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ABSTRACT 

The COVID-19 mathematical model began to develop since the disease appeared at the end of 
2019. This model is used to investigate the characteristics of the spread of a disease.  This research 
developed a model of COVID-19 based on the SEIR model which was further developed by dividing 
the infected subpopulation into symptomatic and asymptomatic, adding quarantine of infected 
individuals and vaccination in two steps. Making this model begins with making a compartment 
diagram of the disease and then forming a system of differential equations. After the model is 
formed, the disease-free equilibrium point, endemic equilibrium point, and basic reproduction 
number (R0) are obtained. Analysis of the stability of the disease-free equilibrium point was locally 
asymptotically stable if R0<1 and an endemic equilibrium point existed if R0>1. Numerical 
simulation for the model that has been made is in line with the analysis. Furthermore, the 
sensitivity analysis of the basic reproduction number obtained that the parameters that have a 
significant effect on the spread of COVID-19 are the rate of the first dose vaccination, the rate of 
contact with symptomatic or asymptomatic individuals, and the rate of quarantine of symptomatic 
infected individuals. 
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INTRODUCTION 

SARS-CoV-2 is the virus that causes Coronavirus Disease 2019 (COVID-19) and 
first discovered at Wuhan, Hubei Province, China [1]. The current level of COVID-19 has 
become a pandemic because the virus has infected almost the entire world, not just in one 
area [2]. It is recorded that until July 1, 2021, or more than one year since this infection 
was first discovered, COVID-19 has infected up to 222 countries in the world with 
182,989,419 infected cases, 11,452,155 active cases, and 3,962,991 deaths [3]. The first 
case of COVID-19 in Indonesia was discovered on March 2, 2020, the two positive patients 
are domiciled in Depok, West Java. After the discovery of the first two positive patients, 
the positive number of COVID-19 in Indonesia continued to increase [4]. Until July 1, 2021, 
or more than a year after the first case in Indonesia, it was recorded that this virus had 
infected 2,203,108 individuals, with 258,826 active cases and 58,995 deaths [5]. In 
addition to symptomatic infected individuals, some asymptomatic infected individuals 
have a very large potential to transmit COVID-19 [6]. Research [7] analyzing susceptible 
individuals who came into contact with infected individuals found that infected 
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individuals without symptoms were less likely to transmit infection than symptomatic 
infected individuals.  

One of the hopes that the COVID-19 pandemic will quickly subside and return all 
the things like before is with a vaccine. On January 11, 2020, the genetic sequence of SARS-
CoV-2, the virus that caused this pandemic was published. This has triggered various 
research institutions in the world to carry out developments related to the COVID-19 
vaccine. The vaccine for COVID-19 is not a cure. Vaccines create immunity against COVID-
19, prevent the emergence or possibility of serious illness, or reduce serious symptoms 
that appear. The use of this rapidly researched vaccine is based on an emergency 
clearance from the World Health Organization (WHO) [8]. Several types of vaccines in the 
world have received Emergency Use Listing (EUL) and Emergency Use Authorization 
(EUA) from WHO including AstraZeneca, Pfizer, Janssen, Sinovac, Moderna, Sinopharm 
and, Sinovac [9]. 

One way to find out and anticipate bigger things in the spread of COVID-19 is to 
make a modeling of the disease. A number of studies on the mathematical model of COIVD-
19 was carried out, including Gabriel O. Fosu et al. [10], who made various types of models 
ranging from SIR to SEIR with quarantine and vaccination, but they only analyzed the SIR 
model. Furthermore, Idris Ahmed et al. [11] developed the SEIQR model by dividing the 
infected compartment into 2 parts, namely symptomatic infection (𝐼𝑆), and asymptomatic 
infection (𝐼𝐴). Enahoro A. Iboi et al. [12] made another development on his SEIR model by 
adding vaccinated individuals, dividing compartment E into two parts and dividing 
symptomatic infected individuals (𝐼𝑆)  asymptomatic infected individuals (𝐼𝐴)  and 
hospitalized individuals (𝐼𝐻). 

In this research, an SEIR COVID-19 spread model will be developed with 
quarantine and vaccination. In addition, it also divides people with COVID-19 with 
symptoms and without symptoms. Based on this model, the disease-free equilibrium 
point and the endemic equilibrium point will be searched, then the basic reproduction 
number (𝑅0)  will be searched. Furthermore, from the disease-free equilibrium point, 
stability will be searched using the Jacobi matrix eigenvalue analysis using the Routh-
Hurwitz Criteria. After that, a model simulation will be carried out to provide a geometric 
picture of the solution and to support the theorem. Then an analytical sensitivity of the 
model parameters to the basic reproduction number was carried out to find out which 
parameters dominantly affect the spread of COVID-19.  

METHODS 

This research begins with a literature study. We created a mathematical model of covid-
19 from the study [12] then added a 2-dose vaccination and quarantine compartment. 
Next, we will find the disease-free equilibrium point and the endemic equilibrium point. 
Then we find the basic reproduction number using the next generation matrices. The local 
stability of the disease-free equilibrium point was analyzed with the help of the Routh-
Hurwitz Criteria. Afterwards, the model simulation is performed using the 4th-order 
Runge-Kutta method that has been made to strengthen the analysis in the previous stage. 

RESULTS AND DISCUSSION  

Model Formulation 

 Assumptions for the mathematical model of COVID-19 with 2-dose vaccination, 
symptomatic, asymptomatic and quarantine are as follows: (1) The population is 
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assumed to be closed, there is no movement of people out or into the area. (2) Birth and 
death rates are assumed to be the same with rate 𝜇 , which mean the population is 
constant. (3) Every individual born is assumed to be in good health but has a risk of 
infection because it is not immune to disease. (4) Disease transmission occurs through 
direct contact between susceptible individuals and symptomatic or asymptomatic 
individuals. (5) Infected individuals are divided into symptomatic and asymptomatic. (6) 
Symptomatic and asymptomatic individuals who are detected must be quarantined. (7) 
Asymptomatic infected individuals who are not detected can recover on their own. (8) 
Vaccination is used to reduce the risk of susceptible individuals being infected. (9) 
Vaccination is carried out in 2 steps. (10) Death from disease is negligible. Based on the 
assumption, the model can be made a scheme for the spread of COVID-19 disease with 2 
doses of vaccination, symptomatic infection, asymptomatic infection, and quarantine as 
shown in Figure 1. 

 
Figure 1. Compartment diagram of COVID-19 spread 

 

In Figure 1 the individual population is divided into 8 compartments. Compartment of 
susceptible individuals (𝑆), compartment of individuals who have received vaccine dose 
1 (𝑉𝑃) , compartment of individuals who have received dose 2 of vaccine (𝑉𝐹) , 
compartment of latent individuals (𝐸), compartment of symptomatic infected individuals 
(𝐼𝑆) , compartment of asymptomatic infected individuals (𝐼𝐴) , compartment of 
quarantined individuals (𝑄), and compartment of individuals who have recovered from 
disease or are immune to disease (𝑅).  Every birth (𝜇) will be a susceptible individual (𝑆) 
with the potential to be infected with COVID-19. To reduce the potential for infection, 2 
doses of vaccination are carried out, susceptible individuals will receive 1 dose of vaccine 
(𝑉𝑃) at a rate of 𝜋. Individuals who have received vaccine dose 1 still have the potential to 
be infected by 𝜏1 and affected by the proportion of vaccine efficacy by 1 − 𝜀. Individuals 
who have received vaccine dose 1 will receive vaccine dose 2 (𝑉𝐹) at a rate of 𝜔 and the 
proportion of vaccine efficacy is 𝜀. Individuals who have received dose 2 of the vaccine 
still have the potential to be infected at a rate of 𝜏2 and are affected by the proportion of 
vaccine efficacy by 1 − 𝜌. Each susceptible individual, who has received dose 1 of the 
vaccine and has received dose 2 of the vaccine, who is infected will become a latent 
individual (E). 
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 The rate of susceptible individuals to become latent individuals is 𝛽𝑠 when contact 
with symptomatic infected individuals and 𝛽𝑎 when contact with asymptomatic infected 
individuals. Latent individuals will become symptomatic infected individuals (𝐼𝑆) with a 
rate of 𝛿  and a proportion of 𝑘 . Latent individuals will become asymptomatic infected 
individuals (𝐼𝐴)  with a rate of 𝛿  and a proportion of 1 − 𝑘 . Symptomatic infected 
individuals will quarantine (𝑄) at a rate of 𝛼1. Asymptomatic infected individuals who are 
detected will also be quarantined at a rate of 𝛼2. Asymptomatic infected individuals who 
are not detected can recover naturally due to the body's immune factor at a rate of 𝜎. 
Individuals who have received 2 doses of the vaccine will get immunity (𝑅) at a rate of 𝜃 
and efficacy of 𝜌 . Individuals who do quarantine will recover (𝑅)  at a rate of 𝛾 . Each 
compartment has a natural death of 𝜇. 

 The mathematical model of COVID-19 with 2 doses of vaccination, symptomatic 
infected, asymptomatic infected and quarantine is obtained as follows: 

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝑆

(𝛽𝑠𝐼𝑆 + 𝛽𝑎𝐼𝐴)

𝑁
− 𝜋𝑆 − 𝜇𝑆                                                                               

𝑑𝑉𝑃

𝑑𝑡
= 𝜋𝑆 − (1 − 𝜀)𝜏1𝑉𝑃

(𝐼𝑆 + 𝐼𝐴)

𝑁
− 𝜀𝜔𝑉𝑃 − 𝜇𝑉𝑃                                                               

𝑑𝑉𝐹

𝑑𝑡
= 𝜀𝜔𝑉𝑃 − (1 − 𝜌)𝜏2𝑉𝐹

(𝐼𝑆 + 𝐼𝐴)

𝑁
− 𝜌𝜃𝑉𝐹 − 𝜇𝑉𝐹                                                          

  
𝑑𝐸

𝑑𝑡
= 𝑆

(𝛽𝑠𝐼𝑆 + 𝛽𝑎𝐼𝐴)

𝑁
+ (1 − 𝜀)𝜏1𝑉𝑃

(𝐼𝑆 + 𝐼𝐴)

𝑁
+ (1 − 𝜌)𝜏2 𝑉𝐹  

(𝐼𝑆 + 𝐼𝐴)

𝑁
− 𝛿𝐸 − 𝜇𝐸

𝑑𝐼𝑆
𝑑𝑡

= 𝛿𝑘𝐸 − 𝛼1𝐼𝑆 − 𝜇𝐼𝑆                                                                                                             

𝑑𝐼𝐴
𝑑𝑡

= 𝛿(1 − 𝑘)𝐸 − 𝛼2𝐼𝐴 − 𝜎𝐼𝐴 − 𝜇𝐼𝐴                                                                                       

𝑑𝑄

𝑑𝑡
= 𝛼1𝐼𝑆 + 𝛼2𝐼𝐴 − 𝛾𝑄 − 𝜇𝑄                                                                                                  

𝑑𝑅

𝑑𝑡
= 𝛾𝑄 + 𝜎𝐼𝐴 + 𝜌𝜃𝑉𝐹 − 𝜇𝑅                                                                                                   

 (1) 

Where 𝑁 = 𝑆 + 𝑉𝑃 + 𝑉𝐹 + 𝐸 + 𝐼𝑆 + 𝐼𝐴 + 𝑄 + 𝑅  then obtained 
𝑑𝑁

𝑑𝑡
= 0 , thus 𝑁(𝑡) = 𝑐 

where 𝑐 is positive integer. Since 𝑁(𝑡) is constant, then system (1) can be formed into a 
non-dimensional model in order to simplify the model. The proportion of many 
individuals in each compartment can be expressed as: 

𝑠 =
𝑆

𝑁
 , 𝑣𝑝 =

𝑉𝑃

𝑁
 , 𝑣𝑓 =

𝑉𝐹

𝑁
 , 𝑒 =

𝐸

𝑁
 , 𝑖𝑠 =

𝐼𝑆
𝑁

 , 𝑖𝑎 =
𝐼𝐴
𝑁

 𝑞 =
𝑄

𝑁
 , 𝑟 =

𝑅

𝑁
  (2) 

Divide equation (1) by 𝑁(𝑡)  and express them as in (2) to obtain a non-dimensional 
mathematical model (3). In equation (3), variable r is ignored since it does not affect the 
other compartments. 
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𝑑𝑠

𝑑𝑡
= 𝜇 − 𝑠(𝛽𝑠𝑖𝑠 + 𝛽𝑎𝑖𝑎) − 𝜋𝑠 − 𝜇𝑠                                                                             

𝑑𝑣𝑝

𝑑𝑡
= 𝜋𝑠 − (1 − 𝜀)𝜏1𝑣𝑝(𝑖𝑠 + 𝑖𝑎) − 𝜀𝜔𝑣𝑝 − 𝜇𝑣𝑝                                                          

𝑑𝑣𝑓

𝑑𝑡
= 𝜀𝜔𝑣𝑝 − (1 − 𝜌)𝜏2𝑣𝑓(𝑖𝑠 + 𝑖𝑎) − 𝜌𝜃𝑣𝑓 − 𝜇𝑣𝑓                                                    

   
𝑑𝑒

𝑑𝑡
= 𝑠(𝛽𝑠𝑖𝑠 + 𝛽𝑎𝑖𝑎) + (1 − 𝜀)𝜏1𝑣𝑝(𝑖𝑠 + 𝑖𝑎) + (1 − 𝜌)𝜏2𝑣𝑓(𝑖𝑠 + 𝑖𝑎) − 𝛿𝑒 − 𝜇𝑒

𝑑𝑖𝑠
𝑑𝑡

= 𝛿𝑘𝑒 − 𝛼1𝑖𝑠 − 𝜇𝑖𝑠                                                                                                     

𝑑𝑖𝑎
𝑑𝑡

= 𝛿(1 − 𝑘)𝑒 − 𝛼2𝑖𝑎 − 𝜎𝑖𝑎 − 𝜇𝑖𝑎                                                                             

𝑑𝑞

𝑑𝑡
= 𝛼1𝑖𝑠 + 𝛼2𝑖𝑎 − 𝛾𝑞 − 𝜇𝑞                                                                                          

 (3) 

Disease Free Equilibrium Point 

A disease-free equilibrium point can be obtained when there are no infected 
individuals in the population. To fulfill this, it must be 𝑖𝑠 = 0 and 𝑖𝑎 = 0. The disease-free 
equilibrium point is obtained as follows: 

𝐸0(𝑠, 𝑣𝑝, 𝑣𝑓 , 𝑒, 𝑖𝑠, 𝑖𝑎, 𝑞) = (
𝜇

𝜋 + 𝜇
,

𝜋𝜇

(𝜋 + 𝜇)(𝜀𝜔 + 𝜇)
,

𝜀𝜔𝜋𝜇

(𝜋 + 𝜇)(𝜔 + 𝜇)(𝜌𝜃 + 𝜇)
, 0,0,0,0)   (4) 

Basic Reproduction Number (𝑹𝟎) 

The basic reproduction number can be obtained by finding the maximum eigenvalue 
of the next generation matrix [13]. The next-generation matrix is obtained from the 
infected subsystem equation. Take the equation which is the new infection case and also 
the change in the infected case in the system. Infected subsystem in (3) is 𝑒, 𝑖𝑠, 𝑖𝑎, 𝑞 . 
Linearization of the infected subsystem at the disease-free equilibrium point. Can be 
represented by the following Jacobian matrix (𝐽): 

𝐽𝐸0
=

[
 
 
 
 
 
 
 
 
𝑑𝑒

𝑑𝑒

𝑑𝑒

𝑑𝑖𝑠
𝑑𝑖𝑠
𝑑𝑒

𝑑𝑖𝑠
𝑑𝑖𝑠

𝑑𝑒

𝑑𝑖𝑎

𝑑𝑒

𝑑𝑞
𝑑𝑖𝑠
𝑑𝑖𝑎

𝑑𝑖𝑠
𝑑𝑞

𝑑𝑖𝑎
𝑑𝑒

𝑑𝑖𝑎
𝑑𝑖𝑠

𝑑𝑞

𝑑𝑒

𝑑𝑞

𝑑𝑖𝑠

𝑑𝑖𝑎
𝑑𝑖𝑎

𝑑𝑖𝑎
𝑑𝑞

𝑑𝑞

𝑑𝑖𝑎

𝑑𝑞

𝑑𝑞 ]
 
 
 
 
 
 
 
 

 

Decomposition of the Jacobian matrix (𝐽)  into a matrix 𝐽 = 𝐹 − 𝑉 , where 𝐹  is the 
transmission matrix and 𝑉 is the transition matrix. 

𝐹 =

[
 
 
 
 0

𝛽𝑠𝜇(𝜀𝜔 + 𝜇)(𝜌𝜃 + 𝜇) + 𝜏1𝜋𝜇(𝜌𝜃 + 𝜇) + 𝜏2𝜀𝜔𝜋𝜇

(𝜋 + 𝜇)(𝜀𝜔 + 𝜇)(𝜌𝜃 + 𝜇)

𝛽𝑎𝜇(𝜀𝜔 + 𝜇)(𝜌𝜃 + 𝜇) + 𝜏1𝜋𝜇(𝜌𝜃 + 𝜇) + 𝜏2𝜀𝜔𝜋𝜇

(𝜋 + 𝜇)(𝜀𝜔 + 𝜇)(𝜌𝜃 + 𝜇)
0

0 0 0 0
0 0 0 0
0 0 0 0]
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𝑉 =

[
 
 
 

(𝛿 + 𝜇) 0 0 0

−𝛿𝑘 (𝛼1 + 𝜇) 0 0

−𝛿(1 − 𝑘) 0 (𝛼2 + 𝜎 + 𝜇) 0

0 −𝛼1 −𝛼2 (𝛾 + 𝜇)]
 
 
 
, 𝐹𝑉−1 = [

𝑀1 𝑀2 𝑀3 0
0 0 0 0
0 0 0 0
0 0 0 0

] 

𝑀1 = (
𝛽𝑠𝜇𝐵𝐶 + 𝜏1𝜋𝜇𝐶 + 𝜏2𝜀𝜔𝜋𝜇

𝐴𝐵𝐶
)(

𝛿𝑘

𝐷𝐸
) + (

𝛽𝑎𝜇𝐵𝐶 + 𝜏1𝜋𝜇𝐶 + 𝜏2𝜀𝜔𝜋𝜇

𝐴𝐵𝐶
)(

𝛿(1 − 𝑘)

𝐷𝐹
), 

𝑀2 = (
𝛽𝑠𝜇𝐵𝐶 + 𝜏1𝜋𝜇𝐶 + 𝜏2𝜀𝜔𝜋𝜇

𝐴𝐵𝐶𝐸
) ,𝑀3 = (

𝛽𝑎𝜇𝐵𝐶 + (1 − 𝜀)𝜏1𝜋𝜇𝐶 + (1 − 𝜌)𝜏2𝜀𝜔𝜋𝜇

𝐴𝐵𝐶𝐹
) 

where 𝐴 = (𝜋 + 𝜇) , 𝐵 = (𝜀𝜔 + 𝜇) , 𝐶 = (𝜌𝜃 + 𝜇) , 𝐷 = (𝛿 + 𝜇) , 𝐸 = (𝛼1 + 𝜇)  dan 𝐹 =
(𝛼2 + 𝜎 + 𝜇). Next, 𝑅0 can be obtained by computing the spectral radius (𝜌) or the largest 
absolute value of the eigenvalues of 𝐹𝑉−1, which can be expressed as: 

𝑅0 = 𝜌(𝐹𝑉−1) = 𝑀1 

𝑅0 = (
𝛽𝑠𝜇𝐵𝐶 + 𝜏1𝜋𝜇𝐶 + 𝜏2𝜀𝜔𝜋𝜇

𝐴𝐵𝐶
)(

𝛿𝑘

𝐷𝐸
) + (

𝛽𝑎𝜇𝐵𝐶 + 𝜏1𝜋𝜇𝐶 + 𝜏2𝜀𝜔𝜋𝜇

𝐴𝐵𝐶
)(

𝛿(1 − 𝑘)

𝐷𝐹
).   (5) 

The basic reproduction number is defined as the average number of the second 
infection that occurred when the first infection started to infect all susceptible population 
[13]. In general, if 𝑅0 < 1 then the disease will disappear and if 𝑅0 > 1 then the disease 
will become epidemic. Further interpretation of 𝑅0 on (5) is discussed in the following.  

Endemic Equilibrium Point 

The endemic equilibrium point occurs when the infected class is not zero or the 
disease has become epidemic in a population. Must be 𝑖𝑠

∗ > 0 and 𝑖𝑎
∗ > 0. 

𝑖𝑠
∗ =

𝛿𝑘𝑒∗

𝛼1 + 𝜇
                                                                                                                                     (6)  

𝑖𝑎
∗ =

𝛿(1 − 𝑘)𝑒∗

𝛼2 + 𝜎 + 𝜇
                                                                                                                          (7)  

𝑠∗ =
𝜇

(𝛽𝑠𝑖𝑠∗ + 𝛽𝑎𝑖𝑎∗) + 𝜋 + 𝜇
                                                                                                     (8)  

𝑣𝑝
∗ =

𝜋𝑠∗

(1 − 𝜀)𝜏1(𝑖𝑠∗ + 𝑖𝑎∗) + 𝜀𝜔 + 𝜇
                                                                                         (9)  

𝑣𝑓
∗ =

𝜀𝜔𝑣𝑝
∗

(1 − 𝜌)𝜏2(𝑖𝑠∗ + 𝑖𝑎∗) + 𝜌𝜃 + 𝜇
                                                                                         (10)  

𝑞∗ =
𝛼1 (

𝛿𝑘𝑒∗

𝛼1+𝜇
) + 𝛼2 (

𝛿(1−𝑘)𝑒∗

𝛼2+𝜎+𝜇
)

𝛾 + 𝜇
                                                                                               (11)  

𝑎0𝑒
∗3 + 𝑎1𝑒

∗2 + 𝑎2𝑒
∗ + 𝑎3 = 0                                                                                              (12)  

Where 

𝑎0  = (𝛽𝑠𝛿𝑘𝐷𝐹 + 𝛽𝑎𝛿(1 − 𝑘)𝐷𝐸)(𝑀𝜏1𝛿𝑥)(𝑁𝜏2𝛿𝑥) 

𝑎1  = (𝛽𝑠𝛿𝑘𝐷𝐹 + 𝛽𝑎𝛿(1 − 𝑘)𝐷𝐸)(𝑀𝜏1𝛿𝑥𝐶 + 𝑁𝜏2𝛿𝑥𝐵) + 𝐴𝐷𝐸𝐹(𝑀𝜏1𝛿𝑥)(𝑁𝜏2𝛿𝑥)
− (𝛽𝑠𝜇𝛿𝑘𝐹 + 𝛽𝑎𝜇𝛿(1 − 𝑘)𝐸)(𝑀𝜏1𝛿𝑥)(𝑁𝜏2𝛿𝑥) 
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𝑎2  = (𝛽𝑠𝛿𝑘𝐷𝐹 + 𝛽𝑎𝛿(1 − 𝑘)𝐷𝐸)𝐵𝐶 + 𝐴𝐷𝐸𝐹[(𝑀𝜏1𝛿𝑥)𝐶 + (𝑁𝜏2𝛿𝑥)𝐵]
− (𝛽𝑠𝜇𝛿𝑘𝐹 + 𝛽𝑎𝜇𝛿(1 − 𝑘)𝐸)(𝑀𝜏1𝛿𝑥𝐶 + 𝑁𝜏2𝛿𝑥𝐵) − 𝑁𝜏1𝜏2𝜋𝜇(𝛿𝑥)2𝐸𝐹 

𝑎3 = 𝐴𝐵𝐶𝐷𝐸𝐹(1 − 𝑅0),𝑀 = (1 − 𝜀), 𝑁 = (1 − 𝜌) and 𝑥 = (
𝑘

𝐸
+

(1−𝑘)

𝐹
). 

Theorem 1. Assumed 𝐸1 = (𝑠∗, 𝑣𝑝
∗, 𝑣𝑓

∗, 𝑒∗, 𝑖𝑠
∗, 𝑖𝑎

∗ , 𝑞∗)  is endemic equilibrium point. 𝐸1 

exists if 𝑅0 > 1. 
Proof. The existence of an equilibrium point is indicated with each positive element 

according to the conditions for the formation of this model. We will prove that equation 
(12) has at least one positive root. According to Descartes' Rules of Sign [14], a polynomial 
will have as many positive roots as the change in a sign that occurs in the coefficients of 
the equation. Then it will be proven that there is at least one sign change in the equation. 
It is clear that 𝑎0 > 0. Take the coefficient 𝑎3 and it will be proved that its value is negative. 
With 𝑅0 > 1, the value of 𝑎3 < 0 is obtained, then there is at least one positive root in the 
equation according to [14]. So, Theorem 1 is proven to be true. ∎ 

Stability Analysis of Disease-Free Equilibrium Point 

Theorem 2. Disease equilibrium point 𝐸0 asymptotically stable if 𝑅0 < 1. 
Proof. Analysis of the stability of the disease-free equilibrium point can be determined 

by finding the eigenvalues of the Jacobian matrix around the disease-free equilibrium 
point 𝐸0 [15]. 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
 
 −𝐴 0 0 0 −

𝛽𝑠𝜇

𝐴
−

𝛽𝑎𝜇

𝐴
0

𝜋 −𝐵 0 0 − (
𝜏1𝜋𝜇

𝐴𝐵
) − (

𝜏1𝜋𝜇

𝐴𝐵
) 0

0 𝜔 −𝐶 0 −(
𝜏2𝜔𝜋𝜇

𝐴𝐵𝐶
) −(

𝜏2𝜔𝜋𝜇

𝐴𝐵𝐶
) 0

0 0 0 −𝐷 𝑌 𝑍 0
0 0 0 𝛿𝑘 −𝐸 0 0
0 0 0 𝛿(1 − 𝑘) 0 −𝐹 0
0 0 0 0 𝛼1 𝛼2 −𝐺]

 
 
 
 
 
 
 
 
 

(13) 

𝐴 = (𝜋 + 𝜇), 𝐵 = (𝜀𝜔 + 𝜇), 𝐶 = (𝜌𝜃 + 𝜇), 𝐷 = (𝛿 + 𝜇), 𝐸 = (𝛼1 + 𝜇), 𝐹 = (𝛼2 + 𝜎 + 𝜇), 

𝐺 = (𝛾 + 𝜇), 𝑌 = (
𝛽𝑠𝜇

𝐴
+

𝜏1𝜋𝜇

𝐴𝐵
+

𝜏2𝜔𝜋𝜇

𝐴𝐵𝐶
) and 𝑍 = (

𝛽𝑎𝜇

𝐴
+

𝜏1𝜋𝜇

𝐴𝐵
+

𝜏2𝜔𝜋𝜇

𝐴𝐵𝐶
). 

The characteristic equation is obtained as follows: 

(𝜆 + 𝐺)(𝜆 + 𝐶)(𝛾 + 𝐵)(𝜆 + 𝐴)𝑃 = 0 (13) 

where  
𝑃 = 𝜆3 + (𝐷 + 𝐸 + 𝐹)𝜆2 + (𝐷𝐸 + 𝐸𝐹 + 𝐷𝐹 − 𝑌𝛿𝑘 − 𝑍𝛿(1 − 𝑘))𝜆 +

(𝐷𝐸𝐹 − 𝑌𝛿𝑘𝐹 − 𝑍𝛿(1 − 𝑘)𝐸) (14)
 

Based on equation (13) from matrix 𝐽(𝐸0)  we get 𝜆1 = −𝐺 , 𝜆2 = −𝐶 , 𝜆3 = −𝐵, and 𝜆4 =

−𝐴. Since the values of 𝐴, 𝐵, 𝐶, and 𝐺 are positive, the real part of the four eigenvalues is 
negative. The other three eigenvalues were obtained as follows. In equation (14) we get 

𝑎0 = 1 , 𝑎1 = (𝐷 + 𝐸 + 𝐹) , 𝑎2 = (𝐷𝐸 + 𝐸𝐹 + 𝐷𝐹 − 𝑌𝛿𝑘 − 𝑍𝛿(1 − 𝑘))  and 𝑎3 = (𝐷𝐸𝐹 −

𝑌𝛿𝑘𝐹 − 𝑍𝛿(1 − 𝑘)𝐸). To find out the sign of the real part of the other eigenvalues, the 

Routh-Hurwitz criterion is used [13], with the condition 
𝑎1

𝑎0
> 0 ,

𝑎2

𝑎0
> 0, and 

𝑎3

𝑎0
> 0. For   

𝑎1

𝑎0
> 0, we get: 

𝑎1

𝑎0
= 𝐷 + 𝐸 + 𝐹 = 𝛿 + 𝛼1 + 𝛼2 + 𝜎 + 3𝜇 > 0. Then it’s proved that 

𝑎1

𝑎0
> 0. 
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From (5), we have 

𝑅0 =
𝑌𝛿𝑘𝐹 + 𝑍𝛿(1 − 𝑘)𝐸

𝐷𝐸𝐹
 

For  
𝑎2

𝑎0
> 0, we get: 

𝑎2

𝑎0
= 𝐷𝐸 + 𝐷𝐹 + 𝐸𝐹 − 𝑌𝛿𝑘 − 𝑍𝛿(1 − 𝑘) 

=
𝑍(1 − 𝑘)𝐷𝐸2 + 𝑌𝑘𝐷𝐹2 + 𝑌𝑘𝐸𝐹2 + 𝑍(1 − 𝑘)𝐸2𝐹

𝑌𝑘𝐹 + 𝑍(1 − 𝑘)𝐸
+

𝐷𝐸𝐹(𝑌𝑘 + 𝑍(1 − 𝑘))

𝑌𝑘𝐹 + 𝑍(1 − 𝑘)𝐸
(1 − 𝑅0) 

Because 𝐷,𝐸,𝐹, 𝑌, and 𝑍 are positive, then it’s proved that  
𝑎2

𝑎0
> 0 if only if  𝑅0 < 1. 

For  
𝑎3

𝑎0
> 0, we get: 

𝑎3

𝑎0
= 𝐷𝐸𝐹 − 𝑌𝛿𝑘𝐹 − 𝑍𝛿(1 − 𝑘)𝐸 = (𝛿 + 𝜇)(𝛼1 + 𝜇)(𝛼2 + 𝜎 + 𝜇)(1 − 𝑅0) 

Then it’s proved that  
𝑎3

𝑎0
> 0  if only if 𝑅0 < 1 . Thus, the first condition of the Routh-

Hurwitz criteria 
𝑎1

𝑎0
> 0, 

𝑎2

𝑎0
> 0, 

𝑎3

𝑎0
> 0 proved. 

According to the Routh-Hurwitz criteria, all eigenvalues will be negative if 𝛥1, 𝛥2, 𝛥3 >
0. Define the Routh-Hurwitz matrix: 

𝐻 = [
𝑎1 𝑎0 0
𝑎3 𝑎2 𝑎1

0 0 𝑎3

] 

The value of 𝛥1 from matrix 𝐻 obtained: 

Δ1 = |𝑎1| = 𝐷 + 𝐸 + 𝐹 = 𝛿 + 𝛼1 + 𝛼2 + 𝜎 + 3𝜇 > 0 

Then it’s proved that 𝛥1 > 0. The value of 𝛥2 from matrix H obtained: 

Δ2 = |
𝑎1 𝑎0

𝑎3 𝑎2
| = (𝐷 + 𝐸 + 𝐹)(

𝑍(1 − 𝑘)𝐷𝐸2 + 𝑌𝑘𝐷𝐹2 + 𝑌𝑘𝐸𝐹2 + 𝑍(1 − 𝑘)𝐸2𝐹

𝑌𝑘𝐹 + 𝑍(1 − 𝑘)𝐸
)

+ (
(𝑌𝑘𝐷 + 𝑍(1 − 𝑘)𝐷 + 𝑌𝑘𝐸 + 𝑍(1 − 𝑘)𝐹)

𝑌𝑘𝐹 + 𝑍(1 − 𝑘)𝐸
)𝐷𝐸𝐹(1 − 𝑅0) 

Because 𝐷,𝐸,𝐹, 𝑌 and 𝑍 are positive, then it’s proved that  ∆2> 0 if only if  𝑅0 < 1. 
The value of 𝛥3 from matrix H obtained: 

Δ3 = |
𝑎1 𝑎0 0
𝑎3 𝑎2 𝑎1

0 0 𝑎3

| = 𝑎3(Δ2) 

In the previous equation, it has been proven that 𝑎3 > 0 and 𝛥2 > 0. Then it’s proved that 
𝛥3 > 0. 

The determinant of the Routh-Hurwitz matrix 𝛥1, 𝛥2 , 𝛥3 has a positive value if and 
only if 𝑅0 < 1. So, the characteristic equation (13) has a negative real root part. Based on 
the results obtained, it can be concluded that the disease-free equilibrium point 𝐸0  is 
locally asymptotically stable.                                                                                                    ∎ 

Model Simulation 

The mathematical model of COVID-19 with 2 doses of vaccination, symptomatic, 
asymptomatic, and quarantine has been formed and analyzed and then carried out 
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numerical simulations. In this simulation, values are given for each parameter that has 
been determined. This simulation was carried out using the 4th-order Runge-Kutta 
method. Below are given the parameter values obtained from various reference sources. 

Table 1. Disease-free equilibrium point parameter values 
No Parameter Values Units Reff  No Parameter Values Units Reff 

1 𝜇 0.009 
1

𝑑𝑎𝑦
 [16] 

 
9 𝜏1 

1

28
 

1

𝑑𝑎𝑦
 [17] 

2 𝛽𝑠 0.3214 
1

𝑑𝑎𝑦
 [12] 

 
10 𝜏2 

1

119
 

1

𝑑𝑎𝑦
 [19] 

3 𝛽𝑎 0.7701 
1

𝑑𝑎𝑦
 [12] 

 
11 𝜔 

1

28
 

1

𝑑𝑎𝑦
 [20] 

4 𝛿 
1

5.1
 

1

𝑑𝑎𝑦
 [12] 

 
12 𝜃 

1

28
 

1

𝑑𝑎𝑦
 [20] 

5 𝑘 0.65  [12] 
 

13 𝛼1 0.0514 
1

𝑑𝑎𝑦
 [12] 

6 𝜋 0.035 
1

𝑑𝑎𝑦
 [17] 

 
14 𝛼2 0.0514 

1

𝑑𝑎𝑦
 [12] 

7 𝜀 0.653  [18] 
 

15 𝜎 
1

7
 

1

𝑑𝑎𝑦
 [12] 

8 𝜌 0.653  [18] 
 

16 𝛾 
1

14
 

1

𝑑𝑎𝑦
 [12] 

Based on the parameter values in table 1, the basic reproduction number is 𝑅0 =
0.9740939287. Because the value of 𝑅0 < 1 then the spread of the disease will slowly 
decrease and after a certain period time the population will be free from disease. The 
disease-free equilibrium point obtained 𝐸0 = (𝑠, 𝑣𝑝, 𝑣𝑓 , 𝑒, 𝑖𝑠, 𝑖𝑎, 𝑞) =

(0.204546,0.221497,0.15982,0,0,0,0). 
Simulation results using the 4th-order Runge-Kutta method at 𝐸0 based on parameter 

values in table 1 with initial values 𝑠(0) = 0.35, 𝑣𝑝(0) = 0.15, 𝑣𝑓(0) = 0.8, 𝑒(0) = 0.07, 

𝑖𝑠(0) = 0.1, 𝑖𝑎(0) = 0.07 and 𝑞(0) = 0.08 can be seen in Figure 2. Figure 2 shows the 
population of susceptible individuals decreased until day 30, then the individual 
population increased until day 1000 and was stable at 0.204546 . The population of 
individuals who received dose 1 of the vaccine decreased until day 50, then the individual 
population increased until day 1000 and reached stability at the point of 0.221497. For 
the individual population who received dose 2 vaccination, it increased until day 1000 
and was stable at 0.15982. The population of latent individuals increased in the first 5 
days, then decreased until day 1000 approached the point 0 and was stable at that point. 
The population of asymptomatic individuals decreased, until day 500 the individual 
population approached the point 0 and was stable. The population of symptomatic 
individuals increased in the initial 20 days, then decreased until day 1000 approached the 
point 0 and was stable. The population of individuals who were quarantined increased 
until day 20, then decreased until day 1000, the individual population approached the 
point 0 and stable. 

Simulation for the value of 𝑅0 > 1. The parameter value of 𝛽𝑠 increased to 0.7 and the 
parameter value of  𝜋 decreased to 0.02. Based on these parameter values we found the 
basic reproduction number 𝑅0 = 2.661972975 > 1 . It is found that the endemic 
equilibrium point is 𝐸1 = (0.11662,0.07033,0.05044,0.02773,0.05852,0.00936,0.04338). 
The simulation results of the endemic equilibrium point with initial values 𝑠(0) = 0.35, 
𝑣𝑝(0) = 0.15, 𝑣𝑓(0) = 0.8, 𝑒(0) = 0.07, 𝑖𝑠(0) = 0.1, 𝑖𝑎(0) = 0.07 and 𝑞(0) = 0.08 can be 

seen in Figure 3. Figure 3 shows the population of susceptible individuals decreased until 
day 20, then increased until day 200 and stable at 0.11662. The population of individuals 
who received doses of vaccines 1 and 2 decreased until day 200, then stable at 0.07033 
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for dose 1 and 0.05044 for dose 2. The population of latent individuals increased until day 
10, then decreased until day 150, and was stable at 0.02773 . The population of 
symptomatic infected individuals increased until day 20, then decreased until day 200, 
and was stable at 0.05852 . The population of asymptomatic infected individuals 
decreased until 100 days and stable at 0.00936. The population of individuals who were 
quarantined increased until day 20, then decreased until day 200, and was stable at 
0.04338. 

 
Figure 2. Simulation of disease-free equilibrium point  

 
Figure 3. Simulation of the endemic equilibrium point 

Next, a numerical simulation was performed by changing the value of the dose 1 
vaccination rate (𝜋). Simulations are carried out to determine how much influence the 
value of 𝜋. 
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Table 2. Numerical simulation of dose 1 vaccination 
𝝅 𝑹𝟎 Condition of 𝒊𝒔 and 𝒊𝒂 

𝟎. 𝟎𝟏 2.192400704 Become endemic, stable on day 300 and day 200 
𝟎. 𝟎𝟐 1.453014522 Become endemic, stable on day 350 and day 250 
𝟎. 𝟎𝟑𝟓 0.9780762026 The disease will disappear on day 1000 and day 500 
𝟎. 𝟎𝟔 0.6386181501 The disease will disappear on day 350 and day 200 
𝟎. 𝟎𝟗 0.4596977351 The disease will disappear on day 250 and day 150 

In graphical it presented in figure 4. 

                 
Figure 4. (a)     Figure 4. (b) 

                 
Figure 4. (c)     Figure 4. (d) 

 
Figure 4. (e) 

Figure 4. (a) simulation when 𝜋 = 0.01, (b) simulation when 𝜋 = 0.02, (c) simulation when 𝜋 = 0.035, 
(d) simulation when 𝜋 = 0.06, (e) simulation when 𝜋 = 0.09 
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Sensitivity Analysis 

The sensitivity index of a parameter is correlated with the basic reproduction number 
(𝑅0). This index provides information about the parameters with a significant impact on 
the value of 𝑅0 . Parameters with a high impact on the value of 𝑅0  indicate that these 
parameters have a big responsibility for the spread of COVID-19 [21]. The sensitivity 
index of a parameter can be calculated as follow: 

𝐶𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0

(15) 

Where p is the parameter for which the sensitivity index will be calculated. Using equation 
(15) and table 1, the sensitivity index from the parameter 𝛽𝑠 will be calculated as follow: 

𝐶𝛽𝑠

𝑅0 =
𝜕𝑅0

𝜕𝛽𝑠
×

𝛽𝑠

𝑅0
=

𝜇𝛿𝑘

(𝜋 + 𝜇)(𝛿 + 𝜇)(𝛼1 + 𝜇)
×

𝛽𝑠

𝑅0
= 0.7026842660 

The sensitivity index of all parameters is listed in table 3. 

Tabel 3. Sensitivity index parameters 

Parameter Sensitivity Index  Parameter Sensitivity Index 

𝜋 −0.7561096532  𝛼2 −0.06869884366 

𝛽𝑠 +0.6944182466  𝛿 +0.04388564886 

𝛼1 −0.6198090944  𝜏1 +0.03363455939 

𝜇 +0.6184672689  𝜔 −0.02267885513 

𝛽𝑎  +0.2662368610  𝜌 −0.01486623092 

𝑘 +0.2238170821  𝜏2 +0.005710332735 

𝜎 −0.1909361970  𝜃 −0.004120273967 

𝜀 −0.08597386189    

 
Table 3 shows the sensitivity index of each parameter used in this model. In the table, 

the sensitivity index is ordered based on how much impact the parameter for the value of 
𝑅0. The parameter index with a positive value indicates that if the parameter is increased 
while the other index remains, it will affect the value of 𝑅0 which also increases, whereas 
if the parameter is decreased, the value of 𝑅0 will also decrease. The parameter index with 
a negative value indicates that if the parameter is increased, the value of 𝑅0 will decrease, 
whereas if the parameter is decreased, the value of 𝑅0 will increase. 

The sensitivity index shows that the parameter 𝜋 (rate of individuals receiving dose 1 
vaccine) is the parameter that has the most significant (negative) impact on the spread of 
COVID-19. t is known that the sensitivity index value of parameter 𝜋 = −0.7561096532, 
by increasing (or decreasing) the value of parameter 𝜋  by 10%, the value of 𝑅0  will 
decrease (or increase) by 7.561096532%. The sensitivity index of parameter 𝛽𝑠 
(transmission rate if contact with symptomatic infected individuals) is the parameter that 
has the most significant (positive) impact on the spread of COVID-19. It is known that the 
sensitivity index value of the parameter 𝛽𝑠 = +0.6944182466 , by increasing (or 
decreasing) the value of the parameter 𝛽𝑠  by 10%, the value of 𝑅0  will increase (or 
decrease) by 6.944182466%. 

The results of numerical simulations show that if the value of 𝑅0 < 1 then the disease 
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will disappear from the population, but if the value of 𝑅0 > 1 then the disease will remain 
in the population or become endemic. Based on the results of the sensitivity analysis, 
several actions can be taken to prevent the transmission of COVID-19 by making the value 
of 𝑅0 < 1 based on table 3. (1) Accelerate the rate of dose 1 vaccination (𝜋). The rate of 
dose 1 vaccination can be accelerated by facilitating public access to get vaccines. Adding 
health facilities for vaccination is one way to increase the rate of dose 1 vaccination. (2) 
Reducing the rate of contact with symptomatic infected (𝛽𝑠) or asymptomatic infected 
(𝛽𝑎). This can be done by following health protocols and reducing mobility, as has been 
recommended by the government. (3) Accelerate the quarantine rate for symptomatic 
infected individuals (𝛼1) . The more individuals tested, the greater the probability of 
detecting infected individuals and this will make the rate at which individuals quarantine 
themselves will be greater. 

CONCLUSIONS 

The mathematical model of COVID-19 SVEIQR was obtained where compartment 𝑉 
was divided into dose 1 and dose 2, compartment 𝐼 was divided into symptomatic and 
asymptomatic infected. The model obtained is a system of nonlinear differential equations. 
It has a disease-free equilibrium point and an endemic equilibrium point. Disease-free 

equilibrium point 𝐸0 = (
𝜇

𝜋+𝜇
,

𝜋𝜇

(𝜋+𝜇)(𝜀𝜔+𝜇)
,

𝜀𝜔𝜋𝜇

(𝜋+𝜇)(𝜔+𝜇)(𝜌𝜃+𝜇)
, 0,0,0)  locally asymptotically 

stable when the value of 𝑅0 < 1. The endemic equilibrium point 𝐸1(𝑠, 𝑣𝑝, 𝑣𝑓 , 𝑒, 𝑖𝑠, 𝑖𝑎, 𝑞) 

exists when the value of 𝑅0 > 1. 
Based on the model simulation, it is concluded that the disease will disappear if 𝑅0 <

1, and the disease will persist in the population if 𝑅0 > 1 . This is consistent with the 
existing theorem. Based on the results of the sensitivity analysis, the parameter that has 
the most influence on the value of 𝑅0 is obtained. Several things that can be done to make 
the disease disappear (𝑅0 < 1) are to increase the rate of vaccination dose 1 (𝜋), reduce 
the rate of contact with symptomatic infected individuals (𝛽𝑠) or asymptomatic infected 
individuals (𝛽𝑎) and accelerate the quarantine rate for symptomatic infected individuals 
(𝛼1). 
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