invertibility. The article begins 

with the invertibility theory of the AR(1) model and VAR(1). The next section explains the 

kernel function and continued with the study of the GSTAR(1;1) model under the kernel weight. 

Both results and discussion will be conferred in the next section about the invertibility of the 

GSTAR model under both the kernel weight and the convergence to determine the order of the 

GSTMA model. In the last section, the paper implements the GSTAR(1;1) model with the Gaussian 

kernel weight on the tea production data in the six plantation area in West Java. 

METHODS 

This section will discuss the theories underlying the research namely the AR(1) 

model and VAR(1) which is the basis of the GSTAR(1;1) model formation. After that, the 

research studies the properties of each invertibility. The last, it will have conversed about 

the kernel function used to form the spatial weight matrix of the GSTAR(1;1) model.  

Invertibility of AR(1) and VAR(1) Process 

The autoregression process (AR(p)) is defined as below [1]: 

1 1 ...t t p t p tY Y Y aφ φ− −= + + +  

with 1 2, ,..., pφ φ φ  are the autoregression parameters and ta  is white noise process with 

mean is zero and variance is 2
aσ  . If 1p =  then it will be known as process AR(1), which is 

formulated as: 

1t t tY Y aφ −= + . 

Besides, the process AR(1) is one of stationer linear models under a stationarity condition 

1φ < , model AR(1) has the invertibility property such as: 

1

1 2
( 1) 2 1

t t t

k k
t t k t k t t t

Y Y a

Y a a a a a

φ
φ φ φ φ

−

−
− − − − −

= +

= + + + + + +⋯ ⋯
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The last model obtained is the MA( ∞ )model and the MA model surely stationer with

1φ <  and over convergence process. It results in the AR(1) is invertible to AR(1) ≈  MA(

∞ ).  

On the process AR(1), it considers one random variable with some times. If the 

observation is worked by using several random variables which each of them through the 

process AR(1) so it is known as the first order of the vector of autoregressive (VAR(1)). 

The model VAR(1) can be framed as follows: 

1 tt t aφ −= +Y Y
�

 

The necessary and sufficient condition of stationarity of the VAR(1) is a solution of

1 0kI Bφ− =  less than one. The process VAR(1) can also be represented in the vector of 

moving average (VMA) or in the other words satisfied the invertibility property [2].  

The Kernel Function 

The continuous real function  is denoted as the kernel function if satisfied the sum 

of integral is one, symmetrically for each , the mean equal to zero and the finite variance. An 

example of the kernel function along with its efficiency properties which learned in Table 1. 

The notation { }2
(k) ( )R k x dx= ∫  states “roughness” of the kernel function k. The notation 

2 2 ( )K x k x dxσ = ∫  is a variance of the kernel function, while the efficiency of the kernel 

function is obtained from { }5/4
( *) / (K) 1C K C = , where ( ){ }1/524 2( ) ( ) KC K R K σ= . 

Table 1.  The shape of kernel function and its properties. The bound of its domain between -1 and 

1 (and 0 for outside the domain), except for the Gaussian kernel is applicable for all the real 

numbers [17]. 

The Kernel The Form of 

Function 

( )R k   
 

2
Kσ   The 

Efficiency 

The 

Domain 

Uniform 

(Seragam kernel) 

( ) 1/ 2k x =  1

2
  

1

3
  

0.9295 (-1,1) 

Triangular ( ) 1k x x= −  2

3
  

1

6
  

0.9859 (-1,1) 

Epanechnikov ( )23
( ) 1

4
k x x= −  

3

5
  

1

5
  

1 (-1,1) 

Cosinus 
( ) cos

4 2
k x

π π
=

 
 
 

 

2

16

π
  2

8
1

π
−   

0.9897 (-1,1) 

Gaussian 21
( ) exp

22

x
k x

π
= −

 
 
 

 1

2 π
  

1 0.9512 ℝ   

The approximation of the kernel function as the weight function is generally used to 

estimate density and regression function. The procedure of the kernel function is the sum 

of some kernel function to each point corresponded to every surrounding point (see 

Figure 1). In general, the kernel function of a point linked to it’s the nearest point, for 
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example, x and y are 
x y

k
h

− 
 
 

. The notation h is a bandwidth controlling smoothness of 

the kernel function. 

 

Figure 1. The plot of kernel density estimation. If there are a lot of observations which is close 

to point x then f(x) has great value. On other hand, if there are less ��  closed to the point x 

then f(x) has a small value. 

The GSTAR(1;1) Model with the kernel Weight 

The novel method to determine the spatial weight matrix of the model GSTAR 

recommended is by using the kernel function. Kernel location weight is attained by 

adopting the kernel estimator of Nadaraya-Watson [18] and using an average value of  the 

observation on every single location .iY   

Average value selection of observation in each location is intended to find overall 

data property (data centering) by ignoring outlier of an observation data. 

Centralization process { }( )iY t  following a model GSTAR (1;1) kernel weight is 

written as: 

�
0 1

1

( ) ( 1) ( 1) ( ), 1,..., , 1,...,
N

iji i j ii i
j

WY t Y t Y t t t T i Nφ φ ε
=

= − + − + = =∑    (1) 

This model has a spatial weight   

 

1

i j

ij N
i

i

Y Y
k

h
W

Y Y
k

h=
≠

 
 
 
 
 
 

−

=
−

∑
ℓ

ℓ
ℓ

ɶ  ,  

with notation (.)k  is the kernel function, h represents a smoother parameter of the kernel 

function k and ( )iY t  declares an observation on-time t at location i.  The term weight 

matrix can be written as, 
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�

� �

� �

� �

12 1

21 2

1 2

0

0

0

N

N

N N

W W

W W

W W

=

 
 
 
 
 
  

W

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

  

The result of the weight matrix 	W , by the kernel function approach, appears to satisfy the 

properties of the random weight matrix. It is caused by the weight that originated from 

the random variable data. It is the observation data and fulfilled the property 
1

1
N

ij
j

W
=

=∑ , 

1N > .  

After obtaining the matrix of kernel spatial weight, the parameter estimation of the  

GSTAR (1;1) model is carried out using the least squares method followed by validating 

model. The model validating is held by doing 2 steps namely the parameter significance 

test and the residual test. The parameter significance test uses the parameter matrix eigen 

value of the GSTAR(1;1) model and the residual test using the plot of data error (error 

randomness) and the QQ plot of error (normality).  

 

RESULTS AND DISCUSSION 

The symbol writing of parameter matrix for the GSTAR(1;1) model based on 

Equation (1) to 0 01 0
( , , )

N
diag φ φ=Φ ⋯ , 1 11 1

( , , )
N

diag φ φ=Φ ⋯  dan =(wij), so that the model 

GSTAR(1;1) can be expressed in the matrix as follows 

�

�( )
( ) ( 1) ( 1) ( )

( ) ( 1) ( ).

t t t t

t t t

= − + − +

= − +

0 1

0 1

Y Φ Y Φ WY ε

Y Φ +Φ W Y ε
 

Representation of the GSTMA model from the GSTAR(1;1) model as below, 

 

	( )
	( ) 	( ){ }

( ) ( 1) ( )

       = ( 2) ( 1) ( )

t t t

t t t

= − +

− + − +

0 1

0 1 0 1

Y Φ +ΦW Y ε

Φ +ΦW Φ +ΦW Y ε ε

 

	( ) 	( )
	( ) 	( )

2

2

 = ( 2) ( 1) ( )

 = ( ) ( 1) ( 2)

 

t t t

t t t

− + − +

+ − + −

0 1 0 1

0 1 0 1

Φ +Φ W Y Φ +Φ W ε ε

ε Φ +Φ W ε Φ +Φ W Y

⋮

 

	( ) 	( )
�

2

0

       = ( ) ( 1) ( 2)

       = ( )
i

i

t t t

t i
∞

=

+ − + − +

−∑

0 1 0 1ε Φ +Φ W ε Φ +Φ W ε

Φ ε

⋯

 

with  
� 	

0 1Φ=(Φ +ΦW) . 

For the GSTAR(1;1) model which is stationer, all of the eigenvalues �Φ are between 

-1 and 1 so that � 0 for 
i

i→ → ∞Φ . This is stated in Theorem 1. 
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Theorem 1. If 
� 	

0 1Φ=(Φ +ΦW) , and eigenvalue of �Φ is between -1 dan 1 so 
�lim ,

n

n→∞
=Φ 0  for 

n =0,1,2,…. 

Proof:  The matrix � �'Φ Φ is positive definite so that the matrix � Ck×∈Φ ℓ
 can be stated by 

the singular value decomposition (SVD), i.e a diagonal matrix R , min{ , }r r r k×∈ ≤D ℓ and 

matrix C , Ck k× ×∈ ∈U V ℓ ℓ  , so that   

� �      ⇔
n n

Φ = UDV Φ = UD V  

Because of matrix elements, D is a root of the eigenvalue of matrix �Φ  and eigenvalue of 

�Φ is between -1 dan 1 so lim n

n→∞
=D 0 . It resulted 

�lim
n

n→∞
=Φ 0.  

This caused the invertibility property of the GSTAR(1;1) model satisfied because of 

the coefficient of process { }( )t i−Y limits to zero. It confirms that 

GSTAR(1;1) GSTMA( ;1)∞≃ . The orde determination of GSTMA is theoretically done by 

considering the convergence level of every kernel function used. If it is reviewed from 

every viewpoint of the kernel function, the limit value approaching zero (Table 2). 

The invertibility property stated that GSTAR(1;1) GSTMA( ;1)∞≃ . In statistics, the 

orde of time GSTMA on the GSTMA( ;1)∞ model does not mean infinite, but it can be 

determined by a finite order such as n. It is stated in Theorem 2. 

 
Table 2. The limit result of each kernel function. It seems that the overall kernel function having 

a limit value is zero. 

The Kernel The limit result of the 

function 

The Uniform 1
lim 0

2

n

n→∞

  = 
 

 

The Triangular ( )lim (1 ) 0
n

n
x

→∞
− =  

The Epanechnikov 23
lim (1 ) 0

4

n

n
x

→∞

 − = 
 

 

The Cosinus 
lim cos( ) 0

4 2

n

n
x

π π
→∞

  = 
 

 

The Gaussian 21
lim exp 0

22

n

n

x

π→∞

  
− =  
  

 

 

Theorem 2.  If given a process { }( )iY t  following the model GSTAR(1;1) with a weight 

matrix of kernel spatial and satisfied the invertibility property so that 

GSTAR(1;1) GSTMA( ;1)∞≃ then 

� �

0

( 1) ( ) ( ) 0
n i

i

t t t i
=

− + − − →∑Φ Y ε Φ ε  , for n→∞  . 
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Proof: Given the GSTAR(1;1) model and the GSTMA(∞,1) model, with the help of matrix 

norm from the difference of both equivalent models, obtained  

	 	 	 	

	 	 	

	 	

0 1

1

( 1) ( ) ( ) ( 1) ( )

                                                    = ( 1) ( ( ) ( 1))

                                                    = ( 1) (

n ni i

i i

n i

i

t t t i t t i

t t i t i

t t

= =

=

− + − − = − − −

− − − − − −

− − −

∑ ∑

∑

ΦY ε Φε ΦY Φε

ΦY Φ Y ΦY

ΦY ΦY 	 	 	

	 	 	 	

2

2

2 2

3

1) ( 2) ( ( ) ( 1))

                                                    = ( 2) ( 2) ( ( ) ( 1))

                                                    

              

n i

i

n i

i

t t i t i

t t t i t i

=

=

+ − − − − − −

− − − − − − − −

∑

∑

ΦY Φ Y ΦY

ΦY ΦY Φ Y ΦY

⋮

	                                      = ( )
n

t n−ΦY

  

Furthermore, by using the property of matrix norm, it can be written as,  

ɶ ɶ ɶ ɶ( ) ( )
n n n n

t n t n c c− ≤ − ≤ ≤Φ Y Φ Y Φ Φ , for a constant c∈ℝ . 

It is defined previously that 
� �

0 1= Φ +ΦΦ W  so 

 
ɶ( ) ɶ

0 1 0 1

n n nn n

= Φ + Φ ≤ Φ + ΦΦ W Wɶ
                         (2) 

The value of diagonal matrix elements iΦ is between -1 and 1, so that  

( )0 0 0 0

n
n nn

i
i

maks aφ≤ = = 
 
 

∑Φ Φ  for 00 1a< < . Similar to the parameter AR 

concerning location that is  ( )1 1 1 0

n
n nn

i
i

m a k s bφ ≤ = = 
 

∑Φ Φ  for 00 1b< < . It 

results in Equation (2) being:     

 � 	
0 0

nn n na b≤ +Φ W                          (3) 

The matrix   is a spatial weight matrix and obtained through the kernel function. 

For each, the kernel function converges to zero (Table 2) and 0lim 0n

n

a
→∞

=  0limb 0n

n→∞
= . By 

using norm ∞ℓ on matrix [19] is � �
1 ,
m aks ij

i j n
W

∞ ≤ ≤
=W , therefore that can be attained the norm 

of rank n of the spatial weight matrix  towards zero. In other words, the GSTAR(1;1) 

model is equivalent to the GSTMA(n;1) model.□  

By using Theorem 2 of every kernel function forming the weight matrix   will 

produce a convergence rate differently. The convergence rate resulted in the discovery of 

a finite value n which is an orde of the GSTMA model.  The value n for each kernel function 

with an error of 0.001 can be seen in Figure 2. From Figure 2, it can be classified into 3 

groups based on the size of n, such as the group 1 15n≤ ≤  , 16 30n≤ ≤ , and 30n > . On the 

group1 15n≤ ≤  applies to the uniform kernel function, n = 11 and the Gaussian, n = 9. The 

functions describe that the convergence reached is relatively fast to head zero. The next 

group is16 30n≤ ≤ satisfied by the Epanechnikov kernel function,  and the Cosinus, 

. Both groups can be categorized into finite n, but the triangular kernel function, n 
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= 688, can be said .n →∞  It caused by the triangular function containing a differentiable 

absolute value function, therefore that it takes time to get convergence.  

Each kernel function raised to the power of n forms a geometric sequence. As a 

result, the ratio of the Gaussian function becomes the smallest, therefore, that the 

convergence is also faster. The next smallest ratio in a row is the kernel function of the 

uniform, the Epanechnikov, the Cosine, and the Triangular. It proved that the invertibility 

property of the model GSTAR(1;1) can approached by using the GSTMA(n;1) model with 

.n < ∞  Some error values can be seen in Table 3. 

The 

Kerne

l 

The convergency of the 

parameter matrix 

	 ( )( )( ) 0
nn

n

x
maks k xΦ ≤ ≈ →W

 

The convergency plot of error 0.001 

 

1
( )

2
k x =  , 1x < . 

 

  ( ) (1 )k x x= − ,  1x < . 

 

 

  23
( ) (1 )

4
k x x= − , 1x < . 

 
 

( )
4 2

k x Cos x
π π= , 1x < . 

 

  
 

( )

2

1/2

exp
2

( )
2

x

k x
π

 − 
 =  , Rx∈ . 
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Note: for 
i jY Y

x
h
−=  

Figure 2. The order value of the GSTMA model is equivalent to the GSTAR(1;1) model for every 

single kernel function and the error 0.001. 

Table 3. The finite order of the GSTMA model satisfied the invertibility property of the model 

GSTAR(1;1) 

The Kernel The Order of the model GSTMA on some errors 

0.01 0.001 0.0001 

The Uniform 8 11 14 

The Triangular 459 688 917 

The 

Epanechnikov 

17 25 33 

The Cosinus 20 29 39 

The Gaussian 6 8 11 

 

Case Study 

The GSTAR(1;1) model with the kernel weight will be applied to the tea production data 

in the 6 plantation field in West Java. The data plot can be seen on Figure 3.  The Figure 3 

presents the modelling data with time T=200 by 6 observation locations. The Plot of each 

location shows the data stationary has not been fulfilled (weak stationary), so it is 

necessary to doing differencing of the data. 

 

Figure 3.  The data Plot of each location. The plot illustrates the data is under weak stationary 

condition and needs differencing so that the data plot is stationary 
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The data is stationary to the mean dan variance after passing once differencing process.  

The modelling carried out in this paper is the GSTAR(1;1) model. It does not need to 

identify model. The next step is to determine the spatial weight matrix using the Gaussian 

kernel (Table 1.) with the optimum bandwith value. This spatial weight matrix is random 

because it uses the function of tea plantation random variable from each the plantation 

area. The spatial weight matrix with the Gaussian kernel is represented as following. 

�	 =

�
�
�
�
�



0 0.25 0.27
0.21 0 0.24
0.23 0.24 0

    
0.10 0.27 0.11
0.16 0.23 0.16
0.14 0.25 0.14

0.12 0.22 0.18
0.24 0.24 0.25
0.12 0.22 0.17

       
0 0.17 0.32

0.13 0 0.13
0.32 0.17 0 �

�
�
�
�
�

 

The next step is to determine the parameter value through the least square estimation 

method and the parameter significance by considering the eigen value obtained of the 

parameter matrix of the GSTAR(1;1) model. The value of parameter estimation with its 

validation can be seen on Table 4. 

Table 4. The result of paremeter estimation using least square method and its validation 

The parameter of 

each location  

The value of 

parameter 

estimation  

Confidence Interval  

95% 

Validation 

 (The eigen value of 

parameter matrix < 1) 

Phi01; Phi 11 -0.32; 0.01 (-0.37;-0.27); (-0.03;0.06) Valid 

Phi02; Phi12 -0.48; 0.34 (-0.52;-0.44); (0.27;0.40) Valid 

Phi03; Phi13 -0.56; 0.59 (-0.60;-0.51); (0.53;0.66) Valid 

Phi04; Phi 14 -0.30; 0.37 (-0.34;-0.27); (0.33;0.42) Valid 

Phi05; Phi15 -0.49; 0.25 (-0.54;-0.45); (0.19;0.30) Valid 

Phi06; Phi16 -0.37; 0.18 (-0.40;-0.34); (0.13;0.22) Valid 

The result of the parameter estimation of the GSTAR(1;1) model with the Gaussian  kernel 

weight is shown as below, 

� � � �( )( ) ( 1)t t= −0 1Y + W YΦ Φ  

with 

�

0.32 0 0 0 0 0

0 0.48 0 0 0 0

0 0 0.56 0 0 0

0 0 0 0.30 0 0

0 0 0 0 0.49 0

0 0 0 0 0 0.37

− 
 − 
 −

=  − 
 −
 

− 

0Φ   and 
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 
 
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The data Plot estimated from each location with the GSTAR(1;1) model can be viewed in  

Figure 4 with its RMSE value respectively. It concludes that the estimation value to follow 

the original value pattern and the RMSE value is quite small.  

 

Figure 4. The plot of the both estimation and original value of  the GSTAR(1;1) model with the  

Gaussian kernel weight. The black line presents the original value and the red line is the 

estimation value. 

 The residual test of this model can be viewed in Figure 5. The residual scatter plot and 

QQ plot show that the assumptions of randomness and normality are met. 
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(a) 

 
(b) 

Figure 5. The results of the residual test plot that meet the assumption of randomness (a) and 

normality (b) 

CONCLUSION 

The use of the kernel weight matrix also affects the invertibility property of the model 

GSTAR(1;1) to the order of the GSTMA( ∞ ,1). The result obtained is the time order of the 

finite orde 7 < � < 30 . On the Triangular kernel resulted in the relatively great value n, 

so that it does not apply to the kernel with a finite value n. The model implementation of 

the tea production data over 6 plantation area in West Java can be applied to this research. 
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This is because the spatial weight to use production data applied to the Gaussian kernel 

function according to the data description from each research location.  
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