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ABSTRACT 

The existence of viral mutations in various infectious diseases can make it difficult to overcome 
outbreaks caused by these viruses. In this paper, we introduce an optimal control problem in a 
two-strain SIR epidemic model with viral mutation and vaccine administration. The purpose of 
this study was to investigate the efficacy and cost-effectiveness of two disease prevention 
strategies, namely restriction of community mobility to prevent disease transmission and 
vaccine intervention. We consider the time-dependent control case, and we use Pontryagin’s 
Maximum Principle to derive necessary conditions for the optimal control of the disease. We also 
calculate the Average Cost-Effectiveness Ratio (ACER) and the Incremental Cost-Effectiveness 
Ratio (ICER) to investigate the cost-effectiveness of all possible strategies of the control 
measures. The results of this study indicate that the most cost-effective disease control strategy 
is a combination of mobility restriction and vaccination.  

Keywords: Epidemic Model; Cost-Effectiveness Analysis; Numerical Simulation; Optimal 
Control; Viral Mutation 

INTRODUCTION 

Epidemiological modeling is a field of mathematical modeling that studies the 
causes, patterns, and effects of disease on health in a population. The SIR (susceptible, 
infected, recovered) compartment model that Kermack-McKendrick first introduced in 
1927 became the basis for developing models of the spread of infectious diseases. 
According to the characteristics of the disease, different epidemic models by adding or 
modifying compartments have been developed and studied. Among them by adding a 
compartment vaccination [1],[2],[3], treatment [4], quarantine [5], viruses or bacteria 
that cause disease[6], disease-carrying vectors [7], and others.  

In various types of infectious diseases caused by viruses, viruses mutations make the 
epidemic difficult to overcome immediately. The emergence of new variants of this virus 
increased the length of the epidemic period. Such conditions are also currently 
happening in various parts of the world, namely the COVID-19 pandemic. Especially in 
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Indonesia, after experiencing a decline in cases for about nine months since the 
beginning of the pandemic in March 2020, the number of positive COVID-19 cases again 
increased in mid-June 2021. The Government has taken various policies to be able to 
end the spread of this COVID-19 disease immediately. Beside targeting vaccinations, the 
Government is currently implementing Community Activity Restrictions (PPKM) to 
control the spread of the COVID-19 outbreak. Many mathematical models of COVID-19 
have also been developed, as in [5], [8]–[12].  

In the last few decade, optimal control theory has developed rapidly, and its diverse 
applications are widely used in various scientific and engineering fields. This theory has 
proven to be effective in mathematical epidemiology when it comes to determining how 
to remove or reduce the number of cases at the lowest possible cost. The optimal control 
theory has been utilized to capture intervention strategies in many research, see for 
example [5], [7], [10], [13]–[16] Optimal control models involving vaccination strategies 
have also been developed, as in [3], [16], [17]. However, these models did not consider 
the presence of viral mutations that were presumed to be more virulent in the pre-
mutated viruses. As in 12 states across the United States, the more easily transmissible strain 

of SARS-CoV-2, B.1.1.7, has been found [18]. In this article, we will discuss the SIR 
epidemic model by considering the presence of viral mutations. We are also considering 
vaccine intervention as one of prevention against diseases. Motivated by this, in this 
article, we intend to modify the epidemic model with virus mutation and vaccine 
interventions studied in Adi et al. [19]. Instead of constant parameters of the 
intervention strategy, we use a control function to express the intervention strategy in 
this model. The goal is to find the best function for a given control measure by applying 
Pontryagin’s maximum principle [20]. This study also observes which control strategy is 
the most cost-effective, which is determined through  the Average Cost-Effectiveness 
Ratio (ACER) and the Incremental Cost-Effectiveness Ratio (ICER), as defined in [21]–
[24]. Besides being applied to the spread of COVID-19, the model can also be used for 
other diseases involving viral mutations.  

This paper's structure is as follows. The methodologies used in our research are 
discussed in the following section. After then, the model's analysis was discussed. 
Finally, we will provide a brief summary of our work. 

 
 

METHODS  

The optimal control problem is analyzed by performing the following steps:  
1. We consider a modified SIR epidemic model taking into account the presence of 

viral mutations and vaccine intervention.   
2. Considering a time-dependent constant case-control and using Pontryagin's 

Maximum Principle to obtain the necessary conditions for optimal disease 
control.  

3. Demonstrating the numerical result of the existence of the optimal control by 
implementing the forward-backward fourth-order Runge-Kutta method.  

4. Computing the Average Cost-Effectiveness Ratio (ACER) and Additional Cost-
Effectiveness Ratio (ICER) to investigate the cost-effectiveness of all possible 
control action strategies.  
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RESULTS AND DISCUSSION  

Formulation of the optimal control problem 

Modifying the standard SIR model, Adi et al. [19] have developed an epidemic model 
taking into account the presence of viral mutations and vaccine interventions. Mutations 
are recorded in terms that transfer an individual infected with one strain to an 
individual infected with another strain. The populations subdivided into five classes, 
which are; Susceptible (𝑆), Infected by strain one (𝐼1), Infected by strain two (𝐼2), 
Vaccinated (𝑉), and Recovered (𝑅).  The model is given in (1) below. 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽1𝑆𝐼1 − 𝛽2𝑆𝐼2 − 𝛾𝑆 − 𝜇𝑆, 

𝑑𝐼1

𝑑𝑡
= 𝛽1𝑆𝐼1 − (𝜔 + 𝛼1 + 𝑐 + 𝜇)𝐼1, 

𝑑𝐼2

𝑑𝑡
= 𝛽2𝑆𝐼2 + 𝜔𝐼1 + (1 − 𝜀)𝑉𝐼2 − (𝛼2 + 𝑑 + 𝜇)𝐼2, 

𝑑𝑉

𝑑𝑡
= 𝛾𝑆 − (1 − 𝜀)𝑉𝐼2 − 𝜇𝑉, 

𝑑𝑅

𝑑𝑡
= 𝛼1𝐼1 + 𝛼2𝐼2 − 𝜇𝑅. 

 

 
 
 
 

(1) 

The first four equations in the system (1) do not depend on 𝑅, so to analyze the 
dynamics of the model, the fifth Equation is neglected. Please refer to [19] for details.  
Next, paying attention only to the first four equations, we introduce a time-dependent 
control in the system (1). The purpose is to control the spread of disease and study 
strategies to eradicate epidemics in a community. We introduce two control functions, 
𝑢1(𝑡) and 𝑢2(𝑡), which represent attempts to prevent disease transmission from both 
viral strains and vaccinations, respectively. The corresponding state system is given by: 

𝑑𝑆

𝑑𝑡
= Λ − (1 − 𝑢1(𝑡))(𝛽1𝐼1 + 𝛽2𝐼2)𝑆 − 𝑢2(𝑡)𝑆 − 𝜇𝑆, 

𝑑𝐼1

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽1𝑆𝐼1 − (𝜔 + 𝛼1 + 𝑐 + 𝜇)𝐼1, 

𝑑𝐼2

𝑑𝑡
= (1 − 𝑢1(𝑡))𝛽2𝑆𝐼2 + 𝜔𝐼1 + (1 − 𝜀)𝑉𝐼2 − (𝛼2 + 𝑑 + 𝜇)𝐼2, 

𝑑𝑉

𝑑𝑡
= 𝑢2(𝑡)𝑆 − (1 − 𝜀)𝑉𝐼2 − 𝜇𝑉, 

 

 
 
 
 

(2 ) 

where 𝑢1(𝑡) is a control strategy that maintains the state of the uninfected population in 
the susceptible class and reduces the rate at which individuals leave the susceptible 
class to the infected class, either by strain one or by strain two, and 𝑢2(𝑡) is a control 
strategy to increase the number of individuals vaccinated. Medically, considering that 
both strategies have many limitations so that they are not fully effective, it is realistic to 
assume that 0 ≤ 𝑢𝑖 𝑚𝑎𝑥 < 1, 𝑖 = 1,2. Hence, the bounded Lebesgue measurable set of 
admissible control is represented as 
 

𝛺 = {(𝑢1(𝑡), 𝑢2(𝑡))|0 ≤ 𝑢𝑖(𝑡) ≤ 𝑢𝑖 𝑚𝑎𝑥 , 𝑖 = 1,2, 𝑡 ∈ [0, 𝑇]}. (3) 

 
 The aim is to gain the optimal value 𝑢𝑖

∗ of the control 𝑢𝑖(𝑡) in the time interval 
[0, 𝑇], such that the associate state trajectories 𝑋∗ = (𝑆∗, 𝐼1

∗, 𝐼2
∗, 𝑉∗) are solutions of the 

system (2) in the interval [0, 𝑇] with the initial conditions: 
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𝑆(0) ≥ 0, 𝐼1(0) ≥ 0, 𝐼2(0) ≥ 0, 𝑉(0) ≥ 0, (4) 
 
and  𝑢𝑖

∗ maximizes the objective function given by: 

𝐽(𝑢1, 𝑢2) = ∫ [𝑤1𝑆(𝑡) + 𝑤2𝑉(𝑡) − 𝑤3𝐼1(𝑡) − 𝑤4𝐼2(𝑡) −
𝐶1𝑢1

2(𝑡)

2
−

𝐶2𝑢2
2(𝑡)

2
] 𝑑𝑡

𝑇

0

, 
 
(5) 

with 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝐶1, 𝐶2  are positive weight constant where we want to maximize the 
susceptibles 𝑆(𝑡), and vaccinated individuals 𝑉(𝑡), and to minimize both infected 
individuals by strain one 𝐼1(𝑡)  and by strain two 𝐼2(𝑡) (negative sign means maximizing) 
while keeping prevention cost  𝑢1(𝑡) and vaccination cost 𝑢2(𝑡) low. The cost of the 
prevention program could come from the implementation of the restriction of citizen 
mobilization, quarantine, or local lockdowns. At the same time, the cost of vaccination 
comes from everything needed to implement the vaccination program.   
 Our optimal control problem is to determining (𝑆∗, 𝐼1

∗, 𝐼2
∗, 𝑉∗) related to an 

admissible control 𝑢𝑖
∗ on the time interval [0, 𝑇] satisfying Equation (2) and the initial 

condition of (4) and maximizing the cost functional of Equation (5) such that 
  

𝐽(𝑢1
∗, 𝑢2

∗) = max
Ω

𝐽(𝑢1, 𝑢2). (6) 

 
Here, we consider that the objective function as a function of 𝑢1 and 𝑢2, so it is concave 
with respect to the control 𝑢𝑖 . From this property and noting that the control system 

also satisfies the Lipschitz property corresponding to the state variables (𝑆, 𝐼1 , 𝐼2 , 𝑉), it 
is ensured that the optimal control u of the optimal control problem in Equation (4) 
exists. Hence, the maximum value can be obtained [25]–[27]. 

  

Characteristic of the optimal controls 

In order to take advantage the Pontryagin's maximal principle, the system (4) and 
the objective functional (5) need to be converted into a pointwise Hamiltonian, ℋ with 
respect to (𝑢1, 𝑢2), and we get 

ℋ = 𝑤1𝑆(𝑡) + 𝑤2𝑉(𝑡) − 𝑤3𝐼1(𝑡) − 𝑤4𝐼2(𝑡) −
𝐶1𝑢1

2

2
−

𝐶2𝑢2
2

2
  

       + 𝜆1[Λ − (1 − 𝑢1)(𝛽1𝐼1 + 𝛽2𝐼2)𝑆 − 𝑢2𝑆 − 𝜇𝑆] 
            + 𝜆2[(1 − 𝑢1)𝛽1𝑆𝐼1 − (𝜔 + 𝛼1 + 𝑐 + 𝜇)𝐼1] 

     + 𝜆3[(1 − 𝑢1)𝛽2𝑆𝐼2 + 𝜔𝐼1 + (1 − 𝜀)𝑉𝐼2 − (𝛼2 + 𝑑 + 𝜇)𝐼2] 
     + 𝜆4[𝑢2𝑆 − (1 − 𝜀)𝑉𝐼2 − 𝜇𝑉]. 

 

 
 

 
(7) 

 
 

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 are the costate variables or adjoint variables associated with the state 
variables 𝑆, 𝐼1, 𝐼2, 𝑉. We summarize the necessary conditions for the optimal control 
𝑢𝑖

∗, 𝑖 = 1,2 in Theorem 1 below. 
 
Theorem 1.  There is an optimal control 𝑢𝑖

∗, 𝑖 = 1,2 corresponding to the optimal solution 
(𝑆∗, 𝐼1

∗, 𝐼2
∗, 𝑉∗) that maximizes the objective functional 𝐽(𝑢1, 𝑢2) over Ω. Moreover, there 

exist costate variables or adjoint variables, 𝜆𝑗 , 𝑗 = 1,2,3,4  that satisfies 
𝑑𝜆𝑗

𝑑𝑡
= −

𝜕ℋ

𝜕𝑋
 with 

transversality condition 𝜆𝑗(𝑇) = 0, 𝑗 = 1,2,3,4.  Furthermore, the associated optimal 

control 𝑢𝑖
∗, 𝑖 = 1,2 are given by 
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𝑢1
∗ = min {max {0,

(𝜆1 − 𝜆2)𝛽1𝐼1
∗𝑆∗ + (𝜆1 − 𝜆3)𝛽2𝐼2

∗𝑆∗

𝐶1
} , 𝑢1 𝑚𝑎𝑥}, 

𝑢2
∗ = min {max {0,

(𝜆4 − 𝜆1)𝑆∗

𝐶2
} , 𝑢2 𝑚𝑎𝑥}. 

 
(8) 

  
Proof.  The adjoint system is derived by taking the partial derivative of the Hamiltonian 
ℋ with respect to the associated state variables so that 

𝑑𝜆1

𝑑𝑡
= −

𝜕ℋ

𝜕𝑆
= −𝑤1 + (𝜆1 − 𝜆2)(1 − 𝑢1)𝛽1𝐼1 + (𝜆1 − 𝜆3)(1 − 𝑢1)𝛽2𝐼2           

                              +(𝑢2 + 𝜇)𝜆2 − 𝜔𝜆3,  

 
𝑑𝜆2

𝑑𝑡
= −

𝜕ℋ

𝜕𝐼1
= 𝑤3 + (𝜆1 − 𝜆2)(1 − 𝑢1)𝛽1𝑆 + (𝜔 + 𝛼1 + 𝑐 + 𝜇)𝜆2 − 𝜔𝜆3, 

  
𝑑𝜆3

𝑑𝑡
= −

𝜕ℋ

𝜕𝐼2
= 𝑤4 + (𝜆1 − 𝜆3)(1 − 𝑢1)𝛽2𝑆 + (𝛼2 + 𝑑 + 𝜇)𝜆3 

                                +(𝜆4 − 𝜆3)(1  − 𝜀)𝑉,   

  
𝑑𝜆4

𝑑𝑡
= −

𝜕ℋ

𝜕𝑉
= −𝑤2 + (𝜆4 − 𝜆3)(1  − 𝜀)𝐼2 + 𝜇𝜆4, 

 

 
 
 
 
 
(9) 

along with the transversality conditions 𝜆𝑗(𝑇) = 0, 𝑗 = 1,2,3,4. Then, the optimal control 

𝑢𝑖
∗  are defined by solving 

𝜕ℋ

𝜕𝑢𝑖
= 0. This lead to the condition of optimal controls 

𝜕ℋ

𝜕𝑢1
= −𝐶1𝑢1 + (𝜆1 − 𝜆2)𝛽1𝐼1

∗𝑆∗ + (𝜆1 − 𝜆3)𝛽2𝐼2
∗𝑆∗ = 0, 

𝜕ℋ

𝜕𝑢2
= −𝐶2𝑢2 + (𝜆4 − 𝜆1)𝑆∗ = 0. 

 

   
Hence, we have 
 

𝑢1 =
(𝜆1 − 𝜆2)𝛽1𝐼1

∗𝑆∗ + (𝜆1 − 𝜆3)𝛽2𝐼2
∗𝑆∗

𝐶1
, 

𝑢2 =
(𝜆4 − 𝜆1)𝑆∗

𝐶2
. 

 
 

(10) 

 
Since 𝑢𝑖

∗, 𝑖 = 1,2 must belong to Ω, we get 

𝑢1
∗ = {

0
(𝜆1 − 𝜆2)𝛽1𝐼1

∗𝑆∗ + (𝜆1 − 𝜆3)𝛽2𝐼2
∗𝑆∗

𝐶1
𝑢1 𝑚𝑎𝑥

, if 𝑢1 ≤ 0                   
, if 0 < 𝑢1 < 𝑢1 𝑚𝑎𝑥 
, if 𝑢1 ≥ 𝑢1 𝑚𝑎𝑥          

, 

 

𝑢2
∗ = {

(𝜆4 − 𝜆1)𝑆∗

𝐶2

, if 𝑢2 ≤ 0                   
, if 0 < 𝑢2 < 𝑢2 𝑚𝑎𝑥 
, if 𝑢2 ≥ 𝑢2 𝑚𝑎𝑥          

. 

 
 
 
 
 

 
which can also be characterized by 
 

𝑢1
∗ = min {max {0,

(𝜆1 − 𝜆2)𝛽1𝐼1
∗𝑆∗ + (𝜆1 − 𝜆3)𝛽2𝐼2

∗𝑆∗

𝐶1
} , 𝑢1 𝑚𝑎𝑥}, 

 
 
(11) 



Optimal Control and Cost-Effectiveness Analysis in an Epidemic Model with Viral Mutation and 
Vaccine Intervention 

Yudi Ari Adi 178 

𝑢2
∗ = min {max {0,

(𝜆4 − 𝜆1)𝑆∗

𝐶2
} , 𝑢2 𝑚𝑎𝑥}. 

 

  
This completes the proof. 

 
The following section provides numerical simulations of the optimality system, the 

control profile, and discussions. 
 

Numerical results and discussion 

 We observe the optimal trajectories of the optimal system through some numerical 
simulations. We applied the forward-backward sweep method described in [20], which 
is very commonly used in the literature of optimal control problems, as in the literature 
[9],  [14], [23].  For numerical simulation, we use a set of parameter values as in [19] and 
take the weight factor 𝑤1, 𝑤2, 𝑤3, 𝑤4, equal to one 𝐶1 = 2, and 𝐶2 = 2 due to the lack of 
the available literature and data. It should be noted that the weight values selected for 
the simulation are only for the theoretical sense to describe the control strategy 
proposed in this model. For the maximum control, we set 𝑢1, 𝑢1 𝑚𝑎𝑥 = 0.5 under the 
assumption that it is difficult to maintain community discipline in implementing 
prevention of disease transmissions such as restrictions on community 
interaction/mobilization, local lockdown, and quarantine. As for the control with 
vaccination, 𝑢1 𝑚𝑎𝑥 = 0.7  was taken based on the assumption that the vaccine was not 
yet fully effective and the lack of awareness of the individual to be vaccinated. We will 
focus on comparing the three control strategies.  

 Strategy I: Combination of prevention of disease transmission and 
vaccination. In this case 𝑢1 and 𝑢2 are defined as control variables.  

 Strategy II: Use restrictions on community interaction/mobilization as a 
control. In this case, only 𝑢1 is taken as a control variable. 

 Strategy III: Vaccine intervention as the only control, so only 𝑢2 as the control 
variable. 

 
Figure 1 shows the impact of implementing various strategies on the population size 

of 𝑆(𝑡) (Fig. 1a) and 𝑉(𝑡) (Fig. 1b) for 50 days.  It can be seen that without implementing 
the control strategy, the number of susceptible individuals and vaccinated individuals is 
lower than if the control strategy is applied.  With optimal control strategies, most 
susceptible individuals will be protected or vaccinated against the virus, thus leading to 
higher individuals in the vaccinated class (Fig. 1b) and ultimately resulting in fewer 
individuals being infected by either strain one or strain two see Figure 2. 
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Figure 1. Simulation results without and with the implementation of various control strategies. (a) 

Susceptible individuals, (b) Vaccinated individuals. 

 
In Figures 2(a) - 2(d), we show the impact of using optimal control strategies on the 

number of individuals infected by strain one and strain two. This suggests that disease 
in infectious populations can be reduced more rapidly when both controls are applied 
(Strategy I) compared to the situation without control or by using a single control, i.e., 
prevention of transmission only (Strategy II) or vaccination only (Strategy III). From the 
simulation results, the trajectories of optimal control show that the combination of two 
control strategies can lead to desired disease control. Fig. 2(a) – 2(b) show a comparison 
of the number of individuals infected by strains one and by strain two using Strategy I 
and Strategy III. Figures 2(c) - 2(d) show the situation of individuals infected by strain 
one and strain two by implementing strategy II and without control strategy. Based on 
the number of infected individuals, it appears that strategy I is the best strategy that can 
be applied to end the spread of the disease immediately. The corresponding time-
dependent controls 𝑢1(𝑡) and 𝑢2(𝑡) are depicted in Figure 3.  
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Figure 2. Simulation results for individuals infected by strain one (a), (c) and infected individuals by 

strain two (b), (d) without and with the implementation of various control strategies. 
 
Figure 3(a) tells us that strategy I can be implemented by maintaining preventive 

transmission control 𝑢1(𝑡) and vaccination 𝑢2(𝑡) at their upper bounds for about 30 
days and 35 days, respectively, and gradually decreasing to their lower bounds.  Figure 
3(b) illustrates the implementation of Strategy II, which shows that the control 𝑢1(𝑡) is kept 

at its upper bound over time. While Figure 3(c) shows that if Strategy III is implemented, then 

the control 𝑢2(𝑡) should be maintained at its upper bound most of the time. When these 

controls are implemented on a broad scale, it is also critical to adopt an approach that provides 

optimal cost, i.e., less cost. As a result, we will look at the cost-effectiveness of these controls 

in the next section. 
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Figure 3. Control profile for each strategy. (a) Strategy I, (b) Strategy II, (c) Strategy III. 

 

Cost-effectiveness analysis 

In this section, we use the Average Cost-Effectiveness Ratio (ACER) and the 
Incremental Cost-Effectiveness Ratio (ICER) to carry out the cost-effectiveness analysis. 
The average cost-effective ratio (ACER) is calculated as follows [21]: 

 

ACER =
The total cost (Tc)

Total number of infections averted (Ta)
 . 

 

 
(12) 

The total number of individuals infected averted during the intervention period T is 
obtained by using 

Ta = ∫(𝐼1
∗ + 𝐼2

∗)𝑑𝑡 −

𝑇

0

∫(𝐼1 + 𝐼2)𝑑𝑡,

𝑇

0

 

 

 
(13) 

where  𝐼1
∗, 𝐼2

∗ are the solution of infected classes by strain one and the infected classes by 
strain two without controls and 𝐼1, 𝐼2  are the optimal solution with controls.  The total 
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cost implemented during the period T is calculated as follows: 

T𝑐 = ∫
1

2
(𝐶1𝑢1

2 + 𝐶2𝑢2
2)𝑑𝑡.

𝑇

0

 

Based on this cost analysis, the most cost-effective strategy is the one with the 
smallest ACER value [23]. Now, we calculate the total cost invested and total infected 
averted in each strategy to analyze the cost-effectiveness. Using the formula (12), we 
find that Strategy I has the smallest ACER value and Strategy II has the largest ACER 
value, as seen in Figure 4. The results are also given in Table 1. Thus, according to the 
ACER value, the most effective intervention strategy is Strategy I. 
  

 
Figure 4. Average cost-effectiveness ratio (ACER) results for Strategy I – III  

 
The ICER, on the other hand, is calculated by dividing the cost difference between two 

feasible interventions by the difference in their effects. Mathematically, it is expressed as 
[22], [24]: 

ICER =
Difference in costs produced by strategies i and j

Difference in the total number of infection averted in strategies i and j 
 . 

 

 
(14) 

The difference between the total number of infected individuals without controls and 
the total number of infected individuals with controls is used to compute the total 

number of averted infections. Furthermore, we employed the cost functions 
𝐶1

2
𝑢1

2  and 
𝐶2

2
𝑢2

2 across time to calculate the total cost of the implemented strategies. We also used 

the parameter values from the preceding section to calculate the total cost and total 
infections averted, as shown in Table 1, with total averted infections are ranked 
according to their increasing in order.  Then, the ICER is calculated using the formula in 
(14). First, we computed for the competing strategies II and III as follows: 

 

ICER (II) =
989,582.93 − 0

102,599,77 − 0
= 9.6451, 

ICER (III) =
1,026,524.16 − 989,582.93

112,334.16 − 102,599,77
= 3.7949. 

 
The results of the ICER computation (as shown in Table 1) show that strategy II has a 
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higher ICER value than strategy III. As a result, implementing prevention transmission 
control 𝑢1 alone is more expensive and ineffective than using Vaccine intervention 
control 𝑢2. As a result, Strategy II is removed from the list of possible control strategies. 
The ICER for Strategies III and I now need to be recalculated. The calculation is as 
follows: 

ICER (III) =
1,026,524.16

112,334.16
= 9.1381, 

ICER (I) =
1,029,506.04 − 1,026,524.16

112,886.09 − 112,334.16
= 5.4026. 

 
Table 2 summarizes the results of the calculations. 
 

Table 1. Strategies I – III in order of increasing number of averted infected 

Strategy Total infected averted Total cost ACER ICER 

Strategy II                       102,599.77       989,582.93  9.6451 9.6451 

Strategy III                       112,334.16    1,026,524.16  9.1381 3.7949 

Strategy I                       112,886.09    1,029,506.04  9.1199 - 
 

Table 2. Comparison between Strategies III and I 

Strategy Total infected averted Total cost ICER 

Strategy III 112,334.16 1,026,524.16 9.1381 

Strategy I 112,886.09 1,029,506.04 5.4026 

 
It is clearly shown from Table 2 that Strategy III has an ICER value greater than Strategy 
I. Therefore, due to its cost-effectiveness and health benefits, Strategy I, that 
combination of prevention of disease transmission and vaccination, is the best of all 
possible options.    

CONCLUSIONS 

This paper has presented and analyzed a modified SIR epidemic model considering a 
time-dependent constant control that includes two control variables. The two control 
variables considered in this model are prevention of disease transmission, such as by 
restricting community interactions and administering vaccines. Numerical simulation of 
the optimal control problem was carried out using three strategies. Strategy I, a 
combination of prevention of disease transmission and vaccination, Strategy II, only 
prevention of disease transmission by restriction community interaction is taken as a 
control variable, and Strategy III, if the vaccine intervention is the only intervention 
carried out. All strategies show control profiles adjusted for the number of infected 
individuals in the community. Stronger interventions are needed to substantially reduce 
the number of infected individuals and the cost of implementing the strategy. 
Furthermore, analysis to determine the most cost-effective strategy was carried out 
using ACER and ICER. Based on calculating ACER and ICER, we found that using both 
controls simultaneously was the most cost-effective method and vaccination was the 
most cost-effective method in a single intervention. When only one intervention is 
applied, our simulations reveal that vaccination is the best single intervention strategy. 
However, the combination of vaccination and the restriction of community interactions, 
i.e., Strategy I, gave the best results in reducing the number of infected individuals with 
the cheapest cost compared to a single intervention strategy. We think that our work 
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will serve as a foundation for mathematical models that examine cost-effectiveness 
analyses using real-world data, especially on an epidemic model which considers viral 
mutation and vaccination. 
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