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ABSTRACT  

Let 𝐺 be a connected graph with vertex set 𝑉(𝐺) and edge set 𝐸(𝐺). A bijection 𝑓 from 𝑉(𝐺) to the set 
{1,2, . . . , |𝑉(𝐺)|} is a labeling of graph 𝐺. The bijection 𝑓 is called rainbow antimagic  labeling if for any two 
edge 𝑥𝑦 and 𝑥′𝑦′ in path 𝑢 − 𝑣,𝑤(𝑥𝑦) ≠ 𝑤(𝑥′𝑦′), where 𝑤(𝑥𝑦) =  𝑓(𝑥) + 𝑓(𝑦) and 𝑢, 𝑣 ∈ 𝑉(𝐺). Rainbow 
antimagic coloring is a coloring of graph 𝐺 which has a rainbow antimagic labeling. Thus, every rainbow 
antimagic labeling induces a rainbow coloring 𝐺 where the edge weight 𝑤(𝑥𝑦) is the color of the edge 𝑥𝑦. 
The rainbow antimagic connection number of graph 𝐺 is the smallest number of colors of all rainbow 
antimagic colorings of graph 𝐺, denoted by 𝑟𝑎𝑐(𝐺). In this study, we studied rainbow antimagic coloring 
and have an exact value of rainbow antimagic connection number of join product of graph 𝐺 + 𝐾1 where 
𝐺 is graph 𝑚𝑃𝑛, graph 𝑚𝑆𝑛, graph 𝑚ℱ𝑛, graph 𝑚𝐹𝑛 and graph 𝑚𝑆𝑛,𝑛. 
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INTRODUCTION 

In this paper, we use a simple and connected graphs. The graph definition used in 
this study refferes to Chartrand et al. [7]. The join product of graphs 𝐺1 and 𝐺2 which is 
denoted by 𝐺1  + 𝐺2 is the graph with 𝑉(𝐺1 + 𝐺2) =  𝑉(𝐺1) ∪  𝑉(𝐺2) and 𝐸(𝐺1 + 𝐺2) =
 𝐸(𝐺1) ∪ 𝐸(𝐺2) ∪ {𝑥𝑦 |𝑥 ∈ 𝑉(𝐺1), 𝑦 ∈ 𝑉(𝐺2)} [13]. While rainbow antimagic coloring of 
graph is new concept with combining the concept of rainbow coloring and antimagic 
labeling of graph. Rainbow coloring was first introduced by Chartrand et al. [8]. Let 𝐺 be 
a connected graph, the edge coloring of 𝐺 with the function 𝑐: 𝐸(𝐺) → {1,2, … , 𝑘}  𝑘 ∈ ℕ, 
is 𝑘-coloring of the graph 𝐺 where the two adjacent edges can be colored with the same 
color. Rainbow 𝑢 − 𝑣 path is the path in 𝐺 if no two edges are the same color. The graph 
𝐺 is a rainbow connection if every 𝑢, 𝑣 ∈ 𝑉(𝐺) has a rainbow path. The edge coloring on 
𝐺 has a rainbow connection called rainbow coloring. The minimum colors to make 𝐺 
rainbow-connected is called the rainbow connection number of 𝐺 and denoted by 𝑟𝑐(𝐺). 
The research on rainbow connection number has gained many results, including [18] 
and [19]. 

http://dx.doi.org/10.18860/ca.v7i4.17471
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The study of rainbow coloring has variants including rainbow vertex coloring and 
total rainbow coloring. Rainbow vertex coloring was first introduced in [17]. The results 
of rainbow vertex coloring are found in [20], [22]. Another variant of rainbow coloring is 
total rainbow coloring and the results can be seen in [15] and [23]. Graph labeling was 
introduced in [24] by Wallis et al. (2001). Hartsfield and Ringel introduced antimagic 
labeling for the first time in [14]. Antimagic labeling has had several results including by 
Baca et al. in [2,3,4,5]. Then Dafik et al. has contributed to the antimagic labeling in [11]. 
In addition, antimagic labeling results can also be found in [9] and [10]. 

Arumugam et al. [1] initiated the study of combining graph coloring and graph 
labeling. The bijective function from edge set 𝐸(𝐺) to {1,2, . . . , |𝐸(𝐺)|} and 𝑤(𝑣) =
∑ 𝑓(𝑥𝑦) 𝑥𝑦∈𝐸(𝑣) and 𝐸(𝑣) is the set of edges that are incident to vertices 𝑣, for every 𝑣 ∈

 𝑉(𝐺). The bijective function 𝑓 if for two adjacent vertices 𝑢, 𝑣 ∈ 𝑉(𝐺), 𝑤(𝑢) ≠  𝑤(𝑣) is 
called antimagic labeling. The coloring of the vertices on 𝐺 with the vertices of 𝑣 colored 
with 𝑤(𝑣) is the local antimagic labeling. If we consider the chromatic number of the 
local antimagic labeling, then this notion is called local antimagic coloring. Motivated the 
combination done by Arumugam, Dafik 𝑒𝑡 𝑎𝑙. in [12] defined the combination of the 
concepts of rainbow coloring and antimagic labeling into a new concept called rainbow 
antimagic coloring. Dafik et al. determine the theorem about the existence of rainbow 
𝑥 − 𝑦 path of any graph of 𝑑𝑖𝑎𝑚(𝐺) ≤ 2. 
 
Theorem 1. Let 𝐺 be a connected graph of diameter 𝑑𝑖𝑎𝑚(𝐺) ≤ 2. Let 𝑓: 𝑉(𝐺) →
{1,2, … , |𝑉(𝐺)| } be any bijective function. For any 𝑢, 𝑣 ∈ 𝑉(𝐺) there exists a rainbow 𝑢 −
𝑣 path. 
 

Rainbow antimagic coloring results have been studied in [6], [12], [16] and [21]. 
In this study, we studied rainbow antimagic coloring and have an exact value of rainbow 
antimagic connection number of join product of graph 𝐺 + 𝐾1 where 𝐺 is graph 𝑚𝑃𝑛, 
graph 𝑚𝑆𝑛, graph 𝑚ℱ𝑛, graph 𝑚𝐹𝑛 and graph 𝑚𝑆𝑛,𝑛. 

 
METHOD 

To determine the number of rainbow antimagic coloring of graph, we use the 
following steps: 
1. For any graph 𝐺, identify the set of vertices 𝑉(𝐺) and set of edges 𝐸(𝐺). 
2. Analyze the lower bound of rainbow antimagic connection number (𝑟𝑎𝑐) based on 

Lemma:  𝑟𝑎𝑐(𝐺) ≥ max {𝑟𝑐(𝐺), Δ(𝐺)}. 
3. Label the vertices of the graph 𝐺 with the function: 𝑉(𝐺) → {1,2,3, . . . , |𝑉(𝐺)|}. 
4. Determine the edge weight based on the sum of vertex label which incident with the 

edge. To calculate edge weight we give the function,  𝑤(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣) for 
𝑢, 𝑣 𝜖 𝑉(𝐺). 

5. Verify that every two vertex in the graph 𝐺 have rainbow paths. If not, repeat the step 
3. 

6. Determine the upper bound of 𝑟𝑎𝑐(𝐺) from the number of different edge weight. 
7. The exact value of rainbow antimagic connection number can be determined if lower 

bound is the same with upper bound of rainbow antimagic connection number. 
 

RESULTS AND DISCUSSION 
 

In this section, we will show our new results on join product of graphs stated in a 
lemma and theorem. First we create a lower bound for the graph 𝑚𝐺 + 𝐾1 then use it to 
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determine the result of the rainbow antimagic connection number of the graph 𝑚𝑃𝑛  +
 𝐾1, graph 𝑚𝑆𝑛  +  𝐾1, graph, graph 𝑚𝐹𝑛 +𝐾1 and graph 𝑚𝑆𝑛,𝑛 + 𝐾1. 

 

Lemma 1.  For 𝑚 ≥ 3 and 𝐺 is connected graph, 𝑟𝑎𝑐 ( 𝑚𝐺 + 𝐾1) ≥ Δ(𝑚𝐺 + 𝐾1). 
 
Proof.  The graph 𝑚𝐺 + 𝐾1 is the comb product of graphs 𝑚𝐺 and 𝐾1. It is obtained by 
taking 𝑚 copy of 𝐺 and one copy of 𝐾1 and joining the vertex of 𝐾1 to every vertex in the 
𝑚 copy of 𝐺. 𝑉(𝑚𝐺 + 𝐾1) =  𝑉(𝑚𝐺) ∪  𝑉(𝐾1) and 𝐸(𝑚𝐺 + 𝐾1) =  𝐸(𝑚𝐺) ∪  𝐸(𝐾1) ∪
 {𝑥𝑦 |𝑥 ∈  𝑉(𝑚𝐺), 𝑦 ∈ 𝑉(𝐾1)}. By this definition, we have 𝑑(𝑦)  = Δ(𝑚𝐺 + 𝐾1) and 
𝑓: 𝑉 (𝑚𝐺 + 𝐾1) →  {1,2,3, … , |𝑉(𝑚𝐺 + 𝐾1)|} is a bijection function. Since 𝑓 is a 
bijection function we have 𝑓(𝑦) ≠ 𝑓(𝑥), for every 𝑦, 𝑥 ∈ 𝑉 (𝑚𝐺 + 𝐾1) so that for every 
𝑦𝑥, 𝑦𝑧 ∈ 𝐸(𝑚𝐺 + 𝐾1),𝑤(𝑦𝑥) ≠ 𝑤(𝑦𝑧). Therefore, 𝑟𝑎𝑐(𝑚𝐺 + 𝐾1) ≥ Δ(𝑚𝐺 + 𝐾1). 
Based on the description above, 𝑟𝑎𝑐(𝑚𝐺 + 𝐾1) ≥ Δ(𝑚𝐺 + 𝐾1).                                           ∎ 
 
Theorem 2. For 𝑛,𝑚 ≥ 3, 𝑟𝑎𝑐( 𝑚𝑃𝑛 +𝐾1) =  𝑚𝑛. 
 
Proof. Let (𝑚𝑃𝑛 + 𝐾1) be a graph with vertex set 𝑉( 𝑚𝑃𝑛 + 𝐾1) = {𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤

 𝑖 ≤  𝑛 } ∪  {𝑣} and edge set 𝐸(𝑚𝑃𝑛  +  𝐾1) = {𝑣𝑥𝑖𝑗  , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑛} ∪ {𝑥𝑖𝑗𝑥𝑖𝑗+1, 1 ≤

 𝑖 ≤  𝑚, 1 ≤ 𝑛 − 1 }. The cardinality of 𝑉(𝑚𝑃𝑛  + 𝐾1) is |𝑉(𝑚𝑃𝑛  +  𝐾1)| =  𝑚𝑛 + 1 and 
the cardinality of 𝐸(𝑚𝑃𝑛  +  𝐾1) is |𝐸(𝑚𝑃𝑛  +  𝐾1)| =  𝑚(2𝑛 − 1).  To have the rainbow 
antimagic connection number of 𝑚𝑃𝑛 + 𝐾1, first we need to show the lower bound of 
𝑟𝑎𝑐(𝑚𝑃𝑛  + 𝐾1). Clearly, according to Lemma 1 we have 𝑟𝑎𝑐 (𝑚𝑃𝑛 +𝐾1) ≥ 𝑚𝑛. 

Secondly, to have the exact value we have to show the upper bound of 𝑟𝑎𝑐(𝑚𝑃𝑛 +
𝐾1). Let 𝑓 ∶  𝑉(𝑚𝑃𝑛 + 𝐾1) → {1,2, . . . , 𝑚𝑛 + 1 } be a vertex labeling of graph 𝑚𝑃𝑛 + 𝐾1 
defined as follows. 

𝑓(𝑣) = 2𝑚 + 1 

𝑓(𝑥𝑖𝑗) =

{
 
 

 
 
𝑖                        , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 1                         
𝑖 + 𝑗 + 1         , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 3                         
2𝑗 + 𝑖 − 1        , for 𝑗 is odd, 1 ≤ 𝑖 ≤ 𝑚, 5 ≤ 𝑗 ≤ 𝑛 
𝑚𝑛 − 𝑖 + 2      , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 2                          
𝑛 − 𝑖 − 𝑗 + 2   , for 𝑗 is even, 1 ≤ 𝑖 ≤ 𝑚, 4 ≤ 𝑗 ≤ 𝑛

 

For the edge weights, we have : 

𝑤(𝑣𝑥𝑖𝑗) =

{
 
 

 
 
2𝑚 + 𝑖 + 1                   , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 1                        
2𝑚 + 𝑖 + 𝑗 + 2            , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 3                        
2𝑚 + 𝑖 + 2𝑗                 , for 𝑗 is odd, 1 ≤ 𝑖 ≤ 𝑚, 5 ≤ 𝑗 ≤ 𝑛
2𝑚 + 𝑛𝑚 − 𝑖 − 𝑗        , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 2                          
2𝑚 + 𝑛𝑚 − 𝑖 − 𝑗 + 3  , for 𝑗 is even, 1 ≤ 𝑖 ≤ 𝑚, 4 ≤ 𝑗 ≤ 𝑛

 

𝑤(𝑥𝑖𝑗𝑥𝑖𝑗+1) = {

𝑚𝑛 + 2         , for 𝑗 is odd, 1 ≤ 𝑖 ≤ 𝑚                      
𝑚𝑛 + 𝑛 + 1 , for 𝑗 is even, 1 ≤ 𝑖 ≤ 𝑚, 𝑗 ≠ 𝑛 − 1
𝑚𝑛 + 𝑛 + 2 , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 𝑛 − 1                 

 

 
It is easy to see the edge weights of 𝑓 ∶  𝑉(𝑚𝑃𝑛 + 𝐾1) →  {1,2, . . . , 𝑚𝑛 + 1 } 

induces a rainbow antimagic coloring of 𝑚𝑛 colors. Thus 𝑟𝑎𝑐(𝑚𝑃𝑛  +  𝐾1) ≤ 𝑚𝑛. 
Comparing the two bounds, we have the exact value of  𝑟𝑎𝑐 (𝑚𝑃𝑛  +  𝐾1) = 𝑚𝑛. The last 
is to evaluate the existence of rainbow 𝑥 − 𝑦 path of 𝑚𝑃𝑛  + 𝐾1. Since 𝑑𝑖𝑎𝑚(𝑚𝑃𝑛 +
 𝐾1) = 2, based on Theorem 1, for every two vertices 𝑥, 𝑦 ∈ 𝑉(𝑚𝑃𝑛 + 𝐾1), there exists a 
rainbow 𝑥 − 𝑦 path. It completes the proof.                                                                                   ∎ 
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For an illustration, a rainbow antimagic coloring of graph 𝑚𝑃𝑛 + 𝐾1 can be seen 
in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Theorem 3. For 𝑛,𝑚 ≥ 3, 𝑟𝑎𝑐( 𝑚𝑆𝑛 +𝐾1) =  𝑚𝑛. 
 
𝑃𝑟𝑜𝑜𝑓.  Let 𝑚𝑆𝑛  + 𝐾1 be a graph with vertex set  𝑉(𝑚𝑆𝑛 + 𝐾1) =  {𝑣} ∪ {𝑥𝑖, 1 ≤  𝑖 ≤
 𝑚} ∪ {𝑥𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤  𝑛 − 1} and edge set 𝐸(𝑚𝑆𝑛 +𝐾1) = {𝑣𝑥𝑖𝑗 , 1 ≤  𝑖 ≤  𝑚, 1 ≤

𝑗 ≤ 𝑛 − 1} ∪ {𝑥𝑖𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 1} ∪ {𝑣𝑥𝑖 , 1 ≤  𝑖 ≤ 𝑚}. The cardinality of 

𝑉(𝑚𝑆𝑛 + 𝐾1) is |𝑉(𝑚𝑆𝑛 + 𝐾1)| = 𝑚𝑛 +  1 and the cardinality of 𝐸(𝑚𝑆𝑛  +  𝐾1) is 
|𝐸(𝑚𝑆𝑛  +  𝐾1)| =  2𝑚𝑛 −  𝑚. To have the rainbow antimagic connection number of 
𝑚𝑆𝑛 + 𝐾1, first we need to show the lower bound of 𝑟𝑎𝑐(𝑚𝑆𝑛 + 𝐾1). Clearly, according to 
Lemma 1 we have 𝑟𝑎𝑐 (𝑚𝑆𝑛 + 𝐾1) ≥ 𝑚𝑛. 

Secondly, to have the exact value we have to show the upper bound of 
𝑟𝑎𝑐(𝑚𝑆𝑛  + 𝐾1). Let 𝑓 ∶  𝑉(𝑚𝑆𝑛  +  𝐾1) →  {1,2, . . . , 𝑚𝑛 +  1 } be a vertex labeling of 
graph  𝑚𝑆𝑛  +  𝐾1 defined as follows. 

𝑓(𝑣) = 𝑚 + 2 
𝑓(𝑥𝑖) = 𝑖 , for 1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑥𝑖𝑗) = {
𝑚 + 1                  , for 𝑖 = 𝑚, 𝑗 = 1                         
𝑚 − 𝑖 + 𝑚𝑗 + 2 , for 1 ≤ 𝑖 ≤ 𝑚 − 1, 2 ≤ 𝑗 ≤ 𝑛

 

For the edge weights, we have : 

𝑤(𝑥𝑖𝑥𝑖𝑗) = {
𝑚 + 𝑖 + 1    , for 𝑖 = 𝑚, 𝑗 = 1                         
𝑚 + 𝑚𝑗 + 2 , for 1 ≤ 𝑖 ≤ 𝑚 − 1, 2 ≤ 𝑗 ≤ 𝑛

 

𝑤(𝑣𝑥𝑖) = 𝑚 + 𝑖 + 2 , for 1 ≤ 𝑖 ≤ 𝑚 

𝑤(𝑣𝑥𝑖𝑗) = {
2𝑚 + 3                  , for 𝑖 = 𝑚, 𝑗 = 1                        
2𝑚 − 𝑖 +𝑚𝑗 + 4 , for 1 ≤ 𝑖 ≤ 𝑚 − 1, 2 ≤ 𝑗 ≤ 𝑛

 

 
It is easy to see the edge weights of 𝑓 ∶  𝑉(𝑚𝑆𝑛 + 𝐾1) → {1,2, . . . , 𝑚𝑛 +  1 } 

induces a rainbow antimagic coloring of 𝑚𝑛 colors. Thus 𝑟𝑎𝑐(𝑚𝑆𝑛 + 𝐾1) ≤ 𝑚𝑛. 
Comparing the two bounds, we have the exact value of  𝑟𝑎𝑐 (𝑚𝑆𝑛 + 𝐾1) = 𝑚𝑛. The last is 
to evaluate the existence of rainbow 𝑥 − 𝑦 path of 𝑚𝑆𝑛 + 𝐾1. Since 𝑑𝑖𝑎𝑚(𝑚𝑆𝑛 + 𝐾1) =

Figure 1. A rainbow antimagic coloring of of join product of graph 4𝑃5 + 𝐾1. 
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2, based on Theorem 1, for every two vertices 𝑥, 𝑦 ∈ 𝑉(𝑚𝑆𝑛 + 𝐾1), there exists a 
rainbow 𝑥 − 𝑦 path. It completes the proof.                                                                                    ∎ 

For an illustration, a rainbow antimagic coloring of graph 𝑚𝑆𝑛 + 𝐾1 can be seen 
in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 4.  For 𝑛,𝑚 ≥ 3, 𝑟𝑎𝑐(𝑚ℱ𝑛 + 𝐾1)  =  2𝑚𝑛 +  𝑚. 
 
Proof.  Let 𝑚ℱ𝑛 + 𝐾1 be a graph with vertex set  𝑉(𝑚ℱ𝑛 + 𝐾1) =  {𝑣} ∪ {𝑥𝑖 , 1 ≤  𝑖 ≤  𝑚} ∪

 {𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤  𝑗 ≤ 𝑛} ∪ {𝑦𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and edge set 𝐸(𝑚ℱ𝑛 + 𝐾1) =

 {𝑥𝑖𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 } ∪  {𝑥𝑖𝑗𝑦𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑣𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤  𝑚, 1 ≤

 𝑗 ≤ 𝑛} ∪ {𝑣𝑦𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}. The cardinality of 𝑉(𝑚ℱ𝑛 + 𝐾1) is |𝑉(𝑚ℱ𝑛 + 𝐾1)| =

 2𝑚𝑛 +  𝑚 +  1 and the cardinality of 𝐸(𝑚ℱ𝑛 + 𝐾1) is |𝐸(𝑚ℱ𝑛 + 𝐾1)| =  5𝑚𝑛. To have the 

rainbow antimagic connection number of 𝑚ℱ𝑛 + 𝐾1, first we need to show the lower bound of 

𝑟𝑎𝑐(𝑚ℱ𝑛 + 𝐾1). Clearly, according to Lemma 1 we have 𝑟𝑎𝑐(𝑚ℱ𝑛 + 𝐾1) ≥ 2𝑚𝑛 +𝑚. 

 

Secondly, to have the exact value we have to show the upper bound of 𝑟𝑎𝑐(𝑚ℱ𝑛 +
𝐾1). Let 𝑓 ∶  𝑉(𝑚ℱ𝑛 + 𝐾1) → {1,2, . . . , 2𝑚𝑛 +  𝑚 +  1 } be a vertex labeling of graph 
𝑚ℱ𝑛 + 𝐾1 defined as follows. 

𝑓(𝑣) = 3𝑚 

𝑓(𝑥𝑖) = {
2𝑚 + 𝑖        , for 1 ≤ 𝑖 ≤ 𝑚 − 1
2𝑚 + 𝑖 + 1 , for  𝑖 = 𝑚                

 

𝑓(𝑥𝑖𝑗) = {
𝑚𝑗 − 𝑖 + 𝑚 − 3  , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 1,2     
𝑚𝑗 − 𝑖 + 2𝑚 − 2 , for 1 ≤ 𝑖 ≤ 𝑚, 3 ≤ 𝑗 ≤ 𝑛

 

𝑓(𝑦𝑖𝑗) = 2𝑚𝑛 +𝑚 − 𝑖 − 𝑚𝑗 + 6 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

 
For the edge weights, we have : 
 

𝑤(𝑣𝑥𝑖) = {
5𝑚 + 𝑖        , for 1 ≤ 𝑖 ≤ 𝑚 − 1
5𝑚 + 𝑖 + 1 , for  𝑖 = 𝑚               

 

Figure 2. A rainbow antimagic coloring of of join product of graph 4𝑆5 + 𝐾1. 
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𝑤(𝑣𝑥𝑖𝑗) = {
𝑚𝑛 +𝑚𝑗 − 𝑖 + 1 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 − 1
2𝑚𝑛 + 6 −𝑚      , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 𝑛                

 

𝑤(𝑣𝑦𝑖𝑗) = 4𝑚𝑛 − 𝑖 − 𝑚𝑗 − 2 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

𝑤(𝑥𝑖𝑥𝑖𝑗) = {

3𝑚 +𝑚𝑗 − 3 , for 1 ≤ 𝑖 ≤ 𝑚 − 1, 𝑗 = 1,2     
4𝑚 +𝑚𝑗 − 2 , for 1 ≤ 𝑖 ≤ 𝑚 − 1, 3 ≤ 𝑗 ≤ 𝑛
3𝑚 +𝑚𝑗 − 2 , for 𝑖 = 𝑚, 𝑗 = 1,2                     
3𝑚 +𝑚𝑗 − 1     , for 𝑖 = 𝑚, 3 ≤ 𝑗 ≤ 𝑛                

 

𝑤(𝑥𝑖𝑦𝑖𝑗) = {
2𝑚𝑛 +  3𝑚 −  𝑚𝑗 +  6 , for 1 ≤ 𝑖 ≤ 𝑚 − 1, 1 ≤ 𝑗 ≤ 𝑛
2𝑚𝑛 +  3𝑚 −  𝑚𝑗 +  7 , for 𝑖 = 𝑚, 1 ≤ 𝑗 ≤ 𝑛                 

 

𝑤(𝑥𝑖𝑗𝑦𝑖𝑗) = {
3𝑚𝑛 − 2𝑖 − 1 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛
3𝑚𝑛 − 2𝑖 + 4 , for 1 ≤ 𝑖 ≤ 𝑚, 𝑗 = 𝑛         

 

 
It is easy to see the edge weights of 𝑓 ∶  𝑉(𝑚ℱ𝑛 +𝐾1) → {1,2, . . . ,2𝑚𝑛 +𝑚 +  1} 

induces a rainbow antimagic coloring of 𝑚𝑛 colors. Thus 𝑟𝑎𝑐(𝑚ℱ𝑛 + 𝐾1) ≤ 2𝑚𝑛 +𝑚. 
Comparing the two bounds, we have the exact value of  𝑟𝑎𝑐(𝑚ℱ𝑛 + 𝐾1) = 2𝑚𝑛 +  𝑚. 
The last is to evaluate the existence of rainbow 𝑥 − 𝑦 path of 𝑚ℱ𝑛 + 𝐾1. Since 
𝑑𝑖𝑎𝑚(𝑚ℱ𝑛 + 𝐾1) = 2, based on Theorem 1, for every two vertices 𝑥, 𝑦 ∈ 𝑉(𝑚ℱ𝑛 + 𝐾1), 
there exists a rainbow 𝑥 − 𝑦 path. It completes the proof.                                                        ∎ 

For an illustration, a rainbow antimagic coloring of graph 𝑚ℱ𝑛+𝐾1 can be seen 
in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Theorem 5.  For 𝑛,𝑚 ≥ 3, 𝑟𝑎𝑐(𝑚𝐹𝑛 + 𝐾1)  =  𝑚𝑛 +  𝑚. 

 
Proof.  Let 𝑚𝐹𝑛 + 𝐾1 be a graph with vertex set  𝑉(𝑚𝐹𝑛 +𝐾1) = {𝑣} ∪ {𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑚} ∪
 {𝑥𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}  and edge set 𝐸(𝑚𝐹𝑛 + 𝐾1) = {𝑣𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑚} ∪

{𝑣𝑥𝑖𝑗 , 1 ≤  𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤  𝑛} ∪ {𝑥𝑖𝑥𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑥𝑖𝑗𝑥𝑖𝑗+1, 1 ≤  𝑖 ≤  𝑚, 1 ≤

 𝑗 ≤  𝑛 − 1}. The cardinality of 𝑉(𝑚𝐹𝑛 + 𝐾1) is |𝑉(𝑚𝐹𝑛 + 𝐾1)| =  𝑚𝑛 +  𝑚 +  1 and the 

Figure 3. A  rainbow antimagic coloring of join product of graph 4ℱ3 + 𝐾1. 
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cardinality of 𝐸(𝑚𝐹𝑛 + 𝐾1) is |𝐸(𝑚𝐹𝑛 + 𝐾1)| = 3𝑚𝑛. To have the rainbow antimagic 
connection number of 𝑚𝐹𝑛 + 𝐾1, first we need to show the lower bound of 𝑟𝑎𝑐(𝑚𝐹𝑛 +
 𝐾1). Clearly, according to Lemma 1 we have 𝑟𝑎𝑐 (𝑚𝐹𝑛 + 𝐾1) ≥ 𝑚𝑛 +𝑚.  
  Secondly, to have the exact value we have to show the upper bound of 𝑟𝑎𝑐(𝑚𝐹𝑛 +
𝐾1). Let 𝑓 ∶  𝑉(𝑚𝐹𝑛 + 𝐾1) → {1,2, . . . , 𝑚𝑛 +  𝑚 +  1 } be a vertex labeling of graph 𝑚𝐹𝑛 +
𝐾1 defined as follows. 

𝑓(𝑣) = 2𝑚 + ⌈
𝑛

2
⌉ 

𝑓(𝑥𝑖) = {
2𝑚 + 𝑖       , for 1 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1

2𝑚 + 𝑖 + 1 , for  ⌈
𝑚

2
⌉ ≤ 𝑖 ≤ 𝑚    

 

𝑓(𝑥𝑖𝑗) = {
𝑚𝑛 + 2𝑚 − 𝑖 − 𝑗 (⌈

𝑚

2
⌉) , for 𝑖 is odd, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  

𝑗 (⌈
𝑚

2
⌉) − 𝑖 + 1               , for 𝑖 is even, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

 

For the edge weights, we have: 

𝑤(𝑣𝑥𝑖) = {
4𝑚 + ⌈

𝑚

2
⌉ + 𝑖        , for 1 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1

4𝑚 + ⌈
𝑚

2
⌉ + 𝑖 + 1 , for  ⌈

𝑚

2
⌉ ≤ 𝑖 ≤ 𝑚    

 

𝑤(𝑣𝑥𝑖𝑗) = {
𝑚𝑛 + 4𝑚 − 𝑖 − 𝑗 (⌈

𝑚

2
⌉) + ⌈

𝑚

2
⌉ , for 𝑖 is odd, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  

2𝑚 − 𝑖 + 𝑗 (⌈
𝑚

2
⌉) − ⌈

𝑚

2
⌉            , for 𝑖 is even, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

 

𝑤(𝑥𝑖𝑥𝑖𝑗) =

{
  
 

  
 𝑚𝑛 + 4𝑚 − 𝑗 (⌈

𝑚

2
⌉)       , for 𝑖 is odd, 1 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1, 1 ≤ 𝑗 ≤ 𝑛 

𝑚𝑛 + 4𝑚 − 𝑗 (⌈
𝑚

2
⌉) + 1 , for 𝑖 is odd, ⌈

𝑚

2
⌉ ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛        

2𝑚 + 𝑗 (⌈
𝑚

2
⌉) + 1            , for 𝑖 is even, 1 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1, 1 ≤ 𝑗 ≤ 𝑛

2𝑚 + 𝑗 (⌈
𝑚

2
⌉) + 2            , for 𝑖 is odd, 1 ≤ 𝑖 ≤ ⌈

𝑚

2
⌉ − 1, 1 ≤ 𝑗 ≤ 𝑛  

 

𝑤(𝑥𝑖𝑗𝑥𝑖𝑗+1) = {
𝑚𝑛 +𝑚 − 2𝑖 + 7 , for 𝑖 is odd, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛  
𝑚𝑛 − 2𝑖 + 7         , for 𝑖 is even, 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

 

 
It is easy to see the edge weights of 𝑓 ∶  𝑉(𝑚𝐹𝑛 + 𝐾1) →  {1,2, . . . , 𝑚𝑛 + 𝑚 +  1} 

induces a rainbow antimagic coloring of 𝑚𝑛 + 𝑚 colors. Thus 𝑟𝑎𝑐(𝑚𝐹𝑛 + 𝐾1) ≤ 𝑚𝑛 +
𝑚. Comparing the two bounds, we have the exact value of  𝑟𝑎𝑐(𝑚𝐹𝑛  +  𝐾1) = 𝑚𝑛 +  𝑚. 
The last is to evaluate the existence of rainbow 𝑥 − 𝑦 path of 𝑚𝐹𝑛  + 𝐾1. Since 
𝑑𝑖𝑎𝑚(𝑚𝐹𝑛  +  𝐾1) = 2, based on Theorem 1, for every two vertices 𝑥, 𝑦 ∈ 𝑉(𝑚𝐹𝑛  +  𝐾1), 
there exists a rainbow 𝑥 − 𝑦 path. It completes the proof.                                                         ∎ 

For an illustration, a rainbow antimagic coloring of graph 𝑚𝐹𝑛  +  𝐾1 can be seen 
in Figure 4. 
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Theorem 6.  For 𝑛,𝑚 ≥ 3, 𝑟𝑎𝑐(𝑚𝑆𝑛,𝑛 + 𝐾1)  =  2𝑚𝑛 +  𝑚. 

 
Proof.  Let 𝑚𝑆𝑛,𝑛 + 𝐾1 be a graph with vertex set  𝑉(𝑚𝑆𝑛,𝑛 + 𝐾1) = {𝑣} ∪ {𝑥𝑖, 𝑦𝑖 , 1 ≤  𝑖 ≤

 𝑚} ∪ {𝑥𝑖𝑗, 𝑦𝑖𝑗, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} and edge set 𝐸(𝑚𝐹𝑛 +𝐾1) = {𝑣𝑥𝑖 , 𝑣𝑦𝑖 , 𝑥𝑖𝑦𝑖 , 1 ≤  𝑖 ≤

 𝑚} ∪ {𝑣𝑥𝑖𝑗 , 𝑣𝑦𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑥𝑖𝑥𝑖𝑗, 𝑦𝑖𝑦𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤  𝑛 }. The 

cardinality of 𝑉(𝑚𝑆𝑛,𝑛 + 𝐾1) is |𝑉(𝑚𝑆𝑛,𝑛 +𝐾1)| = 2𝑚𝑛 +𝑚 + 1 and the cardinality of 
𝐸(𝑚𝑆𝑛,𝑛 + 𝐾1) is |𝐸(𝑚𝑆𝑛,𝑛 + 𝐾1)| = 3𝑚 + 4𝑚𝑛. To have the rainbow antimagic 
connection number of 𝑚𝑆𝑛,𝑛 + 𝐾1, first we need to show the lower bound of 

𝑟𝑎𝑐(𝑚𝑆𝑛,𝑛 + 𝐾1). Clearly, according to Lemma 1 we have 𝑟𝑎𝑐 (𝑚𝑆𝑛,𝑛 +𝐾1) ≥ 2𝑚𝑛 +𝑚.  

Secondly, to have the exact value we have to show the upper bound of 
𝑟𝑎𝑐(𝑚𝑆𝑛,𝑛 + 𝐾1). Let 𝑓 ∶  𝑉(𝑚𝑆𝑛,𝑛 + 𝐾1) → {1,2, . . . , 2𝑚𝑛 +  𝑚 + 1} be a vertex labeling 

of graph 𝑚𝑆𝑛,𝑛 + 𝐾1 defined as follows.  

𝑓(𝑣) = 𝑚𝑛 +  𝑚 + 1 
𝑓(𝑥𝑖) = 𝑚𝑛 +𝑚 + 𝑖 + 1 , for 1 ≤ 𝑖 ≤ 𝑚 

𝑓(𝑦𝑖) = 𝑚𝑛 + 𝑖 , for 1 ≤ 𝑖 ≤ 𝑚 
𝑓(𝑥𝑖𝑗) = (𝑖 − 1)𝑛 + 𝑗 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

𝑓(𝑦𝑖𝑗) = 𝑚𝑛 + 2𝑚 + (𝑖 − 1)𝑛 + 𝑗 + 1 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 
 

For the edge weights, we have: 
 

𝑤(𝑣𝑥𝑖) = 2𝑚𝑛 +𝑚 + 𝑖 + 2 , for 1 ≤ 𝑖 ≤ 𝑚 
𝑤(𝑣𝑦𝑖) = 2𝑚𝑛 +𝑚 + 𝑖 + 1 , for 1 ≤ 𝑖 ≤ 𝑚 

𝑤(𝑣𝑥𝑖𝑗) = 𝑚𝑛 +𝑚 + (𝑖 − 1)𝑛 + 𝑗 + 1 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

𝑤(𝑣𝑦𝑖𝑗) = 2𝑚𝑛 + 3𝑚 + (𝑖 − 1)𝑛 + 𝑗 + 2 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 
𝑤(𝑥𝑖𝑦𝑖) = 2𝑚𝑛 +𝑚 + 2𝑖 + 1 , for 1 ≤ 𝑖 ≤ 𝑚 

Figure 4. A  rainbow antimagic coloring of join product of graph 4𝐹5 + 𝐾1. 
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𝑤(𝑥𝑖𝑥𝑖𝑗) = 𝑚𝑛 +𝑚 + 𝑖 + (𝑖 − 1)𝑛 + 𝑗 + 1 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 

𝑤(𝑦𝑖𝑦𝑖𝑗) = 2𝑚𝑛 + 2𝑚 + 𝑖 + (𝑖 − 1)𝑛 + 𝑗 + 1 , for 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 
 

It is easy to see the edge weights of 𝑓 ∶  𝑉(𝑚𝑆𝑛,𝑛 + 𝐾1) → {1,2, . . . ,2𝑚𝑛 +  𝑚 + 1} 

induces a rainbow antimagic coloring of 2𝑚𝑛 +  𝑚 colors. Thus 𝑟𝑎𝑐(𝑚𝑆𝑛,𝑛 +𝐾1) ≤

2𝑚𝑛 +𝑚. Comparing the two bounds, we have the exact value of  𝑟𝑎𝑐 (𝑚𝑆𝑛,𝑛 + 𝐾1) =
 2𝑚𝑛 +𝑚. The last is to evaluate the existence of rainbow 𝑥 − 𝑦 path of 𝑚𝑆𝑛,𝑛 + 𝐾1. 
Since 𝑑𝑖𝑎𝑚(𝑚𝑆𝑛,𝑛 + 𝐾1) = 2, based on Theorem 1, for any two vertices 𝑥, 𝑦 ∈
𝑉(𝑚𝑆𝑛𝑛 + 𝐾1), there exists a rainbow 𝑥 − 𝑦 path. It completes the proof.                            ∎ 
 
For an illustration, a rainbow antimagic coloring of graph 𝑚𝑆𝑛,𝑛 + 𝐾1 can be seen in 

Figure 5. 

 

CONCLUSIONS 

We studied rainbow antimagic coloring of join product graph 𝐺 + 𝐾1 where 𝐺 is 
𝑚𝑃𝑛, 𝑚𝑆𝑛, 𝑚ℱ𝑛, 𝑚𝐹𝑛, 𝑚𝑆𝑛,𝑛.  This research generates a lower bound of rainbow antimagic 

connection number for the joint product of graph 𝐺 + 𝐾1 and based on the lower bound, 
we have the exact value of rainbow antimagic connection number of graph 𝑚𝑃𝑛 + 𝐾1, 
𝑚𝑆𝑛 + 𝐾1, 𝑚ℱ𝑛 + 𝐾1, 𝑚𝐹𝑛 + 𝐾1 and graph 𝑚𝑆𝑛,𝑛 + 𝐾1. Based on these results, rainbow 

antimagic connection number of joint product of graphs 𝐺 + 𝐾1 depends on maximum 
degree of  𝐺 + 𝐾1. 

However, if is not a graph 𝐾1, it is still difficult to determine the exact value of the 
rainbow antimagic connection number. Therefore, this study raises an open problem.  
Determine the rainbow antimagic connection number of join product of graph 𝐺 + 𝐻 
where 𝐻 is not a graph 𝐾1.  
 

Figure 5. A rainbow antimagic coloring of join product of graph 4𝑆3,3 + 𝐾1 
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