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ABSTRACT 

For a bijective function 𝑔: 𝐸(𝐺) →  {1, 2,3, ⋯ , |𝐸(𝐺)|}, the associated weight of a vertex 𝑣 ∈ 𝑉(𝐺) 
under 𝑔 is 𝑤𝑔(𝑣) = Σ𝑒∈𝐸(𝑣)𝑔(𝑒), where 𝐸(𝑣) is the set of vertices incident to 𝑣. The function 𝑔 is 

called a vertex-antimagic edge labeling if every vertex has distinct weight. A path 𝑃 in the edge-
labeled graph 𝐺 is said to be a rainbow path if for any two vertices 𝑥 and 𝑥′, all internal vertices 
in the path 𝑥 − 𝑥′ have different weight. If for every two vertices 𝑥 and 𝑦 of 𝐺, there exists a 
rainbow 𝑥 − 𝑦 path, then 𝑔 is called a rainbow vertex antimagic labeling of 𝐺. When we assign 
each edge 𝑥𝑦 with the color of the vertex weight 𝑤𝑔(𝑣), thus  we say the graph 𝐺 admits a 

rainbow vertex antimagic coloring. The smallest number of colors taken over all rainbow 
colorings induced by rainbow vertex antimagic labelings of 𝐺 is called rainbow vertex antimagic 
connection number of 𝐺, denoted by 𝑟𝑣𝑎𝑐(𝐺). In this paper, we initiate to determine the 
rainbow vertex antimagic connection number of  graphs, namely path (𝑃𝑛), wheel (𝑊𝑛), 
friendship (ℱ𝑛), and fan (𝐹𝑛). 
 
Keywords: antimagic labeling; rainbow vertex coloring; rainbow vertex antimagic coloring; 
rainbow vertex antimagic connection number. 

INTRODUCTION 

We consider a graph 𝐺(𝑉, 𝐸) in this paper are simple, connected and un-directed 
graph, where 𝑉 and 𝐸 are respectively a vertex set and edge set of 𝐺 [1]. The Rainbow 
coloring problem has been studied by many researchers since many years ago. Many 
good results has been published in some reputable journal [2]. Thus, it has given many 
contributions in graph theory research of interest. There are many types of rainbow 
coloring, namely rainbow (edge) coloring, rainbow vertex coloring, strong rainbow 
edge/vertex coloring. The minimum number of colors for which an edge (vertex) 
coloring exists such that the graph 𝐺 is rainbow connected is called the rainbow 
connection number, denoted by 𝑟𝑐(𝐺) for edge coloring and the rainbow vertex 
connection number, denoted by 𝑟𝑣𝑐(𝐺) for vertex coloring, see [3]–[10] for detail. 
Krivelevich and Yuster [6] gave the lower bound for 𝑟𝑣𝑐(𝐺), namely 𝑟𝑣𝑐(𝐺)  ≥
 𝑑𝑖𝑎𝑚(𝐺) –  1, where 𝑑𝑖𝑎𝑚(𝐺) is the diameter of graph 𝐺. An easy observation is that if 𝐺 
has an order n, then 𝑟𝑣𝑐(𝐺)  ≤  𝑛 −  2 and 𝑟𝑣𝑐(𝐺)  =  0 if and only if 𝐺 is a complete 
graph. Notice that 𝑟𝑣𝑐(𝐺)  ≥  𝑑𝑖𝑎𝑚(𝐺)  −  1 with equality if the diameter of 𝐺 is 1 or 2. 
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Meanwhile, In 2003, Hartsfield and Ringel [11] defined antimagic graphs. A graph 
𝐺 is called antimagic if there exists a bijection 𝑓: 𝐸(𝐺) → {1,2, ⋯ , 𝑞} such that the 
weights of all vertices are distinct [12] . The vertex weight of a vertex 𝑣 under 𝑓, 𝑤𝑓(𝑣), 

is the sum of labels of edges incident with 𝑣, that is, 𝑤𝑓(𝑣) = ∑ 𝑓(𝑢𝑣)𝑢𝑣∈𝐸(𝐺) . In this case, 

𝑓 is called an antimagic labeling. There many results were found for antimagicness of 
graph. There are extension types of vertex antimagic labeling, namely total vertex 
antimagic labeling, super total vertex antimagic labeling, (𝑎, 𝑑)-vertex antimagic 
labeling, super (𝑎, 𝑑)-vertex antimagic labeling. For detail, see Galian Dynamic Survey of 
Graph Labeling [13] .  

In this study, we initiate to combine the two notion, namely rainbow coloring and 
antimagic labeling [14][15]. We name for this combination as rainbow vertex antimagic 
coloring. For a bijective function 𝑔: 𝐸(𝐺) →  {1, 2,3, ⋯ , |𝐸(𝐺)|}, the associated weight of 
a vertex  𝑣 ∈ 𝑉(𝐺) under 𝑔 is 𝑤𝑔(𝑣) = Σ𝑒∈𝐸(𝑣)𝑔(𝑒), where 𝐸(𝑣) is the set of vertices 

incident to 𝑣. The function 𝑔 is called a vertex-antimagic edge labeling if every vertex 
has distinct weight. A path 𝑃 in the edge-labeled graph 𝐺 is said to be a rainbow path if 
for any two vertices 𝑥 and 𝑥′, all internal vertices in the path 𝑥 − 𝑥′ have different 
weight. If for every two vertices 𝑥 and 𝑦 of 𝐺, there exists a rainbow 𝑥 − 𝑦 path, then 𝑔 is 
called a rainbow vertex antimagic labeling of 𝐺. When we assign each edge 𝑥𝑦 with the 
color of the vertex weight 𝑤𝑔(𝑣), thus we say the graph 𝐺 admits a rainbow vertex 

antimagic coloring. The rainbow vertex antimagic connection number of 𝐺, denoted by  
𝑟𝑣𝑎𝑐(𝐺), is the smallest number of colors taken over all rainbow colorings induced by 
rainbow vertex antimagic labelings of 𝐺.   

To determine the rainbow vertex antimagic connection number of any graph is 
considered to be hard problem. Even, this study fall into NP-hard problem. In this paper, 
we initiate to determine the rainbow vertex antimagic connection number of graphs, 
namely path (𝑃𝑛), wheel (𝑊𝑛), friendship (ℱ𝑛), and fan (𝐹𝑛) as well as fix the lower bound  
𝑟𝑣𝑎𝑐(𝐺) of any graph. 

 

METHODS 

This research includes deductive analytic methods. The procedures to obtain the 
rainbow vertex antimagic connection number of  are as follows.  
1. Define a graph 𝐺. 
2. Determine the cardinality of graph 𝐺 by obtaining the order and size of graph 𝐺. 
3. Determine the lower bound of 𝑟𝑣𝑎𝑐(𝐺) by using the obtained remark of sharpest 

lower bound. 
4. Determine the upper bound of 𝑟𝑣𝑎𝑐(𝐺) by constructing the bijective function, 

compute the vertex weight using 𝑤𝑔(𝑣) = Σ𝑒∈𝐸(𝑣)𝑔(𝑒), and show that every two 

different vertices of 𝐺 satisfy the rainbow vertex antimagic coloring. 
5. If the upper bound attains the lower bound, then we obtain the 𝑟𝑣𝑎𝑐(𝐺). If the upper 

bound does not attain the lower bound, then we return to determine the upper bound 
of 𝑟𝑣𝑎𝑐(𝐺). 

6. Finally we can construct a new theorem and its proof after we obtain the rainbow 
vertex antimagic connection number of graph 𝐺. 
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RESULTS AND DISCUSSION 

In this section we have several theorems on the rainbow vertex antimagic 
coloring. We determine the minimum color taken to the graph such that it has rainbow 
vertex antimagic coloring. Since we determine the minimum colors such that 𝐺 has 
rainbow vertex antimagic coloring, then the lower bound of rainbow vertex antimagic 
connection number of graph is at least and equal to rainbow vertex connection number. 
The lower bound of rainbow vertex antimagic connection number of any graph is 
mathematically written in the Remark 1. 
 
Remark 1 
Let 𝐺 be a connected graph, 𝑟𝑣𝑎𝑐(𝐺) ≥ 𝑟𝑣𝑐(𝐺). 
 
Theorem 1 
If 𝑃𝑛 be a path graph of order 𝑛 and 𝑛 ≥ 3, then 

𝑟𝑣𝑎𝑐(𝑃𝑛) = {
3, 𝑛 = 3,4

𝑛 − 2, 𝑛 ≥ 5
 

 
Proof. Let 𝑃𝑛 be a path graph with vertex set 𝑉(𝑃𝑛) = {𝑣1, 𝑣2, 𝑣3, ⋯ , 𝑣𝑛} and edge set 
𝐸(𝑃𝑛) = {𝑣𝑖𝑣{𝑖+1}: 1 ≤ 𝑖 ≤ 𝑛 − 1}. The diameter of 𝑃𝑛 is 𝑛 − 1. We divide into two cases 

to prove the rainbow vertex antimagic connection number as follows. 
 
Case 1. For 𝑃𝑛, 𝑛 = 3,4 
Path graph 𝑃𝑛, 𝑛 = 3 have two edges. If we give labels on it, it gives three different 
weights on its edges exactly. It concludes that the rainbow vertex antimagic connection 
number of 𝑃3 is 3. Furthermore for 𝑃4, we determine the all permutation of edge labeling 
on 𝑃4. Let 𝑒1, 𝑒2, 𝑒3 are the edges of 𝑃4, thus there are six possibilities of edge labeling on 
𝑃4 as follows.  
1). If 𝑒1 = 1, 𝑒2 = 2, 𝑒3 = 3, then 𝑤𝑡(𝑣1) = 1, 𝑤𝑡(𝑣2) = 3, 𝑤𝑡(𝑣3) = 5, 𝑤𝑡(𝑣4) = 3.  
2). If 𝑒1 = 1, 𝑒2 = 3, 𝑒3 = 2, then 𝑤𝑡(𝑣1) = 1, 𝑤𝑡(𝑣2) = 4, 𝑤𝑡(𝑣3) = 5, 𝑤𝑡(𝑣4) = 2. 
3). If 𝑒1 = 2, 𝑒2 = 1, 𝑒3 = 3, then 𝑤𝑡(𝑣1) = 2, 𝑤𝑡(𝑣2) = 3, 𝑤𝑡(𝑣3) = 4, 𝑤𝑡(𝑣4) = 3. 
4). If 𝑒1 = 2, 𝑒2 = 3, 𝑒3 = 1, then 𝑤𝑡(𝑣1) = 2, 𝑤𝑡(𝑣2) = 5, 𝑤𝑡(𝑣3) = 4, 𝑤𝑡(𝑣4) = 1. 
5). If 𝑒1 = 3, 𝑒2 = 1, 𝑒3 = 2, then 𝑤𝑡(𝑣1) = 3, 𝑤𝑡(𝑣2) = 4, 𝑤𝑡(𝑣3) = 3, 𝑤𝑡(𝑣4) = 2. 
6). If 𝑒1 = 3, 𝑒2 = 2, 𝑒3 = 1, then 𝑤𝑡(𝑣1) = 3, 𝑤𝑡(𝑣2) = 5, 𝑤𝑡(𝑣3) = 3, 𝑤𝑡(𝑣4) = 1. 
Based on edge labelings and vertex weights above, it is easy to determine the rainbow 
vertex antimagic connection number of 𝑃4 at least 3. Thus 𝑎𝑟𝑣𝑐(𝑃4) = 3. 
 
Case 2. For  𝑃𝑛, 𝑛 ≥ 5 
Based on Remark 1, we have 𝑟𝑣𝑎𝑐(𝑃𝑛) ≥ 𝑟𝑣𝑐(𝑃𝑛) = 𝑑𝑖𝑎𝑚(𝑃𝑛) − 1 = 𝑛 − 1 − 1 = 𝑛 − 2. 
Furthermore, to show the upper bound we construct the bijective function of edge 
labels. We have two conditions, namely for 𝑛 ≡ 1(mod 2) and 𝑛 ≡ 0(mod 2). For 𝑛 ≡
1(mod 2), we have 

𝑔(𝑣1𝑣2) = 3 
𝑔(𝑣2𝑣3) = 1 
𝑔(𝑣3𝑣4) = 2 

𝑔(𝑣𝑛−1𝑣𝑛) = 4 
𝑔(𝑣𝑖𝑣𝑖+1) = 𝑖 + 1: 4 ≤ 𝑖 ≤ 𝑛 − 2 

 
From the edge labels above, we have the vertex weight as follows. For 𝑃5, we have 
𝑤(𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) = (3,4,3,6,4). For 𝑃𝑛: 𝑛 ≥ 6, we have  
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𝑤(𝑣1) = 3 
𝑤(𝑣2) = 4 
𝑤(𝑣3) = 3 
𝑤(𝑣4) = 7 

𝑤(𝑣𝑖) = 2𝑖 + 1: 5 ≤ 𝑖 ≤ 𝑛 − 2 
𝑤(𝑣𝑛−1) = 𝑛 + 3 

𝑤(𝑣𝑛) = 4 
 
For 𝑛 ≡ 0(mod 2), we have 
 

𝑔(𝑣1𝑣2) = 3 
𝑔(𝑣2𝑣3) = 1 
𝑔(𝑣3𝑣4) = 2 

𝑔(𝑣𝑖𝑣𝑖+1) = 𝑖: 4 ≤ 𝑖 ≤ 𝑛 − 1 
 

From the edge labels above, we have the vertex weights in the following: 
𝑤(𝑣1) = 3 
𝑤(𝑣2) = 4 
𝑤(𝑣3) = 3 
𝑤(𝑣4) = 6 

𝑤(𝑣𝑖) = 2𝑖 − 1: 5 ≤ 𝑖 ≤ 𝑛 − 1 
𝑤(𝑣𝑛) = 𝑛 − 1 

 
From the vertex weight above, it is easy to see that the different weight is 𝑛 − 2. It 
concludes that the rainbow vertex antimagic connection number of 𝑃𝑛: 𝑛 = {3,4} is 3 and 
the rainbow vertex antimagic connection number of 𝑃𝑛: 𝑛 ≥ 5 is 𝑛 − 2.  
Furthermore, we show that every two different vertices of 𝑃𝑛 is rainbow vertex 
antimagic coloring. Suppose that 𝑣 ∈ 𝑉(𝑃𝑛), refer to the vertex weight the rainbow 
vertex path is shown in Table 1. 
 

Table 1. The Rainbow Vertex Path of 𝑃𝑛 
Case 𝒗 𝒗 Rainbow Vertex Coloring 

1 𝑣1 𝑣𝑛 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑖 , … , 𝑣𝑛−1 

  
Hence, the vertex coloring of 𝑃𝑛 is rainbow vertex antimagic coloring. Thus, we obtain 
𝑎𝑟𝑣𝑐(𝑃𝑛) is 3 for 𝑛 = 3,4 and 𝑎𝑟𝑣𝑐(𝑃𝑛) is 𝑛 − 2 for 𝑛 ≥ 5.  ∎ 
 
Theorem 2 
If 𝑊𝑛 be a wheel graph of order 𝑛 + 1 and 𝑛 ≥ 3, then 𝑟𝑣𝑎𝑐(𝑊𝑛) = 2 if 𝑛 ≡ 1(mod 2) and 
2 ≤ 𝑟𝑣𝑎𝑐(𝑊𝑛) ≤ 3 if 𝑛 ≡ 0(mod 2). 

 
Proof. Let 𝑊𝑛 be a wheel graph with vertex set 𝑉(𝑊𝑛) = {𝐴, 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛} and edge 
set 𝐸(𝑊𝑛) = {𝐴𝑥𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑥𝑖𝑥{𝑖+1}: 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑥𝑛−1𝑥1}. The diameter of 𝑊𝑛 

is 2. Based on Remark 1, we have 𝑟𝑣𝑎𝑐(𝑊𝑛) ≥ 𝑟𝑣𝑐(𝑊𝑛) = 𝑑𝑖𝑎𝑚(𝑊𝑛) − 1 = 2 − 1 = 1. 
Since the vertex 𝐴 has degree of much greater than the others, it must have a different 
vertex weight than the others. The vertex weight of 𝐴 is the sum of labels of edges which 
incident to 𝐴. From this condition, such that we have 𝑟𝑣𝑎𝑐(𝑊𝑛) ≥ 2. We divide into two 
cases to show the upper bound of the rainbow vertex antimagic connection number of 
𝑊𝑛 as follows. 
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Case 1. For 𝑊𝑛, 𝑛 ≡ 1(mod 2) 
To show the upper bound of (𝑊𝑛): 𝑛 ≡ 1(mod 2) , we construct the bijective function of 
edge labels. 

𝑔(𝑥𝑖𝑥𝑖+1) = {

𝑖 + 1

2
, if  𝑖 ≡ 1(mod 2) 

⌈
𝑛

2
⌉ +

𝑖

2
, if  𝑖 ≡ 0(mod 2)

 

𝑔(𝐴𝑥𝑖) = 2𝑛 + 1 − 𝑖 
From the edge labels above, we have the vertex weights in the following: 

𝑤(𝑥𝑖) = 2𝑛 + 1 + ⌈
𝑛

2
⌉ 

𝑤(𝐴) =
𝑛

2
(3𝑛 + 1) 

From the vertex weights above, it is easy to see that the different weight is 2.  
 
Case 2. For 𝑊𝑛, 𝑛 ≡ 0(mod 2) 
To show the upper bound of 𝑟𝑣𝑎𝑐(𝑊𝑛): 𝑛 ≡ 0(mod 2), we construct the bijective 
function of edge labels. 

𝑔(𝑥𝑖𝑥𝑖+1) = {

𝑖 + 1

2
, if 𝑖 ≡ 1(mod 2)

⌈
𝑛

2
⌉ +

𝑖

2
, if 𝑖 ≡ 0(mod 2)

 

𝑔(𝐴𝑥𝑖) = 2𝑛 + 1 − 𝑖 
 

From the edge labels above, we have the vertex weights in the following. 
𝑤(𝑥1) = 3𝑛 + 1 

𝑤(𝑥𝑖) = 2𝑛 + 1 + ⌈
𝑛

2
⌉ 

𝑤(𝐴) =
𝑛

2
(3𝑛 + 1) 

From the vertex weight above, it is easy to see that the different weight is 3. 
  
Furthermore, we show that every two different vertices of 𝑊𝑛 is rainbow vertex 
antimagic coloring. Suppose that 𝑥, 𝑦 ∈ 𝑉(𝑊𝑛), refer to the vertex weight the rainbow 
vertex 𝑥 − 𝑦 path is shown in Table 2. 
 

Table 2. The Rainbow Vertex of 𝑥 − 𝑦 Path of 𝑊𝑛 
Case 𝒙 𝒚 Rainbow Vertex Coloring 𝒙 − 𝒚 

1 𝑥𝑖  𝐴 𝑥𝑖 , 𝐴 
2 𝑥𝑖  𝑥𝑖  𝑥𝑖 , 𝐴, 𝑥𝑖  

 
Hence, the vertex coloring of 𝑊𝑛 is rainbow vertex antimagic coloring. Thus, we obtain 
𝑟𝑣𝑎𝑐(𝑊𝑛) = 2 if 𝑛 ≡ 1(mod 2) and 2 ≤ 𝑟𝑣𝑎𝑐(𝑊𝑛) ≤ 3 if 𝑛 ≡ 0(mod 2). ∎ 
 
Theorem 3 
If ℱ𝑛 be a friendship graph of order 2𝑛 + 1 and 𝑛 ≥ 3, then 𝑟𝑣𝑎𝑐(ℱ𝑛) = 3. 

 
Proof. Let ℱ𝑛 be a friendship graph with vertex set 𝑉(ℱ𝑛) = {𝐴} ∪ {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} ∪
{𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛} and edge set 𝐸(ℱ𝑛) = {𝐴𝑥𝑖; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝐴𝑦𝑖; 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑥𝑖𝑦𝑖; 1 ≤
𝑖 ≤ 𝑛}. The diameter of ℱ𝑛 is 2. Based on Remark 1, we have 𝑟𝑣𝑎𝑐(ℱ𝑛) ≥ 𝑟𝑣𝑐(ℱ𝑛) =
𝑑𝑖𝑎𝑚(ℱ𝑛) − 1 = 2 − 1 = 1. Since the vertex 𝐴 has degree of much greater than the 
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others, it must have a different vertex weight than the others. The vertex weight of 𝐴 is 
the sum of labels of edges which incident to 𝐴. In the other hand, the vertex 𝑥𝑖  and 𝑦𝑖 are 
adjacent, such that based on the edge labeling it can not receive the same weight. From 
this condition, such that we have 𝑎𝑟𝑣𝑐(ℱ𝑛) ≥ 3. Furthermore, to show the upper bound 
we construct the bijective function of edge labels. 
 
 

𝑔(𝐴𝑥𝑖) = 𝑖                      ∶ 1 ≤ 𝑖 ≤ 𝑛 
𝑔(𝑥𝑖𝑦𝑖) = 2𝑛 + 1 − 𝑖  ∶ 1 ≤ 𝑖 ≤ 𝑛 
𝑔(𝐴𝑦𝑖) = 2𝑛 + 𝑖          ∶ 1 ≤ 𝑖 ≤ 𝑛 

 
From the edge labels above, we have the vertex weights in the following. 
 

𝑤(𝑥𝑖) = 2𝑛 + 1 
𝑤(𝑦𝑖) = 4𝑛 + 1 
𝑤(𝐴) = 3𝑛2 + 𝑛 

From the vertex weight above, it is easy to see that the different weight is 3. 
Furthermore, we show that every two different vertices of ℱ𝑛is rainbow vertex 
antimagic coloring. Suppose that 𝑥, 𝑦 ∈ 𝑉(ℱ𝑛), refer to the vertex weight the rainbow 
vertex 𝑥 − 𝑦 path is shown in Table 3. 
  

Table 3. The Rainbow Vertex of 𝑥 − 𝑦 Path of ℱ𝑛 
Case 𝒙 𝒚 Rainbow Vertex Coloring 𝒙 − 𝒚 

1 𝑥𝑖  𝑥𝑖  𝑥𝑖 , 𝐴, 𝑥𝑖  
2 𝑥𝑖  𝑦𝑖  𝑥𝑖 , 𝐴, 𝑦𝑖  
3 𝑦𝑖  𝑦𝑖  𝑦𝑖 , 𝐴, 𝑦𝑖  
4 𝑦𝑖  𝑥𝑖  𝑦𝑖 , 𝐴, 𝑥𝑖  

 
Hence, the vertex coloring of ℱ𝑛 is rainbow vertex antimagic coloring. Thus, we obtain 
𝑟𝑣𝑎𝑐(ℱ𝑛) is 3 .  ∎ 
 
Theorem 4 
If 𝐹𝑛 be a fan graph 𝑛+1 and 𝑛 ≥ 3, then 𝑟𝑣𝑎𝑐(𝐹𝑛) = 2 if 𝑛 ≡ 1(mod 2) and 2 ≤
𝑟𝑣𝑎𝑐(𝐹𝑛) ≤ 3 if 𝑛 ≡ 0(mod 2). 
 
Proof. Let 𝐹𝑛 be a fan graph with vertex set 𝑉(𝐹𝑛) = {𝐴, 𝑥1, 𝑥2, 𝑥3, ⋯ , 𝑥𝑛} and edge set 
𝐸(𝐹𝑛) = {𝐴𝑥𝑖: 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑥𝑖𝑥{𝑖+1}: 1 ≤ 𝑖 ≤ 𝑛 − 1}. The diameter of 𝐹𝑛 is 2. Based on 

Remark 1, we have 𝑟𝑣𝑎𝑐(𝐹𝑛) ≥ 𝑟𝑣𝑐(𝐹𝑛) = 𝑑𝑖𝑎𝑚(𝐹𝑛) − 1 = 2 − 1 = 1. Since the vertex 𝐴 
has degree of much greater than the others, it must have a different vertex weight than 
the others. The vertex weight of 𝐴 is the sum of labels of edges which incident to 𝐴. From 
this condition, such that we have 𝑟𝑣𝑎𝑐(𝐹𝑛) ≥ 2. We divide into two cases to show the 
upper bound of the antimagic rainbow connection number of 𝐹𝑛 as follows. 
 
Case 1. For 𝐹𝑛, 𝑛 ≡ 1(mod 2) 
To show the upper bound of 𝑟𝑣𝑎𝑐(𝐹𝑛): 𝑛 ≡ 1(mod 2), we construct the bijective function 
of edge labels. 

𝑔(𝑥𝑖𝑥𝑖+1) = {

𝑖

2
, if 𝑖 ≡ 0(mod 2)

𝑛 + 𝑖

2
, if 𝑖 ≡ 1(mod 2)
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𝑔(𝐴𝑥𝑖) = {
2𝑛 − 1, if 𝑖 = 𝑛

2𝑛 − 𝑖 − 1, if 1 ≤ 𝑖 ≤ 𝑛 − 1
       

                                                                                                                                    
From the edge labels above, we have the vertex weights in the following. 

𝑤(𝑥𝑖) =
5𝑛 − 3

2
 

𝑤(𝐴) =
3𝑛2 − 𝑛

2
 

From the vertex weights above, it is easy to see that the different weight is 2.  
 
Case 2. For 𝐹𝑛, 𝑛 ≡ 0(mod 2) 
To show the upper bound of 𝑟𝑣𝑎𝑐(𝐹𝑛): 𝑛 ≡ 0(mod 2), we construct the bijective function 
of edge labels. 

𝑔(𝑥𝑖𝑥𝑖+1) = {

𝑖

2
, if  𝑖 ≡ 0(mod 2)

𝑛 + 𝑖 − 1

2
, if  𝑖 ≡ 1(mod 2)

 

𝑔(𝐴𝑥𝑖) = {
2𝑛 − 1, if 𝑖 = 𝑛

2𝑛 − 𝑖 − 1, if 1 ≤ 𝑖 ≤ 𝑛 − 1
 

From the edge labels above, we have the vertex weights in the following. 
 

𝑤(𝑥𝑖) = {
3𝑛 − 2, if 𝑖 = 𝑛
5𝑛

2
− 2, if 1 ≤ 𝑖 ≤ 𝑛 − 1

 

𝑤(𝐴) =
3𝑛2 − 𝑛

2
 

From the vertex weight above, it is easy to see that the different weight is 3. 
Furthermore, we show that every two different vertices of 𝐹𝑛 is rainbow vertex 
antimagic coloring. Suppose that𝑥, 𝑦 ∈ 𝑉(𝐹𝑛), refer to the vertex weight the rainbow 
vertex 𝑥 − 𝑦 path is shown in Table 4. 
 

Table 4. The Rainbow Vertex of 𝑥 − 𝑦 Path of 𝐹𝑛 
Case 𝒙 𝒚 Rainbow Vertex Coloring 𝒙 − 𝒚 

1 𝑥𝑖  𝐴 𝑥𝑖 , 𝐴 
2 𝑥𝑖  𝑥𝑖  𝑥𝑖 , 𝐴, 𝑥𝑖  

 
Hence, the vertex coloring of 𝐹𝑛 is rainbow vertex antimagic coloring. Thus, we obtain 
𝑟𝑣𝑎𝑐(𝐹𝑛) = 2 if 𝑛 ≡ 1(mod 2) and 2 ≤ 𝑟𝑣𝑎𝑐(𝐹𝑛) ≤ 3 if 𝑛 ≡ 0(mod 2). ∎ 
 
The illustration of antimagic rainbow edge labeling can be seen in Figure 1. Based on the 
Figure 1, we know that wheel graph 𝑊17 satisfy the rainbow vertex antimagic coloring 
and rainbow vertex antimagic connection number of 𝑊17 is 2. 
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Figure 2. The Illustration Rainbow Vertex Antimagic Coloring of 𝑊17 

CONCLUSIONS 

We have obtained the exact values of rainbow vertex antimagic connection number of 
some connected graphs, namely path (𝑃𝑛), wheel (𝑊𝑛), friendship (ℱ𝑛), and fan (𝐹𝑛). 
However, since obtaining rainbow vertex antimagic connection number of graph is 
considered to be NP-complete problem, the characterization of the exact value of 
𝑎𝑟𝑣𝑐(𝐺) for any family graph is still widely open. Therefore, we propose the following 
open problems as follows.  
1. Determine the exact value of rainbow vertex antimagic connection number of graphs 

apart from those families. 
2. Determine the exact value of rainbow vertex antimagic connection number of any 

operation graphs. 
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